No empty .Rs/.Re
[netbsd-mini2440.git] / sys / arch / evbarm / g42xxeb / g42xxeb_machdep.c
blobcb405c6f9286f7589eca1e17719fe9305fe6c2be
1 /* $NetBSD$ */
3 /*
4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
5 * All rights reserved.
7 * Written by Hiroyuki Bessho for Genetec Corporation.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of Genetec Corporation may not be used to endorse or
18 * promote products derived from this software without specific prior
19 * written permission.
21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
33 * Machine dependant functions for kernel setup for Genetec G4250EBX
34 * evaluation board.
36 * Based on iq80310_machhdep.c
39 * Copyright (c) 2001 Wasabi Systems, Inc.
40 * All rights reserved.
42 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed for the NetBSD Project by
55 * Wasabi Systems, Inc.
56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57 * or promote products derived from this software without specific prior
58 * written permission.
60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
74 * Copyright (c) 1997,1998 Mark Brinicombe.
75 * Copyright (c) 1997,1998 Causality Limited.
76 * All rights reserved.
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by Mark Brinicombe
89 * for the NetBSD Project.
90 * 4. The name of the company nor the name of the author may be used to
91 * endorse or promote products derived from this software without specific
92 * prior written permission.
94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
106 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
107 * boards using RedBoot firmware.
110 #include "opt_ddb.h"
111 #include "opt_kgdb.h"
112 #include "opt_pmap_debug.h"
113 #include "opt_md.h"
114 #include "opt_com.h"
115 #include "md.h"
116 #include "lcd.h"
118 #include <sys/param.h>
119 #include <sys/device.h>
120 #include <sys/systm.h>
121 #include <sys/kernel.h>
122 #include <sys/exec.h>
123 #include <sys/proc.h>
124 #include <sys/msgbuf.h>
125 #include <sys/reboot.h>
126 #include <sys/termios.h>
127 #include <sys/ksyms.h>
129 #include <uvm/uvm_extern.h>
131 #include <sys/conf.h>
132 #include <dev/cons.h>
133 #include <dev/md.h>
135 #include <machine/db_machdep.h>
136 #include <ddb/db_sym.h>
137 #include <ddb/db_extern.h>
138 #ifdef KGDB
139 #include <sys/kgdb.h>
140 #endif
142 #include <machine/bootconfig.h>
143 #include <machine/bus.h>
144 #include <machine/cpu.h>
145 #include <machine/frame.h>
146 #include <arm/undefined.h>
148 #include <arm/arm32/machdep.h>
150 #include <arm/xscale/pxa2x0reg.h>
151 #include <arm/xscale/pxa2x0var.h>
152 #include <arm/xscale/pxa2x0_gpio.h>
153 #include <evbarm/g42xxeb/g42xxeb_reg.h>
154 #include <evbarm/g42xxeb/g42xxeb_var.h>
156 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
157 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
158 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
161 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
162 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
164 #define KERNEL_VM_SIZE 0x0C000000
168 * Address to call from cpu_reset() to reset the machine.
169 * This is machine architecture dependant as it varies depending
170 * on where the ROM appears when you turn the MMU off.
