No empty .Rs/.Re
[netbsd-mini2440.git] / sys / arch / evbarm / gemini / gemini_machdep.c
blobfbfd8a77c507dfa092b4951df8269977dc5b9304
1 /* $NetBSD$ */
3 /* adapted from:
4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5 */
7 /*
8 * Machine dependent functions for kernel setup for TI OSK5912 board.
9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
12 * Written by Hiroyuki Bessho for Genetec Corporation.
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. The name of Genetec Corporation may not be used to endorse or
23 * promote products derived from this software without specific prior
24 * written permission.
26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
38 * Copyright (c) 2001 Wasabi Systems, Inc.
39 * All rights reserved.
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
103 * Copyright (c) 2007 Microsoft
104 * All rights reserved.
106 * Redistribution and use in source and binary forms, with or without
107 * modification, are permitted provided that the following conditions
108 * are met:
109 * 1. Redistributions of source code must retain the above copyright
110 * notice, this list of conditions and the following disclaimer.
111 * 2. Redistributions in binary form must reproduce the above copyright
112 * notice, this list of conditions and the following disclaimer in the
113 * documentation and/or other materials provided with the distribution.
114 * 3. All advertising materials mentioning features or use of this software
115 * must display the following acknowledgement:
116 * This product includes software developed by Microsoft
118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128 * SUCH DAMAGE.
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD$");
134 #include "opt_machdep.h"
135 #include "opt_ddb.h"
136 #include "opt_kgdb.h"
137 #include "opt_ipkdb.h"
138 #include "opt_md.h"
139 #include "opt_com.h"
140 #include "opt_gemini.h"
141 #include "geminiwdt.h"
142 #include "geminiipm.h"
143 #include "md.h"
145 #include <sys/param.h>
146 #include <sys/device.h>
147 #include <sys/systm.h>
148 #include <sys/kernel.h>
149 #include <sys/exec.h>
150 #include <sys/proc.h>
151 #include <sys/msgbuf.h>
152 #include <sys/reboot.h>
153 #include <sys/termios.h>
154 #include <sys/ksyms.h>
156 #include <uvm/uvm_extern.h>
158 #include <sys/conf.h>
159 #include <dev/cons.h>
160 #include <dev/md.h>
162 #include <machine/db_machdep.h>
163 #include <ddb/db_sym.h>
164 #include <ddb/db_extern.h>
165 #ifdef KGDB
166 #include <sys/kgdb.h>
167 #endif
169 #include <machine/bootconfig.h>
170 #include <machine/bus.h>
171 #include <machine/cpu.h>
172 #include <machine/frame.h>
173 #include <arm/armreg.h>
174 #include <arm/undefined.h>
176 #include <arm/arm32/machdep.h>
178 #include <arm/gemini/gemini_reg.h>
179 #include <arm/gemini/gemini_var.h>
180 #include <arm/gemini/gemini_wdtvar.h>
181 #include <arm/gemini/gemini_com.h>
182 #include <arm/gemini/lpc_com.h>
184 #include <evbarm/gemini/gemini.h>
186 #if defined(VERBOSE_INIT_ARM)
187 # define GEMINI_PUTCHAR(c) gemini_putchar(c)
188 # define GEMINI_PUTHEX(n) gemini_puthex(n)
189 #else /* VERBOSE_INIT_ARM */
190 # define GEMINI_PUTCHAR(c)
191 # define GEMINI_PUTHEX(n)
192 #endif /* VERBOSE_INIT_ARM */
195 * Address to call from cpu_reset() to reset the machine.
196 * This is machine architecture dependant as it varies depending
197 * on where the ROM appears when you turn the MMU off.
