No empty .Rs/.Re
[netbsd-mini2440.git] / sys / arch / hpcmips / vr / flash_vrip.c
blob45e3ad2c05da7b65a7a17dbf7b7978ea29060b4f
1 /* $NetBSD: flash_vrip.c,v 1.6 2008/04/28 20:23:22 martin Exp $ */
3 /*
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Naoto Shimazaki of YOKOGAWA Electric Corporation.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Flash Memory Driver
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: flash_vrip.c,v 1.6 2008/04/28 20:23:22 martin Exp $");
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/systm.h>
47 #include <machine/bus.h>
49 #include <hpcmips/vr/vripif.h>
50 #include <hpcmips/vr/cfireg.h>
51 #include <hpcmips/vr/flashreg.h>
52 #include <hpcmips/vr/flashvar.h>
54 #ifdef FLASH_DEBUG
55 int flash_debug = 0;
56 #define DPRINTF(x) if (flash_debug) printf x
57 #else
58 #define DPRINTF(x)
59 #endif
61 static int flash_probe(struct device *, struct cfdata *, void *);
62 static void flash_attach(struct device *, struct device *, void *);
64 const static struct flashops * find_command_set(u_int8_t cmdset0,
65 u_int8_t cmdset1);
66 static int i28f128_probe(bus_space_tag_t, bus_space_handle_t);
67 static int mbm29160_probe(bus_space_tag_t, bus_space_handle_t);
68 static int is_block_same(struct flash_softc *, bus_size_t, const void *);
69 static int probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh);
71 static int intel_erase(struct flash_softc *, bus_size_t);
72 static int intel_write(struct flash_softc *, bus_size_t);
73 static int amd_erase(struct flash_softc *, bus_size_t);
74 static int amd_write(struct flash_softc *, bus_size_t);
76 extern struct cfdriver flash_cd;
78 CFATTACH_DECL(flash_vrip, sizeof(struct flash_softc),
79 flash_probe, flash_attach, NULL, NULL);
81 dev_type_open(flashopen);
82 dev_type_close(flashclose);
83 dev_type_read(flashread);
84 dev_type_write(flashwrite);
86 const struct cdevsw flash_cdevsw = {
87 flashopen, flashclose, flashread, flashwrite, noioctl,
88 nostop, notty, nopoll, nommap, nokqfilter,
91 static const struct flash_command_set {
92 u_int8_t fc_set0;
93 u_int8_t fc_set1;
94 struct flashops fc_ops;
95 } flash_cmd[] = {
97 .fc_set0 = CFI_COMMSET_INTEL0,
98 .fc_set1 = CFI_COMMSET_INTEL1,
99 .fc_ops = {
100 .fo_name = "Intel",
101 .fo_erase = intel_erase,
102 .fo_write = intel_write,
106 .fc_set0 = CFI_COMMSET_AMDFJITU0,
107 .fc_set1 = CFI_COMMSET_AMDFJITU1,
108 .fc_ops = {
109 .fo_name = "AMD/Fujitsu",
110 .fo_erase = amd_erase,
111 .fo_write = amd_write,
115 .fc_set0 = 0,
116 .fc_set1 = 0,
117 .fc_ops = {
118 .fo_name = NULL,
119 .fo_erase = NULL,
120 .fo_write = NULL,
126 const static struct flashops *
127 find_command_set(u_int8_t cmdset0, u_int8_t cmdset1)
129 const struct flash_command_set *fc;
131 for (fc = flash_cmd; fc->fc_ops.fo_name; fc++) {
132 if (cmdset0 == fc->fc_set0 && cmdset1 == fc->fc_set1)
133 return &fc->fc_ops;
135 return NULL;
138 static int
139 probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh)
141 const u_int8_t *idstr = CFI_QUERY_ID_STR;
142 int i;
143 u_int8_t cmdset0;
