4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
7 * Written by Hiroyuki Bessho for Genetec Corporation.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of Genetec Corporation may not be used to endorse or
18 * promote products derived from this software without specific prior
21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
33 * Machine dependant functions for kernel setup for Genetec G4250EBX
36 * Based on iq80310_machhdep.c
39 * Copyright (c) 2001 Wasabi Systems, Inc.
40 * All rights reserved.
42 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed for the NetBSD Project by
55 * Wasabi Systems, Inc.
56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57 * or promote products derived from this software without specific prior
60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70 * POSSIBILITY OF SUCH DAMAGE.
74 * Copyright (c) 1997,1998 Mark Brinicombe.
75 * Copyright (c) 1997,1998 Causality Limited.
76 * All rights reserved.
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
81 * 1. Redistributions of source code must retain the above copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * This product includes software developed by Mark Brinicombe
89 * for the NetBSD Project.
90 * 4. The name of the company nor the name of the author may be used to
91 * endorse or promote products derived from this software without specific
92 * prior written permission.
94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
106 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
107 * boards using RedBoot firmware.
111 #include "opt_kgdb.h"
112 #include "opt_pmap_debug.h"
118 #include <sys/param.h>
119 #include <sys/device.h>
120 #include <sys/systm.h>
121 #include <sys/kernel.h>
122 #include <sys/exec.h>
123 #include <sys/proc.h>
124 #include <sys/msgbuf.h>
125 #include <sys/reboot.h>
126 #include <sys/termios.h>
127 #include <sys/ksyms.h>
129 #include <uvm/uvm_extern.h>
131 #include <sys/conf.h>
132 #include <dev/cons.h>
135 #include <machine/db_machdep.h>
136 #include <ddb/db_sym.h>
137 #include <ddb/db_extern.h>
139 #include <sys/kgdb.h>
142 #include <machine/bootconfig.h>
143 #include <machine/bus.h>
144 #include <machine/cpu.h>
145 #include <machine/frame.h>
146 #include <arm/undefined.h>
148 #include <arm/arm32/machdep.h>
150 #include <arm/xscale/pxa2x0reg.h>
151 #include <arm/xscale/pxa2x0var.h>
152 #include <arm/xscale/pxa2x0_gpio.h>
153 #include <evbarm/g42xxeb/g42xxeb_reg.h>
154 #include <evbarm/g42xxeb/g42xxeb_var.h>
156 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
157 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
158 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
161 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
162 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
164 #define KERNEL_VM_SIZE 0x0C000000
168 * Address to call from cpu_reset() to reset the machine.
169 * This is machine architecture dependant as it varies depending
170 * on where the ROM appears when you turn the MMU off.
173 u_int cpu_reset_address
= 0;
175 /* Define various stack sizes in pages */
176 #define IRQ_STACK_SIZE 1
177 #define ABT_STACK_SIZE 1
178 #define UND_STACK_SIZE 1
180 BootConfig bootconfig
; /* Boot config storage */
181 char *boot_args
= NULL
;
182 char *boot_file
= NULL
;
184 vm_offset_t physical_start
;
185 vm_offset_t physical_freestart
;
186 vm_offset_t physical_freeend
;
187 vm_offset_t physical_end
;
191 #ifndef PMAP_STATIC_L1S
192 int max_processes
= 64; /* Default number */
193 #endif /* !PMAP_STATIC_L1S */
195 /* Physical and virtual addresses for some global pages */
199 pv_addr_t kernelstack
;
200 pv_addr_t minidataclean
;
202 vm_offset_t msgbufphys
;
204 extern u_int data_abort_handler_address
;
205 extern u_int prefetch_abort_handler_address
;
206 extern u_int undefined_handler_address
;
209 extern int pmap_debug_level
;
212 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
213 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
214 #define KERNEL_PT_KERNEL_NUM 4
215 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
216 /* Page tables for mapping kernel VM */
217 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
218 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
220 pv_addr_t kernel_pt_table
[NUM_KERNEL_PTS
];
225 void process_kernel_args(char *);
229 void kgdb_port_init(void);
230 void change_clock(uint32_t v
);
232 bs_protos(bs_notimpl
);
236 #include <dev/ic/comreg.h>
237 #include <dev/ic/comvar.h>
241 #define CONSPEED B115200 /* What RedBoot uses */
244 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
247 int comcnspeed
= CONSPEED
;
248 int comcnmode
= CONMODE
;
250 static struct pxa2x0_gpioconf boarddep_gpioconf
[] = {
251 { 44, GPIO_ALT_FN_1_IN
}, /* BTCST */
252 { 45, GPIO_ALT_FN_2_OUT
}, /* BTRST */
256 static struct pxa2x0_gpioconf
*g42xxeb_gpioconf
[] = {
257 pxa25x_com_btuart_gpioconf
,
258 pxa25x_com_ffuart_gpioconf
,
260 pxa25x_com_stuart_gpioconf
,
261 pxa25x_pxaacu_gpioconf
,
268 * void cpu_reboot(int howto, char *bootstr)
272 * Deal with any syncing, unmounting, dumping and shutdown hooks,
273 * then reset the CPU.
