1 /* $NetBSD: cpu.c,v 1.70 2008/10/24 13:23:45 matt Exp $ */
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * RiscBSD kernel project
39 * Probing and configuration for the master CPU
44 #include "opt_armfpe.h"
45 #include "opt_multiprocessor.h"
47 #include <sys/param.h>
49 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.70 2008/10/24 13:23:45 matt Exp $");
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/device.h>
56 #include <uvm/uvm_extern.h>
57 #include <machine/cpu.h>
59 #include <arm/cpuconf.h>
60 #include <arm/undefined.h>
63 #include <machine/bootconfig.h> /* For boot args */
64 #include <arm/fpe-arm/armfpe.h>
68 #include <arm/vfpvar.h>
74 void identify_arm_cpu(struct device
*dv
, struct cpu_info
*);
77 * Identify the master (boot) CPU
81 cpu_attach(struct device
*dv
)
85 usearmfpe
= 1; /* when compiled in, its enabled by default */
87 curcpu()->ci_dev
= dv
;
89 evcnt_attach_dynamic(&curcpu()->ci_arm700bugcount
, EVCNT_TYPE_MISC
,
90 NULL
, dv
->dv_xname
, "arm700swibug");
92 /* Get the CPU ID from coprocessor 15 */
94 curcpu()->ci_arm_cpuid
= cpu_id();
95 curcpu()->ci_arm_cputype
= curcpu()->ci_arm_cpuid
& CPU_ID_CPU_MASK
;
96 curcpu()->ci_arm_cpurev
=
97 curcpu()->ci_arm_cpuid
& CPU_ID_REVISION_MASK
;
99 identify_arm_cpu(dv
, curcpu());
101 if (curcpu()->ci_arm_cputype
== CPU_ID_SA110
&&
102 curcpu()->ci_arm_cpurev
< 3) {
103 aprint_normal("%s: SA-110 with bugged STM^ instruction\n",
108 if ((curcpu()->ci_arm_cpuid
& CPU_ID_CPU_MASK
) == CPU_ID_ARM810
) {
109 int clock
= arm8_clock_config(0, 0);
111 aprint_normal("%s: ARM810 cp15=%02x", dv
->dv_xname
, clock
);
112 aprint_normal(" clock:%s", (clock
& 1) ? " dynamic" : "");
113 aprint_normal("%s", (clock
& 2) ? " sync" : "");
114 switch ((clock
>> 2) & 3) {
128 aprint_normal(" fclk source=%s\n", fclk
);
134 * Ok now we test for an FPA
135 * At this point no floating point emulator has been installed.
136 * This means any FP instruction will cause undefined exception.
137 * We install a temporay coproc 1 handler which will modify
138 * undefined_test if it is called.
139 * We then try to read the FP status register. If undefined_test
140 * has been decremented then the instruction was not handled by
141 * an FPA so we know the FPA is missing. If undefined_test is
142 * still 1 then we know the instruction was handled by an FPA.
143 * We then remove our test handler and look at the
144 * FP status register for identification.
148 * Ok if ARMFPE is defined and the boot options request the
149 * ARM FPE then it will be installed as the FPE.
150 * This is just while I work on integrating the new FPE.
151 * It means the new FPE gets installed if compiled int (ARMFPE
152 * defined) and also gives me a on/off option when I boot in
153 * case the new FPE is causing panics.