200 u_int cpu_reset_address = 0;
202 /* Define various stack sizes in pages */
203 #define IRQ_STACK_SIZE 1
204 #define FIQ_STACK_SIZE 1
205 #define ABT_STACK_SIZE 1
206 #ifdef IPKDB
207 #define UND_STACK_SIZE 2
208 #else
209 #define UND_STACK_SIZE 1
210 #endif
212 BootConfig bootconfig; /* Boot config storage */
213 char *boot_args = NULL;
214 char *boot_file = NULL;
216 /* Physical address of the beginning of SDRAM. */
217 paddr_t physical_start;
218 /* Physical address of the first byte after the end of SDRAM. */
219 paddr_t physical_end;
221 /* Same things, but for the free (unused by the kernel) memory. */
222 static paddr_t physical_freestart, physical_freeend;
223 static u_int free_pages;
225 /* Physical and virtual addresses for some global pages */
226 pv_addr_t fiqstack;
227 pv_addr_t irqstack;
228 pv_addr_t undstack;
229 pv_addr_t abtstack;
230 pv_addr_t kernelstack; /* stack for SVC mode */
232 /* Physical address of the message buffer. */
233 paddr_t msgbufphys;
235 extern u_int data_abort_handler_address;
236 extern u_int prefetch_abort_handler_address;
237 extern u_int undefined_handler_address;
238 extern char KERNEL_BASE_phys[];
239 extern char KERNEL_BASE_virt[];
240 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
241 extern char _end[];
243 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
244 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
245 #define KERNEL_PT_KERNEL_NUM 4
246 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
247 /* Page tables for mapping kernel VM */
248 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
249 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
251 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
254 #if (NGEMINIIPM > 0)
255 pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */
256 #if defined(DEBUG) || 1
257 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
258 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
259 #endif /* DEBUG */
260 #endif /* NGEMINIIPM > 0 */
264 * Macros to translate between physical and virtual for a subset of the
265 * kernel address space. *Not* for general use.
267 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
269 #define KERN_VTOPHYS(va) \
270 ((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
271 #define KERN_PHYSTOV(pa) \
272 ((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
274 /* Prototypes */
276 void gemini_intr_init(bus_space_tag_t);
277 void consinit(void);
278 #ifdef KGDB
279 static void kgdb_port_init(void);
280 #endif
282 static void setup_real_page_tables(void);
283 static void init_clocks(void);
285 bs_protos(bs_notimpl);
287 #include "com.h"
288 #if NCOM > 0
289 #include <dev/ic/comreg.h>
290 #include <dev/ic/comvar.h>
291 #endif
294 static void gemini_global_reset(void) __attribute__ ((noreturn));
295 static void gemini_cpu1_start(void);
296 static void gemini_memchk(void);
298 static void
299 gemini_global_reset(void)
301 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
302 volatile uint32_t *rp;
303 uint32_t r;
305 rp = (volatile uint32_t *)
306 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
307 r = *rp;
308 r |= GLOBAL_RESET_GLOBAL;
309 *rp = r;
310 #endif
311 for(;;);
312 /* NOTREACHED */
315 static void
316 gemini_cpu1_start(void)
318 #ifdef GEMINI_MASTER
319 volatile uint32_t *rp;
320 uint32_t r;
322 rp = (volatile uint32_t *)
323 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
324 r = *rp;
325 r &= ~GLOBAL_RESET_CPU1;
326 *rp = r;
327 #endif
330 static void
331 gemini_memchk(void)
333 volatile uint32_t *rp;
334 uint32_t r;
335 uint32_t base;
336 uint32_t size;
338 rp = (volatile uint32_t *)
339 (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
340 r = *rp;
341 base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
342 size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
343 #if defined(GEMINI_SINGLE)
344 if (r != 0)
345 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
346 __FUNCTION__, r, MEMSIZE);
347 #elif defined(GEMINI_MASTER)
348 if (base != MEMSIZE)
349 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
350 __FUNCTION__, r, MEMSIZE);
351 #elif defined(GEMINI_SLAVE)
352 if (size != MEMSIZE)
353 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
354 __FUNCTION__, r, MEMSIZE);
355 #endif
356 #if defined(VERBOSE_INIT_ARM) || 1
357 printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
358 #endif
362 * void cpu_reboot(int howto, char *bootstr)
364 * Reboots the system
366 * Deal with any syncing, unmounting, dumping and shutdown hooks,
367 * then reset the CPU.