276 cpu_reboot(int howto
, char *bootstr
)
280 printf("boot: howto=%08x curproc=%p\n", howto
, curproc
);
284 * If we are still cold then hit the air brakes
285 * and crash to earth fast
289 pmf_system_shutdown(boothowto
);
290 printf("The operating system has halted.\n");
291 printf("Please press any key to reboot.\n\n");
293 printf("rebooting...\n");
298 /* Disable console buffering */
302 * If RB_NOSYNC was not specified sync the discs.
303 * Note: Unless cold is set to 1 here, syslogd will die during the
304 * unmount. It looks like syslogd is getting woken up only to find
305 * that it cannot page part of the binary in as the filesystem has
308 if (!(howto
& RB_NOSYNC
))
311 /* Say NO to interrupts */
314 /* Do a dump if requested. */
315 if ((howto
& (RB_DUMP
| RB_HALT
)) == RB_DUMP
)
318 /* Run any shutdown hooks */
321 pmf_system_shutdown(boothowto
);
323 /* Make sure IRQ's are disabled */
326 if (howto
& RB_HALT
) {
327 printf("The operating system has halted.\n");
328 printf("Please press any key to reboot.\n\n");
332 printf("rebooting...\n");
343 __asm
volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb
));
346 return (pd_entry_t
*)(ttb
& ~((1<<14)-1));
350 * Static device mappings. These peripheral registers are mapped at
351 * fixed virtual addresses very early in initarm() so that we can use
352 * them while booting the kernel, and stay at the same address
353 * throughout whole kernel's life time.
355 * We use this table twice; once with bootstrap page table, and once
356 * with kernel's page table which we build up in initarm().
358 * Since we map these registers into the bootstrap page table using
359 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
360 * registers segment-aligned and segment-rounded in order to avoid
361 * using the 2nd page tables.
364 #define _A(a) ((a) & ~L1_S_OFFSET)
365 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
367 static const struct pmap_devmap g42xxeb_devmap
[] = {
369 G42XXEB_PLDREG_VBASE
,
370 _A(G42XXEB_PLDREG_BASE
),
371 _S(G42XXEB_PLDREG_SIZE
),
372 VM_PROT_READ
|VM_PROT_WRITE
, PTE_NOCACHE
,
376 _A(PXA2X0_GPIO_BASE
),
377 _S(PXA250_GPIO_SIZE
),
378 VM_PROT_READ
|VM_PROT_WRITE
, PTE_NOCACHE
,
381 G42XXEB_CLKMAN_VBASE
,
382 _A(PXA2X0_CLKMAN_BASE
),
383 _S(PXA2X0_CLKMAN_SIZE
),
384 VM_PROT_READ
|VM_PROT_WRITE
, PTE_NOCACHE
,
387 G42XXEB_INTCTL_VBASE
,
388 _A(PXA2X0_INTCTL_BASE
),
389 _S(PXA2X0_INTCTL_SIZE
),
390 VM_PROT_READ
|VM_PROT_WRITE
, PTE_NOCACHE
,
393 G42XXEB_FFUART_VBASE
,
394 _A(PXA2X0_FFUART_BASE
),
396 VM_PROT_READ
|VM_PROT_WRITE
, PTE_NOCACHE
,
399 G42XXEB_BTUART_VBASE
,
400 _A(PXA2X0_BTUART_BASE
),
402 VM_PROT_READ
|VM_PROT_WRITE
, PTE_NOCACHE
,
414 * Initial entry point on startup. This gets called before main() is
416 * It should be responsible for setting up everything that must be
417 * in place when main is called.