173 u_int cpu_reset_address = 0;
175 /* Define various stack sizes in pages */
176 #define IRQ_STACK_SIZE 1
177 #define ABT_STACK_SIZE 1
178 #define UND_STACK_SIZE 1
180 BootConfig bootconfig; /* Boot config storage */
181 char *boot_args = NULL;
182 char *boot_file = NULL;
184 vm_offset_t physical_start;
185 vm_offset_t physical_freestart;
186 vm_offset_t physical_freeend;
187 vm_offset_t physical_end;
188 u_int free_pages;
190 /*int debug_flags;*/
191 #ifndef PMAP_STATIC_L1S
192 int max_processes = 64; /* Default number */
193 #endif /* !PMAP_STATIC_L1S */
195 /* Physical and virtual addresses for some global pages */
196 pv_addr_t irqstack;
197 pv_addr_t undstack;
198 pv_addr_t abtstack;
199 pv_addr_t kernelstack;
200 pv_addr_t minidataclean;
202 vm_offset_t msgbufphys;
204 extern u_int data_abort_handler_address;
205 extern u_int prefetch_abort_handler_address;
206 extern u_int undefined_handler_address;
208 #ifdef PMAP_DEBUG
209 extern int pmap_debug_level;
210 #endif
212 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
213 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
214 #define KERNEL_PT_KERNEL_NUM 4
215 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
216 /* Page tables for mapping kernel VM */
217 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
218 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
220 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
222 /* Prototypes */
224 #if 0
225 void process_kernel_args(char *);
226 #endif
228 void consinit(void);
229 void kgdb_port_init(void);
230 void change_clock(uint32_t v);
232 bs_protos(bs_notimpl);
234 #include "com.h"
235 #if NCOM > 0
236 #include <dev/ic/comreg.h>
237 #include <dev/ic/comvar.h>
238 #endif
240 #ifndef CONSPEED
241 #define CONSPEED B115200 /* What RedBoot uses */
242 #endif
243 #ifndef CONMODE
244 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
245 #endif
247 int comcnspeed = CONSPEED;
248 int comcnmode = CONMODE;
250 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
251 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */
252 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
254 { -1 }
256 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
257 pxa25x_com_btuart_gpioconf,
258 pxa25x_com_ffuart_gpioconf,
259 #if 0
260 pxa25x_com_stuart_gpioconf,
261 pxa25x_pxaacu_gpioconf,
262 #endif
263 boarddep_gpioconf,
264 NULL
268 * void cpu_reboot(int howto, char *bootstr)
270 * Reboots the system
272 * Deal with any syncing, unmounting, dumping and shutdown hooks,
273 * then reset the CPU.
275 void
276 cpu_reboot(int howto, char *bootstr)
278 #ifdef DIAGNOSTIC
279 /* info */
280 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
281 #endif
284 * If we are still cold then hit the air brakes
285 * and crash to earth fast
287 if (cold) {
288 doshutdownhooks();
289 pmf_system_shutdown(boothowto);
290 printf("The operating system has halted.\n");
291 printf("Please press any key to reboot.\n\n");
292 cngetc();
293 printf("rebooting...\n");
294 cpu_reset();
295 /*NOTREACHED*/
298 /* Disable console buffering */
299 /* cnpollc(1);*/
302 * If RB_NOSYNC was not specified sync the discs.
303 * Note: Unless cold is set to 1 here, syslogd will die during the
304 * unmount. It looks like syslogd is getting woken up only to find
305 * that it cannot page part of the binary in as the filesystem has
306 * been unmounted.
308 if (!(howto & RB_NOSYNC))
309 bootsync();
311 /* Say NO to interrupts */
312 splhigh();
314 /* Do a dump if requested. */
315 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
316 dumpsys();
318 /* Run any shutdown hooks */
319 doshutdownhooks();
321 pmf_system_shutdown(boothowto);
323 /* Make sure IRQ's are disabled */
324 IRQdisable;
326 if (howto & RB_HALT) {
327 printf("The operating system has halted.\n");
328 printf("Please press any key to reboot.\n\n");
329 cngetc();
332 printf("rebooting...\n");
333 cpu_reset();
334 /*NOTREACHED*/
337 static inline
338 pd_entry_t *
339 read_ttb(void)
341 long ttb;
343 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
346 return (pd_entry_t *)(ttb & ~((1<<14)-1));
350 * Static device mappings. These peripheral registers are mapped at
351 * fixed virtual addresses very early in initarm() so that we can use
352 * them while booting the kernel, and stay at the same address
353 * throughout whole kernel's life time.
355 * We use this table twice; once with bootstrap page table, and once
356 * with kernel's page table which we build up in initarm().
358 * Since we map these registers into the bootstrap page table using
359 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
360 * registers segment-aligned and segment-rounded in order to avoid
361 * using the 2nd page tables.