144 u_int8_t cmdset1;
146 /* start Common Flash Interface Query */
147 bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
149 /* read CFI Query ID string */
150 i = CFI_QUERY_ID_STR_REG << 1;
151 do {
152 if (bus_space_read_2(iot, ioh, i) != *idstr) {
153 bus_space_write_2(iot, ioh, 0, FLASH_RESET);
154 return 1;
156 i += 2;
157 idstr++;
158 } while (*idstr);
160 cmdset0 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG0 << 1);
161 cmdset1 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG1 << 1);
163 /* switch flash to read mode */
164 bus_space_write_2(iot, ioh, 0, FLASH_RESET);
166 if (!find_command_set(cmdset0, cmdset1))
167 return 1;
169 return 0;
172 static int
173 flash_probe(struct device *parent, struct cfdata *match, void *aux)
175 struct vrip_attach_args *va = aux;
176 bus_space_handle_t ioh;
178 if (bus_space_map(va->va_iot, va->va_addr, va->va_size, 0, &ioh))
179 return 0;
180 if (!probe_cfi(va->va_iot, ioh)) {
181 DPRINTF("CFI ID str and command set recognized\n");
182 goto detect;
184 if (!i28f128_probe(va->va_iot, ioh)) {
185 DPRINTF("28F128 detected\n");
186 goto detect;
188 if (!mbm29160_probe(va->va_iot, ioh)) {
189 DPRINTF("29LV160 detected\n");
190 goto detect;
192 return 0;
194 detect:
195 bus_space_unmap(va->va_iot, ioh, va->va_size);
196 return 1;
199 static void
200 flash_attach(struct device *parent, struct device *self, void *aux)
202 struct flash_softc *sc = (void *) self;
203 struct vrip_attach_args *va = aux;
204 int i;
205 int fence;
206 bus_space_tag_t iot = va->va_iot;
207 bus_space_handle_t ioh;
208 size_t block_size;
210 if (bus_space_map(iot, va->va_addr, va->va_size, 0, &ioh)) {
211 printf(": can't map i/o space\n");
212 return;
215 sc->sc_iot = iot;
216 sc->sc_ioh = ioh;
217 sc->sc_size = va->va_size;
218 sc->sc_status = 0;
221 * Read entire CFI structure
223 bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
224 for (i = 0; i < CFI_TOTAL_SIZE; i++) {
225 sc->sc_cfi_raw[i] = bus_space_read_2(iot, ioh, i << 1);
227 bus_space_write_2(iot, ioh, 0, FLASH_RESET);
229 sc->sc_ops = find_command_set(sc->sc_cfi_raw[CFI_PRIM_COMM_REG0],
230 sc->sc_cfi_raw[CFI_PRIM_COMM_REG1]);
231 if (sc->sc_ops) {
232 printf(": using %s command set", sc->sc_ops->fo_name);
233 } else {
234 printf("opps sc->sc_ops is NULL\n");
238 * determine size of the largest block
240 sc->sc_block_size = 0;
241 i = CFI_EBLK1_INFO_REG;
242 fence = sc->sc_cfi_raw[CFI_NUM_ERASE_BLK_REG] * CFI_EBLK_INFO_SIZE
243 + i;
244 for (; i < fence; i += CFI_EBLK_INFO_SIZE) {
245 if (sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT0] == 0
246 && sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT1] == 0)
247 continue;
248 block_size
249 = (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE0] << 8)
250 + (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE1] << 16);
251 if (sc->sc_block_size < block_size)
252 sc->sc_block_size = block_size;
255 if ((sc->sc_buf = malloc(sc->sc_block_size, M_DEVBUF, M_NOWAIT))
256 == NULL) {
257 printf(": can't alloc buffer space\n");