369 void
370 cpu_reboot(int howto, char *bootstr)
372 extern struct geminitmr_softc *ref_sc;
374 #ifdef DIAGNOSTIC
375 /* info */
376 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
377 #endif
380 * If we are still cold then hit the air brakes
381 * and crash to earth fast
383 if (cold) {
384 doshutdownhooks();
385 pmf_system_shutdown(boothowto);
386 printf("The operating system has halted.\n");
387 printf("Please press any key to reboot.\n\n");
388 cngetc();
389 printf("rebooting...\n");
390 if (ref_sc != NULL)
391 delay(2000); /* cnflush(); */
392 gemini_global_reset();
393 /*NOTREACHED*/
396 /* Disable console buffering */
397 cnpollc(1);
400 * If RB_NOSYNC was not specified sync the discs.
401 * Note: Unless cold is set to 1 here, syslogd will die during the
402 * unmount. It looks like syslogd is getting woken up only to find
403 * that it cannot page part of the binary in as the filesystem has
404 * been unmounted.
406 if (!(howto & RB_NOSYNC))
407 bootsync();
409 /* Say NO to interrupts */
410 splhigh();
412 /* Do a dump if requested. */
413 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
414 dumpsys();
416 /* Run any shutdown hooks */
417 doshutdownhooks();
419 pmf_system_shutdown(boothowto);
421 /* Make sure IRQ's are disabled */
422 IRQdisable;
424 if (howto & RB_HALT) {
425 printf("The operating system has halted.\n");
426 printf("Please press any key to reboot.\n\n");
427 cngetc();
430 printf("rebooting...\n");
431 if (ref_sc != NULL)
432 delay(2000); /* cnflush(); */
433 gemini_global_reset();
434 /*NOTREACHED*/
438 * Static device mappings. These peripheral registers are mapped at
439 * fixed virtual addresses very early in initarm() so that we can use
440 * them while booting the kernel, and stay at the same address
441 * throughout whole kernel's life time.
443 * We use this table twice; once with bootstrap page table, and once
444 * with kernel's page table which we build up in initarm().
446 * Since we map these registers into the bootstrap page table using
447 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
448 * registers segment-aligned and segment-rounded in order to avoid
449 * using the 2nd page tables.
452 #define _A(a) ((a) & ~L1_S_OFFSET)
453 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
455 static const struct pmap_devmap devmap[] = {
456 /* Global regs */
458 .pd_va = _A(GEMINI_GLOBAL_VBASE),
459 .pd_pa = _A(GEMINI_GLOBAL_BASE),
460 .pd_size = _S(L1_S_SIZE),
461 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
462 .pd_cache = PTE_NOCACHE
465 /* Watchdog */
467 .pd_va = _A(GEMINI_WATCHDOG_VBASE),
468 .pd_pa = _A(GEMINI_WATCHDOG_BASE),
469 .pd_size = _S(L1_S_SIZE),
470 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
471 .pd_cache = PTE_NOCACHE
474 /* UART */
476 .pd_va = _A(GEMINI_UART_VBASE),
477 .pd_pa = _A(GEMINI_UART_BASE),
478 .pd_size = _S(L1_S_SIZE),
479 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
480 .pd_cache = PTE_NOCACHE
483 /* LPCHC */
485 .pd_va = _A(GEMINI_LPCHC_VBASE),
486 .pd_pa = _A(GEMINI_LPCHC_BASE),
487 .pd_size = _S(L1_S_SIZE),
488 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
489 .pd_cache = PTE_NOCACHE
492 /* LPCIO */
494 .pd_va = _A(GEMINI_LPCIO_VBASE),
495 .pd_pa = _A(GEMINI_LPCIO_BASE),
496 .pd_size = _S(L1_S_SIZE),
497 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
498 .pd_cache = PTE_NOCACHE
501 /* Timers */
503 .pd_va = _A(GEMINI_TIMER_VBASE),
504 .pd_pa = _A(GEMINI_TIMER_BASE),