364 #define _A(a) ((a) & ~L1_S_OFFSET)
365 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
367 static const struct pmap_devmap g42xxeb_devmap[] = {
369 G42XXEB_PLDREG_VBASE,
370 _A(G42XXEB_PLDREG_BASE),
371 _S(G42XXEB_PLDREG_SIZE),
372 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
375 G42XXEB_GPIO_VBASE,
376 _A(PXA2X0_GPIO_BASE),
377 _S(PXA250_GPIO_SIZE),
378 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
381 G42XXEB_CLKMAN_VBASE,
382 _A(PXA2X0_CLKMAN_BASE),
383 _S(PXA2X0_CLKMAN_SIZE),
384 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
387 G42XXEB_INTCTL_VBASE,
388 _A(PXA2X0_INTCTL_BASE),
389 _S(PXA2X0_INTCTL_SIZE),
390 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
393 G42XXEB_FFUART_VBASE,
394 _A(PXA2X0_FFUART_BASE),
395 _S(4 * COM_NPORTS),
396 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
399 G42XXEB_BTUART_VBASE,
400 _A(PXA2X0_BTUART_BASE),
401 _S(4 * COM_NPORTS),
402 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
404 {0, 0, 0, 0,}
407 #undef _A
408 #undef _S
412 * u_int initarm(...)
414 * Initial entry point on startup. This gets called before main() is
415 * entered.
416 * It should be responsible for setting up everything that must be
417 * in place when main is called.
418 * This includes
419 * Taking a copy of the boot configuration structure.
420 * Initialising the physical console so characters can be printed.
421 * Setting up page tables for the kernel
422 * Relocating the kernel to the bottom of physical memory
424 u_int
425 initarm(void *arg)
427 extern vaddr_t xscale_cache_clean_addr;
428 int loop;
429 int loop1;
430 u_int l1pagetable;
431 paddr_t memstart;
432 psize_t memsize;
433 int led_data = 1;
434 #ifdef DIAGNOSTIC
435 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
436 #endif
438 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
439 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
441 /* use physical address until pagetable is set */
442 LEDSTEP_P();
444 /* map some peripheral registers at static I/O area */
445 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
447 LEDSTEP_P();
449 /* start 32.768 kHz OSC */
450 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
451 /* Get ready for splfoo() */
452 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
454 LEDSTEP();
457 * Heads up ... Setup the CPU / MMU / TLB functions
459 if (set_cpufuncs())
460 panic("cpu not recognized!");
462 LEDSTEP();
465 * Okay, RedBoot has provided us with the following memory map:
467 * Physical Address Range Description
468 * ----------------------- ----------------------------------
469 * 0x00000000 - 0x01ffffff flash Memory (32MB)
470 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
471 * 0x08000000 - 0x080000ff I/O baseboard registers
472 * 0x0c000000 - 0x0c0fffff Ethernet Controller
473 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
474 * 0x40000000 - 0x480fffff Processor Registers
475 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
478 * Virtual Address Range X C B Description
479 * ----------------------- - - - ----------------------------------
480 * 0x00000000 - 0x00003fff N Y Y SDRAM
481 * 0x00004000 - 0x01ffffff N Y N ROM
482 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
483 * 0x0a000000 - 0x0a0fffff N N N SRAM
484 * 0x40000000 - 0x480fffff N N N Processor Registers
485 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
486 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
487 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
488 * (done by this routine)
489 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
490 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
491 * 0xfd400000 - 0xfd4fffff N N N FF-UART
492 * 0xfd500000 - 0xfd5fffff N N N BT-UART
494 * RedBoot's first level page table is at 0xa0004000. There
495 * are also 2 second-level tables at 0xa0008000 and
496 * 0xa0008400. We will continue to use them until we switch to
497 * our pagetable by cpu_setttb().
500 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
502 LEDSTEP();
504 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
505 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
506 pxa2x0_gpio_config(g42xxeb_gpioconf);
508 LEDSTEP();
510 consinit();
511 #ifdef KGDB
512 LEDSTEP();
513 kgdb_port_init();
514 #endif
516 LEDSTEP();
518 /* Talk to the user */
519 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
521 #if 0
523 * Examine the boot args string for options we need to know about
524 * now.