158 get_bootconf_option(boot_args
, "armfpe",
159 BOOTOPT_TYPE_BOOLEAN
, &usearmfpe
);
161 initialise_arm_fpe();
189 static const char * const generic_steppings
[16] = {
190 "rev 0", "rev 1", "rev 2", "rev 3",
191 "rev 4", "rev 5", "rev 6", "rev 7",
192 "rev 8", "rev 9", "rev 10", "rev 11",
193 "rev 12", "rev 13", "rev 14", "rev 15",
196 static const char * const pN_steppings
[16] = {
197 "*p0", "*p1", "*p2", "*p3", "*p4", "*p5", "*p6", "*p7",
198 "*p8", "*p9", "*p10", "*p11", "*p12", "*p13", "*p14", "*p15",
201 static const char * const sa110_steppings
[16] = {
202 "rev 0", "step J", "step K", "step S",
203 "step T", "rev 5", "rev 6", "rev 7",
204 "rev 8", "rev 9", "rev 10", "rev 11",
205 "rev 12", "rev 13", "rev 14", "rev 15",
208 static const char * const sa1100_steppings
[16] = {
209 "rev 0", "step B", "step C", "rev 3",
210 "rev 4", "rev 5", "rev 6", "rev 7",
211 "step D", "step E", "rev 10" "step G",
212 "rev 12", "rev 13", "rev 14", "rev 15",
215 static const char * const sa1110_steppings
[16] = {
216 "step A-0", "rev 1", "rev 2", "rev 3",
217 "step B-0", "step B-1", "step B-2", "step B-3",
218 "step B-4", "step B-5", "rev 10", "rev 11",
219 "rev 12", "rev 13", "rev 14", "rev 15",
222 static const char * const ixp12x0_steppings
[16] = {
223 "(IXP1200 step A)", "(IXP1200 step B)",
224 "rev 2", "(IXP1200 step C)",
225 "(IXP1200 step D)", "(IXP1240/1250 step A)",
226 "(IXP1240 step B)", "(IXP1250 step B)",
227 "rev 8", "rev 9", "rev 10", "rev 11",
228 "rev 12", "rev 13", "rev 14", "rev 15",
231 static const char * const xscale_steppings
[16] = {
232 "step A-0", "step A-1", "step B-0", "step C-0",
233 "step D-0", "rev 5", "rev 6", "rev 7",
234 "rev 8", "rev 9", "rev 10", "rev 11",
235 "rev 12", "rev 13", "rev 14", "rev 15",
238 static const char * const i80321_steppings
[16] = {
239 "step A-0", "step B-0", "rev 2", "rev 3",
240 "rev 4", "rev 5", "rev 6", "rev 7",
241 "rev 8", "rev 9", "rev 10", "rev 11",
242 "rev 12", "rev 13", "rev 14", "rev 15",
245 static const char * const i80219_steppings
[16] = {
246 "step A-0", "rev 1", "rev 2", "rev 3",
247 "rev 4", "rev 5", "rev 6", "rev 7",
248 "rev 8", "rev 9", "rev 10", "rev 11",
249 "rev 12", "rev 13", "rev 14", "rev 15",
252 /* Steppings for PXA2[15]0 */
253 static const char * const pxa2x0_steppings
[16] = {
254 "step A-0", "step A-1", "step B-0", "step B-1",
255 "step B-2", "step C-0", "rev 6", "rev 7",
256 "rev 8", "rev 9", "rev 10", "rev 11",
257 "rev 12", "rev 13", "rev 14", "rev 15",
260 /* Steppings for PXA255/26x.
261 * rev 5: PXA26x B0, rev 6: PXA255 A0