258 return;
261 sc->sc_write_buffer_size
262 = 1 << (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG0]
263 + (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG1] << 8));
264 sc->sc_typ_word_prog_timo
265 = 1 << sc->sc_cfi_raw[CFI_TYP_WORD_PROG_REG];
266 sc->sc_max_word_prog_timo
267 = 1 << sc->sc_cfi_raw[CFI_MAX_WORD_PROG_REG];
268 sc->sc_typ_buffer_write_timo
269 = 1 << sc->sc_cfi_raw[CFI_TYP_BUF_WRITE_REG];
270 sc->sc_max_buffer_write_timo
271 = 1 << sc->sc_cfi_raw[CFI_MAX_BUF_WRITE_REG];
272 sc->sc_typ_block_erase_timo
273 = 1 << sc->sc_cfi_raw[CFI_TYP_BLOCK_ERASE_REG];
274 sc->sc_max_block_erase_timo
275 = 1 << sc->sc_cfi_raw[CFI_MAX_BLOCK_ERASE_REG];
277 printf("\n");
279 #ifdef FLASH_DEBUG
280 printf("read_cfi: extract cfi\n");
281 printf("max block size: %dbyte\n", sc->sc_block_size);
282 printf("write buffer size: %dbyte\n", sc->sc_write_buffer_size);
283 printf("typical word program timeout: %dusec\n",
284 sc->sc_typ_word_prog_timo);
285 printf("maximam word program timeout: %dusec (%d time of typ)\n",
286 sc->sc_typ_word_prog_timo * sc->sc_max_word_prog_timo,
287 sc->sc_max_word_prog_timo);
288 printf("typical buffer write timeout: %dusec\n",
289 sc->sc_typ_buffer_write_timo);
290 printf("maximam buffer write timeout: %dusec (%d time of typ)\n",
291 sc->sc_typ_buffer_write_timo * sc->sc_max_buffer_write_timo,
292 sc->sc_max_buffer_write_timo);
293 printf("typical block erase timeout: %dmsec\n",
294 sc->sc_typ_block_erase_timo);
295 printf("maximam block erase timeout: %dmsec (%d time of typ)\n",
296 sc->sc_typ_block_erase_timo * sc->sc_max_block_erase_timo,
297 sc->sc_max_block_erase_timo);
299 printf("read_cfi: dump cfi\n");
300 for (i = 0; i < CFI_TOTAL_SIZE;) {
301 int j;
302 for (j = 0; j < 16; j++) {
303 printf("%02x ", sc->sc_cfi_raw[i++]);
305 printf("\n");
307 #endif
311 flashopen(dev_t dev, int flag, int mode, struct lwp *l)
313 struct flash_softc *sc;
315 sc = device_lookup_private(&flash_cd, minor(dev));
316 if (sc == NULL)
317 return ENXIO;
318 if (sc->sc_status & FLASH_ST_BUSY)
319 return EBUSY;
320 sc->sc_status |= FLASH_ST_BUSY;
321 return 0;
325 flashclose(dev_t dev, int flag, int mode, struct lwp *l)
327 struct flash_softc *sc;
329 sc = device_lookup_private(&flash_cd, minor(dev));
330 sc->sc_status &= ~FLASH_ST_BUSY;
331 return 0;
335 flashread(dev_t dev, struct uio *uio, int flag)
337 struct flash_softc *sc;
338 bus_space_tag_t iot;
339 bus_space_handle_t ioh;
340 bus_size_t off;
341 int total;
342 int count;
343 int error;
345 sc = device_lookup_private(&flash_cd, minor(dev));
346 iot = sc->sc_iot;
347 ioh = sc->sc_ioh;
349 off = uio->uio_offset;
350 total = min(sc->sc_size - off, uio->uio_resid);
352 while (total > 0) {
353 count = min(sc->sc_block_size, uio->uio_resid);
354 bus_space_read_region_1(iot, ioh, off, sc->sc_buf, count);
355 if ((error = uiomove(sc->sc_buf, count, uio)) != 0)
356 return error;
357 off += count;
358 total -= count;
360 return 0;
365 flashwrite(dev_t dev, struct uio *uio, int flag)
367 struct flash_softc *sc;