526 process_kernel_args((char *)nwbootinfo.bt_args);
527 #endif
529 memstart = 0xa0000000;
530 memsize = 0x04000000; /* 64MB */
532 printf("initarm: Configuring system ...\n");
534 /* Fake bootconfig structure for the benefit of pmap.c */
535 /* XXX must make the memory description h/w independent */
536 bootconfig.dramblocks = 1;
537 bootconfig.dram[0].address = memstart;
538 bootconfig.dram[0].pages = memsize / PAGE_SIZE;
541 * Set up the variables that define the availablilty of
542 * physical memory. For now, we're going to set
543 * physical_freestart to 0xa0200000 (where the kernel
544 * was loaded), and allocate the memory we need downwards.
545 * If we get too close to the L1 table that we set up, we
546 * will panic. We will update physical_freestart and
547 * physical_freeend later to reflect what pmap_bootstrap()
548 * wants to see.
550 * XXX pmap_bootstrap() needs an enema.
552 physical_start = bootconfig.dram[0].address;
553 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
555 physical_freestart = 0xa0009000UL;
556 physical_freeend = 0xa0200000UL;
558 physmem = (physical_end - physical_start) / PAGE_SIZE;
560 #ifdef VERBOSE_INIT_ARM
561 /* Tell the user about the memory */
562 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
563 physical_start, physical_end - 1);
564 #endif
567 * Okay, the kernel starts 2MB in from the bottom of physical
568 * memory. We are going to allocate our bootstrap pages downwards
569 * from there.
571 * We need to allocate some fixed page tables to get the kernel
572 * going. We allocate one page directory and a number of page
573 * tables and store the physical addresses in the kernel_pt_table
574 * array.
576 * The kernel page directory must be on a 16K boundary. The page
577 * tables must be on 4K bounaries. What we do is allocate the
578 * page directory on the first 16K boundary that we encounter, and
579 * the page tables on 4K boundaries otherwise. Since we allocate
580 * at least 3 L2 page tables, we are guaranteed to encounter at
581 * least one 16K aligned region.
584 #ifdef VERBOSE_INIT_ARM
585 printf("Allocating page tables\n");
586 #endif
588 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
590 #ifdef VERBOSE_INIT_ARM
591 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
592 physical_freestart, free_pages, free_pages);
593 #endif
595 /* Define a macro to simplify memory allocation */
596 #define valloc_pages(var, np) \
597 alloc_pages((var).pv_pa, (np)); \
598 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
600 #define alloc_pages(var, np) \
601 physical_freeend -= ((np) * PAGE_SIZE); \
602 if (physical_freeend < physical_freestart) \
603 panic("initarm: out of memory"); \
604 (var) = physical_freeend; \
605 free_pages -= (np); \
606 memset((char *)(var), 0, ((np) * PAGE_SIZE));
608 loop1 = 0;
609 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
610 /* Are we 16KB aligned for an L1 ? */
611 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
612 && kernel_l1pt.pv_pa == 0) {
613 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
614 } else {
615 valloc_pages(kernel_pt_table[loop1],
616 L2_TABLE_SIZE / PAGE_SIZE);
617 ++loop1;
621 /* This should never be able to happen but better confirm that. */
622 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
623 panic("initarm: Failed to align the kernel page directory");
625 LEDSTEP();
628 * Allocate a page for the system page mapped to V0x00000000
629 * This page will just contain the system vectors and can be
630 * shared by all processes.
632 alloc_pages(systempage.pv_pa, 1);
634 /* Allocate stacks for all modes */
635 valloc_pages(irqstack, IRQ_STACK_SIZE);
636 valloc_pages(abtstack, ABT_STACK_SIZE);
637 valloc_pages(undstack, UND_STACK_SIZE);
638 valloc_pages(kernelstack, UPAGES);
640 /* Allocate enough pages for cleaning the Mini-Data cache. */
641 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
642 valloc_pages(minidataclean, 1);
644 #ifdef VERBOSE_INIT_ARM
645 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
646 irqstack.pv_va);
647 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
648 abtstack.pv_va);
649 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
650 undstack.pv_va);
651 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
652 kernelstack.pv_va);
653 #endif
656 * XXX Defer this to later so that we can reclaim the memory
657 * XXX used by the RedBoot page tables.
659 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
662 * Ok we have allocated physical pages for the primary kernel
663 * page tables
666 #ifdef VERBOSE_INIT_ARM
667 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
668 #endif
671 * Now we start construction of the L1 page table
672 * We start by mapping the L2 page tables into the L1.