419 * Taking a copy of the boot configuration structure.
420 * Initialising the physical console so characters can be printed.
421 * Setting up page tables for the kernel
422 * Relocating the kernel to the bottom of physical memory
427 extern vaddr_t xscale_cache_clean_addr
;
435 extern vsize_t xscale_minidata_clean_size
; /* used in KASSERT */
438 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
439 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
441 /* use physical address until pagetable is set */
444 /* map some peripheral registers at static I/O area */
445 pmap_devmap_bootstrap((vaddr_t
)read_ttb(), g42xxeb_devmap
);
449 /* start 32.768 kHz OSC */
450 ioreg_write(G42XXEB_CLKMAN_VBASE
+ 0x08, 2);
451 /* Get ready for splfoo() */
452 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE
);
457 * Heads up ... Setup the CPU / MMU / TLB functions
460 panic("cpu not recognized!");
465 * Okay, RedBoot has provided us with the following memory map:
467 * Physical Address Range Description
468 * ----------------------- ----------------------------------
469 * 0x00000000 - 0x01ffffff flash Memory (32MB)
470 * 0x04000000 - 0x05ffffff Application flash Memory (32MB)
471 * 0x08000000 - 0x080000ff I/O baseboard registers
472 * 0x0c000000 - 0x0c0fffff Ethernet Controller
473 * 0x14000000 - 0x17ffffff Expansion Card (64MB)
474 * 0x40000000 - 0x480fffff Processor Registers
475 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
478 * Virtual Address Range X C B Description
479 * ----------------------- - - - ----------------------------------
480 * 0x00000000 - 0x00003fff N Y Y SDRAM
481 * 0x00004000 - 0x01ffffff N Y N ROM
482 * 0x08000000 - 0x080fffff N N N I/O baseboard registers
483 * 0x0a000000 - 0x0a0fffff N N N SRAM
484 * 0x40000000 - 0x480fffff N N N Processor Registers
485 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
486 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
487 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
488 * (done by this routine)
489 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
490 * 0xfd100000 - 0xfd3fffff N N N Processor Registers.
491 * 0xfd400000 - 0xfd4fffff N N N FF-UART
492 * 0xfd500000 - 0xfd5fffff N N N BT-UART
494 * RedBoot's first level page table is at 0xa0004000. There
495 * are also 2 second-level tables at 0xa0008000 and
496 * 0xa0008400. We will continue to use them until we switch to
497 * our pagetable by cpu_setttb().
500 cpu_domains((DOMAIN_CLIENT
<< (PMAP_DOMAIN_KERNEL
*2)) | DOMAIN_CLIENT
);
504 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
505 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE
);
506 pxa2x0_gpio_config(g42xxeb_gpioconf
);
518 /* Talk to the user */
519 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
523 * Examine the boot args string for options we need to know about
526 process_kernel_args((char *)nwbootinfo
.bt_args
);
529 memstart
= 0xa0000000;
530 memsize
= 0x04000000; /* 64MB */
532 printf("initarm: Configuring system ...\n");
534 /* Fake bootconfig structure for the benefit of pmap.c */
535 /* XXX must make the memory description h/w independent */
536 bootconfig
.dramblocks
= 1;
537 bootconfig
.dram
[0].address
= memstart
;
538 bootconfig
.dram
[0].pages
= memsize
/ PAGE_SIZE
;
541 * Set up the variables that define the availablilty of
542 * physical memory. For now, we're going to set
543 * physical_freestart to 0xa0200000 (where the kernel
544 * was loaded), and allocate the memory we need downwards.
545 * If we get too close to the L1 table that we set up, we
546 * will panic. We will update physical_freestart and
547 * physical_freeend later to reflect what pmap_bootstrap()
550 * XXX pmap_bootstrap() needs an enema.