368 bus_space_tag_t iot;
369 bus_space_handle_t ioh;
370 bus_size_t off;
371 int stat;
372 int error;
374 sc = device_lookup_private(&flash_cd, minor(dev));
376 if (sc->sc_size < uio->uio_offset + uio->uio_resid)
377 return ENOSPC;
378 if (uio->uio_offset % sc->sc_block_size)
379 return EINVAL;
380 if (uio->uio_resid % sc->sc_block_size)
381 return EINVAL;
383 iot = sc->sc_iot;
384 ioh = sc->sc_ioh;
386 for (off = uio->uio_offset;
387 uio->uio_resid > 0;
388 off += sc->sc_block_size) {
389 if ((error = uiomove(sc->sc_buf, sc->sc_block_size, uio)) != 0)
390 return error;
391 if (is_block_same(sc, off, sc->sc_buf))
392 continue;
393 if ((stat = flash_block_erase(sc, off)) != 0) {
394 printf("block erase failed status = 0x%x\n", stat);
395 return EIO;
397 if ((stat = flash_block_write(sc, off)) != 0) {
398 printf("block write failed status = 0x%x\n", stat);
399 return EIO;
402 return 0;
406 * XXX
407 * this function is too much specific for the device.
409 static int
410 i28f128_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
412 static const u_int8_t vendor_code[] = {
413 0x89, /* manufacturer code: intel */
414 0x18, /* device code: 28F128 */
417 static const u_int8_t idstr[] = {
418 'Q', 'R', 'Y',
419 0x01, 0x00,
420 0x31, 0x00,
421 0xff
424 int i;
426 /* start Common Flash Interface Query */
427 bus_space_write_2(iot, ioh, 0, CFI_READ_CFI_QUERY);
428 /* read CFI Query ID string */
429 for (i = 0; idstr[i] != 0xff; i++) {
430 if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
431 return 1;
434 /* read manufacturer code and device code */
435 if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
436 return 1;
437 if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
438 return 1;
440 bus_space_write_2(iot, ioh, 0, I28F128_RESET);
441 return 0;
445 * XXX
446 * this function is too much specific for the device.
448 static int
449 mbm29160_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
451 static const u_int16_t vendor_code[] = {
452 0x0004, /* manufacturer code: intel */
453 0x2249, /* device code: 29LV160BE */
456 static const u_int8_t idstr[] = {
457 'Q', 'R', 'Y',
458 0x02, 0x00,
459 0x40, 0x00,
460 0xff
463 int i;
465 /* start Common Flash Interface Query */
466 bus_space_write_2(iot, ioh, 0xaa, CFI_READ_CFI_QUERY);
467 /* read CFI Query ID string */
468 for (i = 0; idstr[i] != 0xff; i++) {
469 if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
470 return 1;
473 bus_space_write_2(iot, ioh, 0, 0xff);
475 /* read manufacturer code and device code */
476 bus_space_write_2(iot, ioh, 0x555 << 1, 0xaa);
477 bus_space_write_2(iot, ioh, 0x2aa << 1, 0x55);
478 bus_space_write_2(iot, ioh, 0x555 << 1, 0x90);
479 if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
480 return 1;
481 if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
482 return 1;
484 bus_space_write_2(iot, ioh, 0, 0xff);
485 return 0;
488 static int
489 is_block_same(struct flash_softc *sc, bus_size_t offset, const void *bufp)
491 bus_space_tag_t iot = sc->sc_iot;
492 bus_space_handle_t ioh = sc->sc_ioh;