673 * This means that we can replace L1 mappings later on if necessary
675 l1pagetable = kernel_l1pt.pv_pa;
677 /* Map the L2 pages tables in the L1 page table */
678 pmap_link_l2pt(l1pagetable, 0x00000000,
679 &kernel_pt_table[KERNEL_PT_SYS]);
680 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
681 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
682 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
683 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
684 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
685 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
687 /* update the top of the kernel VM */
688 pmap_curmaxkvaddr =
689 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
691 #ifdef VERBOSE_INIT_ARM
692 printf("Mapping kernel\n");
693 #endif
695 /* Now we fill in the L2 pagetable for the kernel static code/data */
697 extern char etext[], _end[];
698 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
699 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
700 u_int logical;
702 textsize = (textsize + PGOFSET) & ~PGOFSET;
703 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
705 logical = 0x00200000; /* offset of kernel in RAM */
707 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
708 physical_start + logical, textsize,
709 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
710 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
711 physical_start + logical, totalsize - textsize,
712 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
715 #ifdef VERBOSE_INIT_ARM
716 printf("Constructing L2 page tables\n");
717 #endif
719 /* Map the stack pages */
720 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
721 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
722 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
723 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
724 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
725 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
726 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
727 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
729 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
730 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
732 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
733 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
734 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
735 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
738 /* Map the Mini-Data cache clean area. */
739 xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
740 minidataclean.pv_pa);
742 /* Map the vector page. */
743 #if 1
744 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
745 * cache-clean code there. */
746 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
747 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
748 #else
749 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
750 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
751 #endif
754 * map integrated peripherals at same address in l1pagetable
755 * so that we can continue to use console.
757 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
760 * Give the XScale global cache clean code an appropriately
761 * sized chunk of unmapped VA space starting at 0xff000000
762 * (our device mappings end before this address).
764 xscale_cache_clean_addr = 0xff000000U;
767 * Now we have the real page tables in place so we can switch to them.
768 * Once this is done we will be running with the REAL kernel page
769 * tables.
773 * Update the physical_freestart/physical_freeend/free_pages
774 * variables.
777 extern char _end[];
779 physical_freestart = physical_start +
780 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
781 KERNEL_BASE);
782 physical_freeend = physical_end;
783 free_pages =
784 (physical_freeend - physical_freestart) / PAGE_SIZE;
787 /* Switch tables */
788 #ifdef VERBOSE_INIT_ARM
789 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
790 physical_freestart, free_pages, free_pages);
791 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
792 #endif
793 LEDSTEP();
795 cpu_setttb(kernel_l1pt.pv_pa);
796 cpu_tlb_flushID();
797 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
798 LEDSTEP();
801 * Moved from cpu_startup() as data_abort_handler() references
802 * this during uvm init
804 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
806 #ifdef VERBOSE_INIT_ARM
807 printf("bootstrap done.\n");
808 #endif
810 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
813 * Pages were allocated during the secondary bootstrap for the
814 * stacks for different CPU modes.
815 * We must now set the r13 registers in the different CPU modes to
816 * point to these stacks.
817 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
818 * of the stack memory.
820 #ifdef VERBOSE_INIT_ARM
821 printf("init subsystems: stacks ");
822 #endif
824 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
825 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
826 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
829 * Well we should set a data abort handler.
830 * Once things get going this will change as we will need a proper
831 * handler.
832 * Until then we will use a handler that just panics but tells us
833 * why.
834 * Initialisation of the vectors will just panic on a data abort.
835 * This just fills in a slighly better one.