552 physical_start
= bootconfig
.dram
[0].address
;
553 physical_end
= physical_start
+ (bootconfig
.dram
[0].pages
* PAGE_SIZE
);
555 physical_freestart
= 0xa0009000UL
;
556 physical_freeend
= 0xa0200000UL
;
558 physmem
= (physical_end
- physical_start
) / PAGE_SIZE
;
560 #ifdef VERBOSE_INIT_ARM
561 /* Tell the user about the memory */
562 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem
,
563 physical_start
, physical_end
- 1);
567 * Okay, the kernel starts 2MB in from the bottom of physical
568 * memory. We are going to allocate our bootstrap pages downwards
571 * We need to allocate some fixed page tables to get the kernel
572 * going. We allocate one page directory and a number of page
573 * tables and store the physical addresses in the kernel_pt_table
576 * The kernel page directory must be on a 16K boundary. The page
577 * tables must be on 4K bounaries. What we do is allocate the
578 * page directory on the first 16K boundary that we encounter, and
579 * the page tables on 4K boundaries otherwise. Since we allocate
580 * at least 3 L2 page tables, we are guaranteed to encounter at
581 * least one 16K aligned region.
584 #ifdef VERBOSE_INIT_ARM
585 printf("Allocating page tables\n");
588 free_pages
= (physical_freeend
- physical_freestart
) / PAGE_SIZE
;
590 #ifdef VERBOSE_INIT_ARM
591 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
592 physical_freestart
, free_pages
, free_pages
);
595 /* Define a macro to simplify memory allocation */
596 #define valloc_pages(var, np) \
597 alloc_pages((var).pv_pa, (np)); \
598 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
600 #define alloc_pages(var, np) \
601 physical_freeend -= ((np) * PAGE_SIZE); \
602 if (physical_freeend < physical_freestart) \
603 panic("initarm: out of memory"); \
604 (var) = physical_freeend; \
605 free_pages -= (np); \
606 memset((char *)(var), 0, ((np) * PAGE_SIZE));
609 for (loop
= 0; loop
<= NUM_KERNEL_PTS
; ++loop
) {
610 /* Are we 16KB aligned for an L1 ? */
611 if (((physical_freeend
- L1_TABLE_SIZE
) & (L1_TABLE_SIZE
- 1)) == 0
612 && kernel_l1pt
.pv_pa
== 0) {
613 valloc_pages(kernel_l1pt
, L1_TABLE_SIZE
/ PAGE_SIZE
);
615 valloc_pages(kernel_pt_table
[loop1
],
616 L2_TABLE_SIZE
/ PAGE_SIZE
);
621 /* This should never be able to happen but better confirm that. */
622 if (!kernel_l1pt
.pv_pa
|| (kernel_l1pt
.pv_pa
& (L1_TABLE_SIZE
-1)) != 0)
623 panic("initarm: Failed to align the kernel page directory");
628 * Allocate a page for the system page mapped to V0x00000000
629 * This page will just contain the system vectors and can be
630 * shared by all processes.
632 alloc_pages(systempage
.pv_pa
, 1);
634 /* Allocate stacks for all modes */
635 valloc_pages(irqstack
, IRQ_STACK_SIZE
);
636 valloc_pages(abtstack
, ABT_STACK_SIZE
);
637 valloc_pages(undstack
, UND_STACK_SIZE
);
638 valloc_pages(kernelstack
, UPAGES
);
640 /* Allocate enough pages for cleaning the Mini-Data cache. */
641 KASSERT(xscale_minidata_clean_size
<= PAGE_SIZE
);
642 valloc_pages(minidataclean
, 1);
644 #ifdef VERBOSE_INIT_ARM
645 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack
.pv_pa
,
647 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack
.pv_pa
,
649 printf("UND stack: p0x%08lx v0x%08lx\n", undstack
.pv_pa
,
651 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack
.pv_pa
,
656 * XXX Defer this to later so that we can reclaim the memory
657 * XXX used by the RedBoot page tables.
659 alloc_pages(msgbufphys
, round_page(MSGBUFSIZE
) / PAGE_SIZE
);
662 * Ok we have allocated physical pages for the primary kernel
666 #ifdef VERBOSE_INIT_ARM
667 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt
.pv_pa
);
671 * Now we start construction of the L1 page table
672 * We start by mapping the L2 page tables into the L1.