493 const u_int8_t *p = bufp;
494 int count = sc->sc_block_size;
496 while (count-- > 0) {
497 if (bus_space_read_1(iot, ioh, offset++) != *p++)
498 return 0;
500 return 1;
503 static int
504 intel_erase(struct flash_softc *sc, bus_size_t offset)
506 bus_space_tag_t iot = sc->sc_iot;
507 bus_space_handle_t ioh = sc->sc_ioh;
508 int status;
509 int i;
511 bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_1ST);
512 bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_2ND);
514 status = 0;
515 for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
516 tsleep(sc, PRIBIO, "blockerase",
517 1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
518 if ((status = bus_space_read_2(iot, ioh, offset))
519 & I28F128_S_READY)
520 break;
522 if (i == 0)
523 status |= FLASH_TIMEOUT;
525 bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
526 bus_space_write_2(iot, ioh, offset, I28F128_RESET);
528 return status & (FLASH_TIMEOUT
529 | I28F128_S_ERASE_SUSPEND
530 | I28F128_S_COMSEQ_ERROR
531 | I28F128_S_ERASE_ERROR
532 | I28F128_S_BLOCK_LOCKED);
535 static int
536 intel_write(struct flash_softc *sc, bus_size_t offset)
538 bus_space_tag_t iot = sc->sc_iot;
539 bus_space_handle_t ioh = sc->sc_ioh;
540 int wbuf_size;
541 int timo;
542 int status;
543 bus_size_t fence;
544 int i;
545 const u_int16_t *p;
547 /* wbuf_size = size in u_int16_t */
548 wbuf_size = sc->sc_write_buffer_size >> 1;
550 p = (u_int16_t *) sc->sc_buf;
551 fence = offset + sc->sc_block_size;
552 do {
553 status = 0;
554 for (timo = sc->sc_max_buffer_write_timo; timo > 0; timo--) {
555 bus_space_write_2(iot, ioh, offset,
556 I28F128_WRITE_BUFFER);
557 status = bus_space_read_2(iot, ioh, offset);
558 if (status & I28F128_XS_BUF_AVAIL)
559 break;
560 DELAY(sc->sc_typ_buffer_write_timo);
562 if (timo == 0) {
563 status |= FLASH_TIMEOUT;
564 goto errout;
567 bus_space_write_2(iot, ioh, offset, wbuf_size - 1);
569 for (i = wbuf_size; i > 0; i--, p++, offset += 2)
570 bus_space_write_2(iot, ioh, offset, *p);
572 bus_space_write_2(iot, ioh, offset, I28F128_WBUF_CONFIRM);
574 do {
575 bus_space_write_2(iot, ioh, offset,
576 I28F128_READ_STATUS);
577 status = bus_space_read_2(iot, ioh, offset);
578 } while (!(status & I28F128_S_READY));
580 } while (offset < fence);
582 bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
583 bus_space_write_2(iot, ioh, offset, I28F128_RESET);
585 return 0;
587 errout:
588 bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
589 bus_space_write_2(iot, ioh, offset, I28F128_RESET);
591 status &= (FLASH_TIMEOUT
592 | I28F128_S_PROG_ERROR
593 | I28F128_S_COMSEQ_ERROR
594 | I28F128_S_LOW_VOLTAGE
595 | I28F128_S_PROG_SUSPEND
596 | I28F128_S_BLOCK_LOCKED);
597 return status;
600 static int
601 amd_erase_sector(struct flash_softc *sc, bus_size_t offset)
603 bus_space_tag_t iot = sc->sc_iot;
604 bus_space_handle_t ioh = sc->sc_ioh;
605 int i;
607 DPRINTF(("amd_erase_sector offset = %08lx\n", offset));
609 bus_space_write_2(iot, ioh,
610 MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