263 static const char * const pxa255_steppings
[16] = {
264 "rev 0", "rev 1", "rev 2", "step A-0",
265 "rev 4", "step B-0", "step A-0", "rev 7",
266 "rev 8", "rev 9", "rev 10", "rev 11",
267 "rev 12", "rev 13", "rev 14", "rev 15",
270 /* Stepping for PXA27x */
271 static const char * const pxa27x_steppings
[16] = {
272 "step A-0", "step A-1", "step B-0", "step B-1",
273 "step C-0", "rev 5", "rev 6", "rev 7",
274 "rev 8", "rev 9", "rev 10", "rev 11",
275 "rev 12", "rev 13", "rev 14", "rev 15",
278 static const char * const ixp425_steppings
[16] = {
279 "step 0", "rev 1", "rev 2", "rev 3",
280 "rev 4", "rev 5", "rev 6", "rev 7",
281 "rev 8", "rev 9", "rev 10", "rev 11",
282 "rev 12", "rev 13", "rev 14", "rev 15",
287 enum cpu_class cpu_class
;
288 const char *cpu_name
;
289 const char * const *cpu_steppings
;
292 const struct cpuidtab cpuids
[] = {
293 { CPU_ID_ARM2
, CPU_CLASS_ARM2
, "ARM2",
295 { CPU_ID_ARM250
, CPU_CLASS_ARM2AS
, "ARM250",
298 { CPU_ID_ARM3
, CPU_CLASS_ARM3
, "ARM3",
301 { CPU_ID_ARM600
, CPU_CLASS_ARM6
, "ARM600",
303 { CPU_ID_ARM610
, CPU_CLASS_ARM6
, "ARM610",
305 { CPU_ID_ARM620
, CPU_CLASS_ARM6
, "ARM620",
308 { CPU_ID_ARM700
, CPU_CLASS_ARM7
, "ARM700",
310 { CPU_ID_ARM710
, CPU_CLASS_ARM7
, "ARM710",
312 { CPU_ID_ARM7500
, CPU_CLASS_ARM7
, "ARM7500",
314 { CPU_ID_ARM710A
, CPU_CLASS_ARM7
, "ARM710a",
316 { CPU_ID_ARM7500FE
, CPU_CLASS_ARM7
, "ARM7500FE",
318 { CPU_ID_ARM710T
, CPU_CLASS_ARM7TDMI
, "ARM710T",
320 { CPU_ID_ARM720T
, CPU_CLASS_ARM7TDMI
, "ARM720T",
322 { CPU_ID_ARM740T8K
, CPU_CLASS_ARM7TDMI
, "ARM740T (8 KB cache)",
324 { CPU_ID_ARM740T4K
, CPU_CLASS_ARM7TDMI
, "ARM740T (4 KB cache)",
327 { CPU_ID_ARM810
, CPU_CLASS_ARM8
, "ARM810",
330 { CPU_ID_ARM920T
, CPU_CLASS_ARM9TDMI
, "ARM920T",
332 { CPU_ID_ARM922T
, CPU_CLASS_ARM9TDMI
, "ARM922T",
334 { CPU_ID_ARM926EJS
, CPU_CLASS_ARM9EJS
, "ARM926EJ-S",
336 { CPU_ID_ARM940T
, CPU_CLASS_ARM9TDMI
, "ARM940T",
338 { CPU_ID_ARM946ES
, CPU_CLASS_ARM9ES
, "ARM946E-S",
340 { CPU_ID_ARM966ES
, CPU_CLASS_ARM9ES
, "ARM966E-S",
342 { CPU_ID_ARM966ESR1
, CPU_CLASS_ARM9ES
, "ARM966E-S",
344 { CPU_ID_TI925T
, CPU_CLASS_ARM9TDMI
, "TI ARM925T",
347 { CPU_ID_ARM1020E
, CPU_CLASS_ARM10E
, "ARM1020E",
349 { CPU_ID_ARM1022ES
, CPU_CLASS_ARM10E
, "ARM1022E-S",
351 { CPU_ID_ARM1026EJS
, CPU_CLASS_ARM10EJ
, "ARM1026EJ-S",
354 { CPU_ID_SA110
, CPU_CLASS_SA1
, "SA-110",
356 { CPU_ID_SA1100
, CPU_CLASS_SA1
, "SA-1100",
358 { CPU_ID_SA1110
, CPU_CLASS_SA1
, "SA-1110",
361 { CPU_ID_IXP1200
, CPU_CLASS_SA1
, "IXP1200",
364 { CPU_ID_80200
, CPU_CLASS_XSCALE
, "i80200",
367 { CPU_ID_80321_400