673 * This means that we can replace L1 mappings later on if necessary
675 l1pagetable
= kernel_l1pt
.pv_pa
;
677 /* Map the L2 pages tables in the L1 page table */
678 pmap_link_l2pt(l1pagetable
, 0x00000000,
679 &kernel_pt_table
[KERNEL_PT_SYS
]);
680 for (loop
= 0; loop
< KERNEL_PT_KERNEL_NUM
; loop
++)
681 pmap_link_l2pt(l1pagetable
, KERNEL_BASE
+ loop
* 0x00400000,
682 &kernel_pt_table
[KERNEL_PT_KERNEL
+ loop
]);
683 for (loop
= 0; loop
< KERNEL_PT_VMDATA_NUM
; loop
++)
684 pmap_link_l2pt(l1pagetable
, KERNEL_VM_BASE
+ loop
* 0x00400000,
685 &kernel_pt_table
[KERNEL_PT_VMDATA
+ loop
]);
687 /* update the top of the kernel VM */
689 KERNEL_VM_BASE
+ (KERNEL_PT_VMDATA_NUM
* 0x00400000);
691 #ifdef VERBOSE_INIT_ARM
692 printf("Mapping kernel\n");
695 /* Now we fill in the L2 pagetable for the kernel static code/data */
697 extern char etext
[], _end
[];
698 size_t textsize
= (uintptr_t) etext
- KERNEL_TEXT_BASE
;
699 size_t totalsize
= (uintptr_t) _end
- KERNEL_TEXT_BASE
;
702 textsize
= (textsize
+ PGOFSET
) & ~PGOFSET
;
703 totalsize
= (totalsize
+ PGOFSET
) & ~PGOFSET
;
705 logical
= 0x00200000; /* offset of kernel in RAM */
707 logical
+= pmap_map_chunk(l1pagetable
, KERNEL_BASE
+ logical
,
708 physical_start
+ logical
, textsize
,
709 VM_PROT_READ
|VM_PROT_WRITE
, PTE_CACHE
);
710 logical
+= pmap_map_chunk(l1pagetable
, KERNEL_BASE
+ logical
,
711 physical_start
+ logical
, totalsize
- textsize
,
712 VM_PROT_READ
|VM_PROT_WRITE
, PTE_CACHE
);
715 #ifdef VERBOSE_INIT_ARM
716 printf("Constructing L2 page tables\n");
719 /* Map the stack pages */
720 pmap_map_chunk(l1pagetable
, irqstack
.pv_va
, irqstack
.pv_pa
,
721 IRQ_STACK_SIZE
* PAGE_SIZE
, VM_PROT_READ
|VM_PROT_WRITE
, PTE_CACHE
);
722 pmap_map_chunk(l1pagetable
, abtstack
.pv_va
, abtstack
.pv_pa
,
723 ABT_STACK_SIZE
* PAGE_SIZE
, VM_PROT_READ
|VM_PROT_WRITE
, PTE_CACHE
);
724 pmap_map_chunk(l1pagetable
, undstack
.pv_va
, undstack
.pv_pa
,
725 UND_STACK_SIZE
* PAGE_SIZE
, VM_PROT_READ
|VM_PROT_WRITE
, PTE_CACHE
);
726 pmap_map_chunk(l1pagetable
, kernelstack
.pv_va
, kernelstack
.pv_pa
,
727 UPAGES
* PAGE_SIZE
, VM_PROT_READ
| VM_PROT_WRITE
, PTE_CACHE
);
729 pmap_map_chunk(l1pagetable
, kernel_l1pt
.pv_va
, kernel_l1pt
.pv_pa
,
730 L1_TABLE_SIZE
, VM_PROT_READ
| VM_PROT_WRITE
, PTE_PAGETABLE
);
732 for (loop
= 0; loop
< NUM_KERNEL_PTS
; ++loop
) {
733 pmap_map_chunk(l1pagetable
, kernel_pt_table
[loop
].pv_va
,
734 kernel_pt_table
[loop
].pv_pa
, L2_TABLE_SIZE
,
735 VM_PROT_READ
|VM_PROT_WRITE
, PTE_PAGETABLE
);
738 /* Map the Mini-Data cache clean area. */
739 xscale_setup_minidata(l1pagetable
, minidataclean
.pv_va
,
740 minidataclean
.pv_pa
);
742 /* Map the vector page. */
744 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
745 * cache-clean code there. */
746 pmap_map_entry(l1pagetable
, vector_page
, systempage
.pv_pa
,
747 VM_PROT_READ
|VM_PROT_WRITE
, PTE_NOCACHE
);
749 pmap_map_entry(l1pagetable
, vector_page
, systempage
.pv_pa
,
750 VM_PROT_READ
|VM_PROT_WRITE
, PTE_CACHE
);
754 * map integrated peripherals at same address in l1pagetable
755 * so that we can continue to use console.