611 bus_space_write_2(iot, ioh,
612 MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
613 bus_space_write_2(iot, ioh,
614 MBM29LV160_COMM_ADDR2, MBM29LV160_ESECT_CMD2);
615 bus_space_write_2(iot, ioh,
616 MBM29LV160_COMM_ADDR3, MBM29LV160_ESECT_CMD3);
617 bus_space_write_2(iot, ioh,
618 MBM29LV160_COMM_ADDR4, MBM29LV160_ESECT_CMD4);
619 bus_space_write_2(iot, ioh, offset, MBM29LV160_ESECT_CMD5);
621 for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
622 tsleep(sc, PRIBIO, "blockerase",
623 1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
624 if (bus_space_read_2(iot, ioh, offset) == 0xffff)
625 return 0;
628 return FLASH_TIMEOUT;
631 static int
632 amd_erase(struct flash_softc *sc, bus_size_t offset)
634 static const struct mbm29lv_subsect {
635 u_int16_t devcode;
636 u_int32_t subsect_mask;
637 u_int32_t subsect_addr;
638 } subsect[] = {
640 MBM29LV160TE_DEVCODE,
641 MBM29LV160_SUBSECT_MASK,
642 MBM29LV160TE_SUBSECT_ADDR
645 MBM29LV160BE_DEVCODE,
646 MBM29LV160_SUBSECT_MASK,
647 MBM29LV160BE_SUBSECT_ADDR
649 { 0, 0, 0 }
652 bus_space_tag_t iot = sc->sc_iot;
653 bus_space_handle_t ioh = sc->sc_ioh;
654 u_int16_t devcode;
655 const struct mbm29lv_subsect *ss;
656 bus_size_t fence;
657 int step;
658 int status;
660 bus_space_write_2(iot, ioh,
661 MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
662 bus_space_write_2(iot, ioh,
663 MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
664 bus_space_write_2(iot, ioh,
665 MBM29LV160_COMM_ADDR2, MBM29LV160_SIGN_CMD2);
666 devcode = bus_space_read_2(iot, ioh, MBM29LV160_DEVCODE_REG);
668 for (ss = subsect; ss->devcode; ss++) {
669 if (ss->devcode == devcode)
670 break;
672 if (ss->devcode == 0) {
673 printf("flash: amd_erase(): unknown device code %04x\n",
674 devcode);
675 return -1;
678 DPRINTF(("flash: amd_erase(): devcode = %04x subsect = %08x\n",
679 devcode, ss->subsect_addr));
681 fence = offset + sc->sc_block_size;
682 step = (offset & ss->subsect_mask) == ss->subsect_addr
683 ? MBM29LV160_SUBSECT_SIZE : MBM29LV160_SECT_SIZE;
684 do {
685 if ((status = amd_erase_sector(sc, offset)) != 0)
686 return status;
687 offset += step;
688 } while (offset < fence);
690 return 0;
693 static int
694 amd_write(struct flash_softc *sc, bus_size_t offset)
696 bus_space_tag_t iot = sc->sc_iot;
697 bus_space_handle_t ioh = sc->sc_ioh;
698 int timo;
699 bus_size_t fence;
700 const u_int16_t *p;
702 p = (u_int16_t *) sc->sc_buf;
703 fence = offset + sc->sc_block_size;
704 do {
705 bus_space_write_2(iot, ioh,
706 MBM29LV160_COMM_ADDR0,
707 MBM29LV160_COMM_CMD0);
708 bus_space_write_2(iot, ioh,
709 MBM29LV160_COMM_ADDR1,
710 MBM29LV160_COMM_CMD1);
711 bus_space_write_2(iot, ioh,
712 MBM29LV160_COMM_ADDR2,
713 MBM29LV160_PROG_CMD2);
714 bus_space_write_2(iot, ioh, offset, *p);
716 for (timo = sc->sc_max_word_prog_timo; timo > 0; timo--) {
717 if (bus_space_read_2(iot, ioh, offset) == *p)
718 break;
719 DELAY(sc->sc_typ_word_prog_timo);
721 if (timo == 0)
722 return FLASH_TIMEOUT;
724 p++;
725 offset += 2;
726 } while (offset < fence);
728 return 0;