505 .pd_size = _S(L1_S_SIZE),
506 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
507 .pd_cache = PTE_NOCACHE
510 /* DRAM Controller */
512 .pd_va = _A(GEMINI_DRAMC_VBASE),
513 .pd_pa = _A(GEMINI_DRAMC_BASE),
514 .pd_size = _S(L1_S_SIZE),
515 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
516 .pd_cache = PTE_NOCACHE
519 #if defined(MEMORY_DISK_DYNAMIC)
520 /* Ramdisk */
522 .pd_va = _A(GEMINI_RAMDISK_VBASE),
523 .pd_pa = _A(GEMINI_RAMDISK_PBASE),
524 .pd_size = _S(GEMINI_RAMDISK_SIZE),
525 .pd_prot = VM_PROT_READ|VM_PROT_WRITE,
526 .pd_cache = PTE_NOCACHE
528 #endif
530 {0} /* list terminator */
533 #undef _A
534 #undef _S
536 #ifdef DDB
537 static void gemini_db_trap(int where)
539 #if NGEMINIWDT > 0
540 static int oldwatchdogstate;
542 if (where) {
543 oldwatchdogstate = geminiwdt_enable(0);
544 } else {
545 geminiwdt_enable(oldwatchdogstate);
547 #endif
549 #endif
551 #if defined(VERBOSE_INIT_ARM) || 1
552 void gemini_putchar(char c);
553 void
554 gemini_putchar(char c)
556 unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
557 int timo = 150000;
559 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
560 if (--timo == 0)
561 break;
563 com0addr[COM_REG_TXDATA] = c;
565 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
566 if (--timo == 0)
567 break;
570 void gemini_puthex(unsigned int);
571 void
572 gemini_puthex(unsigned int val)
574 char hexc[] = "0123456789abcdef";
576 gemini_putchar('0');
577 gemini_putchar('x');
578 gemini_putchar(hexc[(val >> 28) & 0xf]);
579 gemini_putchar(hexc[(val >> 24) & 0xf]);
580 gemini_putchar(hexc[(val >> 20) & 0xf]);
581 gemini_putchar(hexc[(val >> 16) & 0xf]);
582 gemini_putchar(hexc[(val >> 12) & 0xf]);
583 gemini_putchar(hexc[(val >> 8) & 0xf]);
584 gemini_putchar(hexc[(val >> 4) & 0xf]);
585 gemini_putchar(hexc[(val >> 0) & 0xf]);
587 #endif /* VERBOSE_INIT_ARM */
590 * u_int initarm(...)
592 * Initial entry point on startup. This gets called before main() is
593 * entered.
594 * It should be responsible for setting up everything that must be
595 * in place when main is called.
596 * This includes
597 * Taking a copy of the boot configuration structure.
598 * Initialising the physical console so characters can be printed.
599 * Setting up page tables for the kernel
600 * Relocating the kernel to the bottom of physical memory
602 u_int
603 initarm(void *arg)
605 GEMINI_PUTCHAR('0');
608 * start cpu#1 now
610 gemini_cpu1_start();
613 * When we enter here, we are using a temporary first level
614 * translation table with section entries in it to cover the OBIO
615 * peripherals and SDRAM. The temporary first level translation table
616 * is at the end of SDRAM.
619 /* Heads up ... Setup the CPU / MMU / TLB functions. */
620 GEMINI_PUTCHAR('1');
621 if (set_cpufuncs())
622 panic("cpu not recognized!");
624 GEMINI_PUTCHAR('2');
625 init_clocks();
626 GEMINI_PUTCHAR('3');
628 /* The console is going to try to map things. Give pmap a devmap. */
629 pmap_devmap_register(devmap);
630 GEMINI_PUTCHAR('4');
631 consinit();
632 GEMINI_PUTCHAR('5');
633 #ifdef KGDB
634 kgdb_port_init();
635 #endif
637 /* Talk to the user */
638 printf("\nNetBSD/evbarm (gemini) booting ...\n");
640 #ifdef BOOT_ARGS
641 char mi_bootargs[] = BOOT_ARGS;
642 parse_mi_bootargs(mi_bootargs);
643 #endif
645 #ifdef VERBOSE_INIT_ARM
646 printf("initarm: Configuring system ...\n");
647 #endif
650 * Set up the variables that define the availability of physical
651 * memory.