757 pmap_devmap_bootstrap(l1pagetable
, g42xxeb_devmap
);
760 * Give the XScale global cache clean code an appropriately
761 * sized chunk of unmapped VA space starting at 0xff000000
762 * (our device mappings end before this address).
764 xscale_cache_clean_addr
= 0xff000000U
;
767 * Now we have the real page tables in place so we can switch to them.
768 * Once this is done we will be running with the REAL kernel page
773 * Update the physical_freestart/physical_freeend/free_pages
779 physical_freestart
= physical_start
+
780 (((((uintptr_t) _end
) + PGOFSET
) & ~PGOFSET
) -
782 physical_freeend
= physical_end
;
784 (physical_freeend
- physical_freestart
) / PAGE_SIZE
;
788 #ifdef VERBOSE_INIT_ARM
789 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
790 physical_freestart
, free_pages
, free_pages
);
791 printf("switching to new L1 page table @%#lx...", kernel_l1pt
.pv_pa
);
795 cpu_setttb(kernel_l1pt
.pv_pa
);
797 cpu_domains(DOMAIN_CLIENT
<< (PMAP_DOMAIN_KERNEL
*2));
801 * Moved from cpu_startup() as data_abort_handler() references
802 * this during uvm init
804 uvm_lwp_setuarea(&lwp0
, kernelstack
.pv_va
);
806 #ifdef VERBOSE_INIT_ARM
807 printf("bootstrap done.\n");
810 arm32_vector_init(ARM_VECTORS_LOW
, ARM_VEC_ALL
);
813 * Pages were allocated during the secondary bootstrap for the
814 * stacks for different CPU modes.
815 * We must now set the r13 registers in the different CPU modes to
816 * point to these stacks.
817 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
818 * of the stack memory.
820 #ifdef VERBOSE_INIT_ARM
821 printf("init subsystems: stacks ");
824 set_stackptr(PSR_IRQ32_MODE
, irqstack
.pv_va
+ IRQ_STACK_SIZE
* PAGE_SIZE
);
825 set_stackptr(PSR_ABT32_MODE
, abtstack
.pv_va
+ ABT_STACK_SIZE
* PAGE_SIZE
);
826 set_stackptr(PSR_UND32_MODE
, undstack
.pv_va
+ UND_STACK_SIZE
* PAGE_SIZE
);
829 * Well we should set a data abort handler.
830 * Once things get going this will change as we will need a proper
832 * Until then we will use a handler that just panics but tells us
834 * Initialisation of the vectors will just panic on a data abort.
835 * This just fills in a slighly better one.