, CPU_CLASS_XSCALE
, "i80321 400MHz",
369 { CPU_ID_80321_600
, CPU_CLASS_XSCALE
, "i80321 600MHz",
371 { CPU_ID_80321_400_B0
, CPU_CLASS_XSCALE
, "i80321 400MHz",
373 { CPU_ID_80321_600_B0
, CPU_CLASS_XSCALE
, "i80321 600MHz",
376 { CPU_ID_80219_400
, CPU_CLASS_XSCALE
, "i80219 400MHz",
378 { CPU_ID_80219_600
, CPU_CLASS_XSCALE
, "i80219 600MHz",
381 { CPU_ID_PXA27X
, CPU_CLASS_XSCALE
, "PXA27x",
383 { CPU_ID_PXA250A
, CPU_CLASS_XSCALE
, "PXA250",
385 { CPU_ID_PXA210A
, CPU_CLASS_XSCALE
, "PXA210",
387 { CPU_ID_PXA250B
, CPU_CLASS_XSCALE
, "PXA250",
389 { CPU_ID_PXA210B
, CPU_CLASS_XSCALE
, "PXA210",
391 { CPU_ID_PXA250C
, CPU_CLASS_XSCALE
, "PXA255/26x",
393 { CPU_ID_PXA210C
, CPU_CLASS_XSCALE
, "PXA210",
396 { CPU_ID_IXP425_533
, CPU_CLASS_XSCALE
, "IXP425 533MHz",
398 { CPU_ID_IXP425_400
, CPU_CLASS_XSCALE
, "IXP425 400MHz",
400 { CPU_ID_IXP425_266
, CPU_CLASS_XSCALE
, "IXP425 266MHz",
403 { CPU_ID_ARM1136JS
, CPU_CLASS_ARM11J
, "ARM1136J-S r0",
405 { CPU_ID_ARM1136JSR1
, CPU_CLASS_ARM11J
, "ARM1136J-S r1",
407 { CPU_ID_ARM1176JS
, CPU_CLASS_ARM11J
, "ARM1176J-S r0",
409 { CPU_ID_CORTEXA8R1
, CPU_CLASS_ARM11J
, "Cortex-A8 r1",
411 { CPU_ID_CORTEXA8R2
, CPU_CLASS_ARM11J
, "Cortex-A8 r2",
414 { CPU_ID_FA526
, CPU_CLASS_ARMV4
, "FA526",
417 { 0, CPU_CLASS_NONE
, NULL
, NULL
}
420 struct cpu_classtab
{
421 const char *class_name
;
422 const char *class_option
;
425 const struct cpu_classtab cpu_classes
[] = {
426 { "unknown", NULL
}, /* CPU_CLASS_NONE */
427 { "ARM2", "CPU_ARM2" }, /* CPU_CLASS_ARM2 */
428 { "ARM2as", "CPU_ARM250" }, /* CPU_CLASS_ARM2AS */
429 { "ARM3", "CPU_ARM3" }, /* CPU_CLASS_ARM3 */
430 { "ARM6", "CPU_ARM6" }, /* CPU_CLASS_ARM6 */
431 { "ARM7", "CPU_ARM7" }, /* CPU_CLASS_ARM7 */
432 { "ARM7TDMI", "CPU_ARM7TDMI" }, /* CPU_CLASS_ARM7TDMI */
433 { "ARM8", "CPU_ARM8" }, /* CPU_CLASS_ARM8 */
434 { "ARM9TDMI", NULL
}, /* CPU_CLASS_ARM9TDMI */
435 { "ARM9E-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9ES */
436 { "ARM9EJ-S", "CPU_ARM9E" }, /* CPU_CLASS_ARM9EJS */
437 { "ARM10E", "CPU_ARM10" }, /* CPU_CLASS_ARM10E */
438 { "ARM10EJ", "CPU_ARM10" }, /* CPU_CLASS_ARM10EJ */
439 { "SA-1", "CPU_SA110" }, /* CPU_CLASS_SA1 */
440 { "XScale", "CPU_XSCALE_..." }, /* CPU_CLASS_XSCALE */
441 { "ARM11J", "CPU_ARM11" }, /* CPU_CLASS_ARM11J */
442 { "ARMv4", "CPU_ARMV4" }, /* CPU_CLASS_ARMV4 */
446 * Report the type of the specified arm processor. This uses the generic and
447 * arm specific information in the CPU structure to identify the processor.
448 * The remaining fields in the CPU structure are filled in appropriately.