837 #ifdef VERBOSE_INIT_ARM
838 printf("vectors ");
839 #endif
840 data_abort_handler_address = (u_int)data_abort_handler;
841 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
842 undefined_handler_address = (u_int)undefinedinstruction_bounce;
844 /* Initialise the undefined instruction handlers */
845 #ifdef VERBOSE_INIT_ARM
846 printf("undefined ");
847 #endif
848 undefined_init();
850 /* Load memory into UVM. */
851 #ifdef VERBOSE_INIT_ARM
852 printf("page ");
853 #endif
854 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
855 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
856 atop(physical_freestart), atop(physical_freeend),
857 VM_FREELIST_DEFAULT);
859 /* Boot strap pmap telling it where the kernel page table is */
860 #ifdef VERBOSE_INIT_ARM
861 printf("pmap ");
862 #endif
863 LEDSTEP();
864 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
865 LEDSTEP();
867 #ifdef __HAVE_MEMORY_DISK__
868 md_root_setconf(memory_disk, sizeof memory_disk);
869 #endif
871 #ifdef BOOTHOWTO
872 boothowto |= BOOTHOWTO;
873 #endif
876 uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
878 if (0 == (sw & (1<<0)))
879 boothowto ^= RB_KDB;
880 if (0 == (sw & (1<<1)))
881 boothowto ^= RB_SINGLE;
884 LEDSTEP();
886 #ifdef KGDB
887 if (boothowto & RB_KDB) {
888 kgdb_debug_init = 1;
889 kgdb_connect(1);
891 #endif
893 #ifdef DDB
894 db_machine_init();
896 /* Firmware doesn't load symbols. */
897 ddb_init(0, NULL, NULL);
899 if (boothowto & RB_KDB)
900 Debugger();
901 #endif
903 pldreg8_write(G42XXEB_LED, 0);
905 /* We return the new stack pointer address */
906 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
909 #if 0
910 void
911 process_kernel_args(char *args)
914 boothowto = 0;
916 /* Make a local copy of the bootargs */
917 strncpy(bootargs, args, MAX_BOOT_STRING);
919 args = bootargs;
920 boot_file = bootargs;
922 /* Skip the kernel image filename */
923 while (*args != ' ' && *args != 0)
924 ++args;
926 if (*args != 0)
927 *args++ = 0;
929 while (*args == ' ')
930 ++args;
932 boot_args = args;
934 printf("bootfile: %s\n", boot_file);
935 printf("bootargs: %s\n", boot_args);
937 parse_mi_bootargs(boot_args);
939 #endif
941 #ifdef KGDB
942 #ifndef KGDB_DEVNAME
943 #define KGDB_DEVNAME "ffuart"
944 #endif
945 const char kgdb_devname[] = KGDB_DEVNAME;
947 #if (NCOM > 0)
948 #ifndef KGDB_DEVMODE
949 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
950 #endif
951 int comkgdbmode = KGDB_DEVMODE;
952 #endif /* NCOM */
954 #endif /* KGDB */
957 void
958 consinit(void)
960 static int consinit_called = 0;
961 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
962 #if 0
963 char *console = CONSDEVNAME;
964 #endif
966 if (consinit_called != 0)
967 return;
969 consinit_called = 1;
971 #if NCOM > 0
973 #ifdef FFUARTCONSOLE
974 #ifdef KGDB
975 if (0 == strcmp(kgdb_devname, "ffuart")){
976 /* port is reserved for kgdb */
977 } else
978 #endif
979 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
980 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
981 #if 0
982 pxa2x0_clkman_config(CKEN_FFUART, 1);
983 #else
984 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
985 ckenreg|CKEN_FFUART);
986 #endif
988 return;
990 #endif /* FFUARTCONSOLE */
992 #ifdef BTUARTCONSOLE
993 #ifdef KGDB
994 if (0 == strcmp(kgdb_devname, "btuart")) {
995 /* port is reserved for kgdb */
996 } else
997 #endif
998 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
999 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1000 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
1001 ckenreg|CKEN_BTUART);
1002 return;
1004 #endif /* BTUARTCONSOLE */
1007 #endif /* NCOM */
1011 #ifdef KGDB
1012 void
1013 kgdb_port_init(void)
1015 #if (NCOM > 0) && defined(COM_PXA2X0)
1016 paddr_t paddr = 0;
1017 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
1019 if (0 == strcmp(kgdb_devname, "ffuart")) {
1020 paddr = PXA2X0_FFUART_BASE;
1021 ckenreg |= CKEN_FFUART;
1023 else if (0 == strcmp(kgdb_devname, "btuart")) {
1024 paddr = PXA2X0_BTUART_BASE;
1025 ckenreg |= CKEN_BTUART;
1028 if (paddr &&
1029 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1030 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1032 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1036 #endif
1038 #endif