837 #ifdef VERBOSE_INIT_ARM
840 data_abort_handler_address
= (u_int
)data_abort_handler
;
841 prefetch_abort_handler_address
= (u_int
)prefetch_abort_handler
;
842 undefined_handler_address
= (u_int
)undefinedinstruction_bounce
;
844 /* Initialise the undefined instruction handlers */
845 #ifdef VERBOSE_INIT_ARM
846 printf("undefined ");
850 /* Load memory into UVM. */
851 #ifdef VERBOSE_INIT_ARM
854 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
855 uvm_page_physload(atop(physical_freestart
), atop(physical_freeend
),
856 atop(physical_freestart
), atop(physical_freeend
),
857 VM_FREELIST_DEFAULT
);
859 /* Boot strap pmap telling it where the kernel page table is */
860 #ifdef VERBOSE_INIT_ARM
864 pmap_bootstrap(KERNEL_VM_BASE
, KERNEL_VM_BASE
+ KERNEL_VM_SIZE
);
867 #ifdef __HAVE_MEMORY_DISK__
868 md_root_setconf(memory_disk
, sizeof memory_disk
);
872 boothowto
|= BOOTHOWTO
;
876 uint8_t sw
= pldreg8_read(G42XXEB_DIPSW
);
878 if (0 == (sw
& (1<<0)))
880 if (0 == (sw
& (1<<1)))
881 boothowto
^= RB_SINGLE
;
887 if (boothowto
& RB_KDB
) {
896 /* Firmware doesn't load symbols. */
897 ddb_init(0, NULL
, NULL
);
899 if (boothowto
& RB_KDB
)
903 pldreg8_write(G42XXEB_LED
, 0);
905 /* We return the new stack pointer address */
906 return(kernelstack
.pv_va
+ USPACE_SVC_STACK_TOP
);
911 process_kernel_args(char *args
)
916 /* Make a local copy of the bootargs */
917 strncpy(bootargs
, args
, MAX_BOOT_STRING
);
920 boot_file
= bootargs
;
922 /* Skip the kernel image filename */
923 while (*args
!= ' ' && *args
!= 0)
934 printf("bootfile: %s\n", boot_file
);
935 printf("bootargs: %s\n", boot_args
);
937 parse_mi_bootargs(boot_args
);
943 #define KGDB_DEVNAME "ffuart"
945 const char kgdb_devname
[] = KGDB_DEVNAME
;
949 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
951 int comkgdbmode
= KGDB_DEVMODE
;
960 static int consinit_called
= 0;
961 uint32_t ckenreg
= ioreg_read(G42XXEB_CLKMAN_VBASE
+CLKMAN_CKEN
);
963 char *console
= CONSDEVNAME
;
966 if (consinit_called
!= 0)
975 if (0 == strcmp(kgdb_devname
, "ffuart")){
976 /* port is reserved for kgdb */
979 if (0 == comcnattach(&pxa2x0_a4x_bs_tag
, PXA2X0_FFUART_BASE
,
980 comcnspeed
, PXA2X0_COM_FREQ
, COM_TYPE_PXA2x0
, comcnmode
)) {
982 pxa2x0_clkman_config(CKEN_FFUART
, 1);
984 ioreg_write(G42XXEB_CLKMAN_VBASE
+CLKMAN_CKEN
,
985 ckenreg
|CKEN_FFUART
);
990 #endif /* FFUARTCONSOLE */
994 if (0 == strcmp(kgdb_devname
, "btuart")) {
995 /* port is reserved for kgdb */
998 if (0 == comcnattach(&pxa2x0_a4x_bs_tag
, PXA2X0_BTUART_BASE
,
999 comcnspeed
, PXA2X0_COM_FREQ
, COM_TYPE_PXA2x0
, comcnmode
)) {
1000 ioreg_write(G42XXEB_CLKMAN_VBASE
+CLKMAN_CKEN
,
1001 ckenreg
|CKEN_BTUART
);
1004 #endif /* BTUARTCONSOLE */
1013 kgdb_port_init(void)
1015 #if (NCOM > 0) && defined(COM_PXA2X0)
1017 uint32_t ckenreg
= ioreg_read(G42XXEB_CLKMAN_VBASE
+CLKMAN_CKEN
);
1019 if (0 == strcmp(kgdb_devname
, "ffuart")) {
1020 paddr
= PXA2X0_FFUART_BASE
;
1021 ckenreg
|= CKEN_FFUART
;
1023 else if (0 == strcmp(kgdb_devname
, "btuart")) {
1024 paddr
= PXA2X0_BTUART_BASE
;
1025 ckenreg
|= CKEN_BTUART
;
1029 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag
, paddr
,
1030 kgdb_rate
, PXA2X0_COM_FREQ
, COM_TYPE_PXA2x0
, comkgdbmode
)) {
1032 ioreg_write(G42XXEB_CLKMAN_VBASE
+CLKMAN_CKEN
, ckenreg
);