451 static const char * const wtnames
[] = {
457 "write-back-locking", /* XXX XScale-specific? */
458 "write-back-locking-A",
459 "write-back-locking-B",
466 "write-back-locking-C",
471 identify_arm_cpu(struct device
*dv
, struct cpu_info
*ci
)
474 enum cpu_class cpu_class
= CPU_CLASS_NONE
;
476 const char *steppingstr
;
478 cpuid
= ci
->ci_arm_cpuid
;
481 aprint_error("Processor failed probe - no CPU ID\n");
485 for (i
= 0; cpuids
[i
].cpuid
!= 0; i
++)
486 if (cpuids
[i
].cpuid
== (cpuid
& CPU_ID_CPU_MASK
)) {
487 cpu_class
= cpuids
[i
].cpu_class
;
488 steppingstr
= cpuids
[i
].cpu_steppings
[cpuid
&
489 CPU_ID_REVISION_MASK
],
490 sprintf(cpu_model
, "%s%s%s (%s core)",
492 steppingstr
[0] == '*' ? "" : " ",
493 &steppingstr
[steppingstr
[0] == '*'],
494 cpu_classes
[cpu_class
].class_name
);
498 if (cpuids
[i
].cpuid
== 0)
499 sprintf(cpu_model
, "unknown CPU (ID = 0x%x)", cpuid
);
501 aprint_naive(": %s\n", cpu_model
);
502 aprint_normal(": %s\n", cpu_model
);
504 aprint_normal("%s:", dv
->dv_xname
);
509 case CPU_CLASS_ARM7TDMI
:
511 if ((ci
->ci_ctrl
& CPU_CONTROL_IDC_ENABLE
) == 0)
512 aprint_normal(" IDC disabled");
514 aprint_normal(" IDC enabled");
516 case CPU_CLASS_ARM9TDMI
:
517 case CPU_CLASS_ARM9ES
:
518 case CPU_CLASS_ARM9EJS
:
519 case CPU_CLASS_ARM10E
:
520 case CPU_CLASS_ARM10EJ
:
522 case CPU_CLASS_XSCALE
:
523 case CPU_CLASS_ARM11J
:
524 case CPU_CLASS_ARMV4
:
525 if ((ci
->ci_ctrl
& CPU_CONTROL_DC_ENABLE
) == 0)
526 aprint_normal(" DC disabled");
528 aprint_normal(" DC enabled");
529 if ((ci
->ci_ctrl
& CPU_CONTROL_IC_ENABLE
) == 0)
530 aprint_normal(" IC disabled");
532 aprint_normal(" IC enabled");
537 if ((ci
->ci_ctrl
& CPU_CONTROL_WBUF_ENABLE
) == 0)
538 aprint_normal(" WB disabled");
540 aprint_normal(" WB enabled");
542 if (ci
->ci_ctrl
& CPU_CONTROL_LABT_ENABLE
)
543 aprint_normal(" LABT");
545 aprint_normal(" EABT");
547 if (ci
->ci_ctrl
& CPU_CONTROL_BPRD_ENABLE
)
548 aprint_normal(" branch prediction enabled");
552 /* Print cache info. */
553 if (arm_picache_line_size
== 0 && arm_pdcache_line_size
== 0)
556 if (arm_pcache_unified
) {
557 aprint_normal("%s: %dKB/%dB %d-way %s unified cache\n",
558 dv
->dv_xname
, arm_pdcache_size
/ 1024,
559 arm_pdcache_line_size
, arm_pdcache_ways
,
560 wtnames
[arm_pcache_type
]);
562 aprint_normal("%s: %dKB/%dB %d-way Instruction cache\n",
563 dv
->dv_xname
, arm_picache_size
/ 1024,
564 arm_picache_line_size
, arm_picache_ways
);
565 aprint_normal("%s: %dKB/%dB %d-way %s Data cache\n",
566 dv
->dv_xname
, arm_pdcache_size
/ 1024,
567 arm_pdcache_line_size
, arm_pdcache_ways
,
568 wtnames
[arm_pcache_type
]);
578 case CPU_CLASS_ARM2AS
:
590 case CPU_CLASS_ARM7TDMI
:
596 case CPU_CLASS_ARM9TDMI
:
599 case CPU_CLASS_ARM9ES
:
600 case CPU_CLASS_ARM9EJS
:
603 case CPU_CLASS_ARM10E
:
604 case CPU_CLASS_ARM10EJ
:
606 #if defined(CPU_SA110) || defined(CPU_SA1100) || \
607 defined(CPU_SA1110) || defined(CPU_IXP12X0)
610 #if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
611 defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
612 case CPU_CLASS_XSCALE
:
614 #if defined(CPU_ARM11)
615 case CPU_CLASS_ARM11J
:
617 #if defined(CPU_FA526)
618 case CPU_CLASS_ARMV4
:
622 if (cpu_classes
[cpu_class
].class_option
== NULL
)
623 aprint_error("%s: %s does not fully support this CPU."
624 "\n", dv
->dv_xname
, ostype
);
626 aprint_error("%s: This kernel does not fully support "
627 "this CPU.\n", dv
->dv_xname
);
628 aprint_normal("%s: Recompile with \"options %s\" to "
629 "correct this.\n", dv
->dv_xname
,
630 cpu_classes
[cpu_class
].class_option
);