653 gemini_memchk();
654 physical_start = GEMINI_DRAM_BASE;
655 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
656 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
657 physmem = (physical_end - physical_start) / PAGE_SIZE;
659 /* Fake bootconfig structure for the benefit of pmap.c. */
660 bootconfig.dramblocks = 1;
661 bootconfig.dram[0].address = physical_start;
662 bootconfig.dram[0].pages = physmem;
665 * Our kernel is at the beginning of memory, so set our free space to
666 * all the memory after the kernel.
668 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
669 physical_freeend = physical_end;
670 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
673 * This is going to do all the hard work of setting up the first and
674 * and second level page tables. Pages of memory will be allocated
675 * and mapped for other structures that are required for system
676 * operation. When it returns, physical_freestart and free_pages will
677 * have been updated to reflect the allocations that were made. In
678 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
679 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
680 * the memory that was allocated for them.
682 setup_real_page_tables();
685 * Moved from cpu_startup() as data_abort_handler() references
686 * this during uvm init.
688 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
690 #ifdef VERBOSE_INIT_ARM
691 printf("bootstrap done.\n");
692 #endif
694 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
697 * Pages were allocated during the secondary bootstrap for the
698 * stacks for different CPU modes.
699 * We must now set the r13 registers in the different CPU modes to
700 * point to these stacks.
701 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
702 * of the stack memory.
704 #ifdef VERBOSE_INIT_ARM
705 printf("init subsystems: stacks ");
706 #endif
708 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
709 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
710 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
711 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
714 * Well we should set a data abort handler.
715 * Once things get going this will change as we will need a proper
716 * handler.
717 * Until then we will use a handler that just panics but tells us
718 * why.
719 * Initialisation of the vectors will just panic on a data abort.
720 * This just fills in a slightly better one.
722 #ifdef VERBOSE_INIT_ARM
723 printf("vectors ");
724 #endif
725 data_abort_handler_address = (u_int)data_abort_handler;
726 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
727 undefined_handler_address = (u_int)undefinedinstruction_bounce;
729 /* Initialise the undefined instruction handlers */
730 #ifdef VERBOSE_INIT_ARM
731 printf("undefined ");
732 #endif
733 undefined_init();
735 /* Load memory into UVM. */
736 #ifdef VERBOSE_INIT_ARM
737 printf("page ");
738 #endif
739 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
741 #if (GEMINI_RAM_RESV_PBASE != 0)
742 uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
743 atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
744 VM_FREELIST_DEFAULT);
745 uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
746 atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
747 VM_FREELIST_DEFAULT);
748 #else
749 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
750 atop(physical_freestart), atop(physical_freeend),
751 VM_FREELIST_DEFAULT);
752 #endif
753 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
754 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
755 VM_FREELIST_DEFAULT);
757 /* Boot strap pmap telling it where the kernel page table is */
758 #ifdef VERBOSE_INIT_ARM
759 printf("pmap ");
760 #endif
761 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
763 #ifdef VERBOSE_INIT_ARM
764 printf("done.\n");
765 #endif
767 #ifdef IPKDB
768 /* Initialise ipkdb */
769 ipkdb_init();
770 if (boothowto & RB_KDB)
771 ipkdb_connect(0);
772 #endif
774 #if defined(MEMORY_DISK_DYNAMIC)
775 md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
776 #endif
778 #ifdef KGDB
779 if (boothowto & RB_KDB) {
780 kgdb_debug_init = 1;
781 kgdb_connect(1);
783 #endif
785 #ifdef DDB
786 db_trap_callback = gemini_db_trap;
787 db_machine_init();
789 /* Firmware doesn't load symbols. */
790 ddb_init(0, NULL, NULL);
792 if (boothowto & RB_KDB)
793 Debugger();
794 #endif
795 printf("initarm done.\n");
797 /* We return the new stack pointer address */
798 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
801 static void
802 init_clocks(void)
806 #ifndef CONSADDR
807 #error Specify the address of the console UART with the CONSADDR option.
808 #endif
809 #ifndef CONSPEED
810 #define CONSPEED 19200
811 #endif
812 #ifndef CONMODE
813 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
814 #endif
816 static const bus_addr_t consaddr = CONSADDR;
817 static const int conspeed = CONSPEED;
818 static const int conmode = CONMODE;
820 #if CONSADDR==0x42000000
822 * console initialization for obio com console
824 void
825 consinit(void)
827 static int consinit_called = 0;
829 if (consinit_called != 0)
830 return;
831 consinit_called = 1;
833 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
834 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
835 panic("Serial console can not be initialized.");
838 #elif CONSADDR==0x478003f8
839 # include <arm/gemini/gemini_lpcvar.h>
841 * console initialization for lpc com console
843 void
844 consinit(void)
846 static int consinit_called = 0;
847 bus_space_tag_t iot = &gemini_bs_tag;
848 bus_space_handle_t lpchc_ioh;
849 bus_space_handle_t lpcio_ioh;
850 bus_size_t sz = L1_S_SIZE;
851 gemini_lpc_softc_t lpcsoftc;
852 gemini_lpc_bus_ops_t *ops;
853 void *lpctag = &lpcsoftc;
854 uint32_t r;
855 extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
857 ops = &gemini_lpc_bus_ops;
859 if (consinit_called != 0)
860 return;
861 consinit_called = 1;
863 if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
864 panic("consinit: LPCHC can not be mapped.");
866 if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
867 panic("consinit: LPCIO can not be mapped.");
869 /* enable the LPC bus */
870 r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
871 r |= LPCHC_CSR_BEN;
872 bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
874 memset(&lpcsoftc, 0, sizeof(lpcsoftc));
875 lpcsoftc.sc_iot = iot;
876 lpcsoftc.sc_ioh = lpcio_ioh;
878 /* activate Serial Port 1 */
879 (*ops->lpc_pnp_enter)(lpctag);
880 (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
881 (*ops->lpc_pnp_exit)(lpctag);
883 if (comcnattach(iot, consaddr, conspeed,
884 IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
885 panic("Serial console can not be initialized.");
888 bus_space_unmap(iot, lpcio_ioh, sz);
889 bus_space_unmap(iot, lpchc_ioh, sz);
891 #else
892 # error unknown console
893 #endif
895 #ifdef KGDB
896 #ifndef KGDB_DEVADDR
897 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
898 #endif
899 #ifndef KGDB_DEVRATE
900 #define KGDB_DEVRATE 19200
901 #endif
903 #ifndef KGDB_DEVMODE
904 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
905 #endif
906 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
907 static const int comkgdbspeed = KGDB_DEVRATE;
908 static const int comkgdbmode = KGDB_DEVMODE;
910 void
911 static kgdb_port_init(void)
913 static int kgdbsinit_called = 0;
915 if (kgdbsinit_called != 0)
916 return;
918 kgdbsinit_called = 1;
920 bus_space_handle_t bh;
921 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
922 GEMINI_UART_SIZE, 0, &bh))
923 panic("kgdb port can not be mapped.");
925 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
926 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
927 panic("KGDB uart can not be initialized.");
929 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
931 #endif
933 static void
934 setup_real_page_tables(void)
937 * We need to allocate some fixed page tables to get the kernel going.
939 * We are going to allocate our bootstrap pages from the beginning of
940 * the free space that we just calculated. We allocate one page
941 * directory and a number of page tables and store the physical
942 * addresses in the kernel_pt_table array.
944 * The kernel page directory must be on a 16K boundary. The page
945 * tables must be on 4K boundaries. What we do is allocate the
946 * page directory on the first 16K boundary that we encounter, and
947 * the page tables on 4K boundaries otherwise. Since we allocate
948 * at least 3 L2 page tables, we are guaranteed to encounter at
949 * least one 16K aligned region.
952 #ifdef VERBOSE_INIT_ARM
953 printf("Allocating page tables\n");
954 #endif
957 * Define a macro to simplify memory allocation. As we allocate the
958 * memory, make sure that we don't walk over our temporary first level
959 * translation table.
961 #define valloc_pages(var, np) \
962 (var).pv_pa = physical_freestart; \
963 physical_freestart += ((np) * PAGE_SIZE); \
964 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
965 panic("initarm: out of memory"); \
966 free_pages -= (np); \
967 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
968 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
970 int loop, pt_index;
972 pt_index = 0;
973 kernel_l1pt.pv_pa = 0;
974 kernel_l1pt.pv_va = 0;
975 #ifdef VERBOSE_INIT_ARM
976 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
977 #endif
978 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
979 /* Are we 16KB aligned for an L1 ? */
980 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
981 && kernel_l1pt.pv_pa == 0) {
982 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
983 } else {
984 valloc_pages(kernel_pt_table[pt_index],
985 L2_TABLE_SIZE / PAGE_SIZE);
986 ++pt_index;
990 #if (NGEMINIIPM > 0)
991 valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
992 #endif
994 #ifdef VERBOSE_INIT_ARM
995 pt_index=0;
996 printf("%s: kernel_l1pt: %#lx:%#lx\n",
997 __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
998 printf("%s: kernel_pt_table:\n", __func__);
999 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1000 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
1001 kernel_pt_table[pt_index].pv_pa);
1002 ++pt_index;
1004 #if (NGEMINIIPM > 0)
1005 printf("%s: ipmq_pt:\n", __func__);
1006 printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
1007 #endif
1008 #endif
1010 /* This should never be able to happen but better confirm that. */
1011 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
1012 panic("initarm: Failed to align the kernel page directory");
1015 * Allocate a page for the system page mapped to V0x00000000
1016 * This page will just contain the system vectors and can be
1017 * shared by all processes.
1019 valloc_pages(systempage, 1);
1020 systempage.pv_va = ARM_VECTORS_HIGH;
1022 /* Allocate stacks for all modes */
1023 valloc_pages(fiqstack, FIQ_STACK_SIZE);
1024 valloc_pages(irqstack, IRQ_STACK_SIZE);
1025 valloc_pages(abtstack, ABT_STACK_SIZE);
1026 valloc_pages(undstack, UND_STACK_SIZE);
1027 valloc_pages(kernelstack, UPAGES);
1029 /* Allocate the message buffer. */
1030 pv_addr_t msgbuf;
1031 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
1032 valloc_pages(msgbuf, msgbuf_pgs);
1033 msgbufphys = msgbuf.pv_pa;
1036 * Ok we have allocated physical pages for the primary kernel
1037 * page tables
1040 #ifdef VERBOSE_INIT_ARM
1041 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
1042 #endif
1045 * Now we start construction of the L1 page table
1046 * We start by mapping the L2 page tables into the L1.
1047 * This means that we can replace L1 mappings later on if necessary
1049 vaddr_t l1_va = kernel_l1pt.pv_va;
1050 paddr_t l1_pa = kernel_l1pt.pv_pa;
1052 /* Map the L2 pages tables in the L1 page table */
1053 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
1054 &kernel_pt_table[KERNEL_PT_SYS]);
1055 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
1056 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
1057 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
1058 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
1059 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1060 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1062 /* update the top of the kernel VM */
1063 pmap_curmaxkvaddr =
1064 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1066 #if (NGEMINIIPM > 0)
1067 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
1068 pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
1069 #endif
1071 #ifdef VERBOSE_INIT_ARM
1072 printf("Mapping kernel\n");
1073 #endif
1075 /* Now we fill in the L2 pagetable for the kernel static code/data */
1076 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1077 size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1078 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1079 /* offset of kernel in RAM */
1080 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1082 #ifdef DDB
1083 /* Map text section read-write. */
1084 offset += pmap_map_chunk(l1_va,
1085 (vaddr_t)KERNEL_BASE + offset,
1086 physical_start + offset, textsize,
1087 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
1088 PTE_CACHE);
1089 #else
1090 /* Map text section read-only. */
1091 offset += pmap_map_chunk(l1_va,
1092 (vaddr_t)KERNEL_BASE + offset,
1093 physical_start + offset, textsize,
1094 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1095 #endif
1096 /* Map data and bss sections read-write. */
1097 offset += pmap_map_chunk(l1_va,
1098 (vaddr_t)KERNEL_BASE + offset,
1099 physical_start + offset, totalsize - textsize,
1100 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1102 #ifdef VERBOSE_INIT_ARM
1103 printf("Constructing L2 page tables\n");
1104 #endif
1106 /* Map the stack pages */
1107 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1108 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1109 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1110 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1111 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1112 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1113 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1114 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1115 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1116 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1118 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1119 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1121 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1122 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1123 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1124 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1127 /* Map the vector page. */
1128 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1129 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1131 #if (NGEMINIIPM > 0)
1132 /* Map the IPM queue l2pt */
1133 pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
1134 L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1136 /* Map the IPM queue pages */
1137 pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
1138 GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1140 #ifdef GEMINI_SLAVE
1142 * Map all memory, incluuding that owned by other core
1143 * take into account the RAM remap, so view in this region
1144 * is consistent with MASTER
1146 pmap_map_chunk(l1_va,
1147 GEMINI_ALLMEM_VBASE,
1148 GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
1149 (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
1150 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1151 pmap_map_chunk(l1_va,
1152 GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
1153 GEMINI_ALLMEM_PBASE,
1154 (MEMSIZE * 1024 * 1024),
1155 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1156 #else
1157 /* Map all memory, incluuding that owned by other core */
1158 pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
1159 GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1160 #endif /* GEMINI_SLAVE */
1161 #endif /* NGEMINIIPM */
1164 * Map integrated peripherals at same address in first level page
1165 * table so that we can continue to use console.
1167 pmap_devmap_bootstrap(l1_va, devmap);
1170 #ifdef VERBOSE_INIT_ARM
1171 /* Tell the user about where all the bits and pieces live. */
1172 printf("%22s Physical Virtual Num\n", " ");
1173 printf("%22s Starting Ending Starting Ending Pages\n", " ");
1175 static const char mem_fmt[] =
1176 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1177 static const char mem_fmt_nov[] =
1178 "%20s: 0x%08lx 0x%08lx %d\n";
1180 printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1181 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1182 physmem);
1183 printf(mem_fmt, "text section",
1184 KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
1185 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1186 (int)(textsize / PAGE_SIZE));
1187 printf(mem_fmt, "data section",
1188 KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
1189 (vaddr_t)__data_start, (vaddr_t)_edata,
1190 (int)((round_page((vaddr_t)_edata)
1191 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1192 printf(mem_fmt, "bss section",
1193 KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
1194 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1195 (int)((round_page((vaddr_t)__bss_end__)
1196 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1197 printf(mem_fmt, "L1 page directory",
1198 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1199 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1200 L1_TABLE_SIZE / PAGE_SIZE);
1201 printf(mem_fmt, "Exception Vectors",
1202 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1203 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1205 printf(mem_fmt, "FIQ stack",
1206 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1207 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1208 FIQ_STACK_SIZE);
1209 printf(mem_fmt, "IRQ stack",
1210 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1211 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1212 IRQ_STACK_SIZE);
1213 printf(mem_fmt, "ABT stack",
1214 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1215 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1216 ABT_STACK_SIZE);
1217 printf(mem_fmt, "UND stack",
1218 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1219 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1220 UND_STACK_SIZE);
1221 printf(mem_fmt, "SVC stack",
1222 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1223 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1224 UPAGES);
1225 printf(mem_fmt_nov, "Message Buffer",
1226 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1227 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1228 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1229 free_pages);
1230 #endif
1233 * Now we have the real page tables in place so we can switch to them.
1234 * Once this is done we will be running with the REAL kernel page
1235 * tables.
1238 /* Switch tables */
1239 #ifdef VERBOSE_INIT_ARM
1240 printf("switching to new L1 page table @%#lx...", l1_pa);
1241 #endif
1243 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1244 cpu_setttb(l1_pa);
1245 cpu_tlb_flushID();
1246 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1248 #ifdef VERBOSE_INIT_ARM
1249 printf("OK.\n");
1250 #endif