1 /* $NetBSD: fpu_emulate.h,v 1.14 2009/01/27 20:12:19 martin Exp $ */
4 * Copyright (c) 1995 Gordon Ross
5 * Copyright (c) 1995 Ken Nakata
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 * 4. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Gordon Ross
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #ifndef _FPU_EMULATE_H_
35 #define _FPU_EMULATE_H_
37 #include <sys/types.h>
38 #include <sys/signal.h>
40 #include <sys/signalvar.h>
41 #include <sys/siginfo.h>
42 #include <m68k/fpreg.h>
45 * Floating point emulator (tailored for SPARC/modified for m68k, but
46 * structurally machine-independent).
48 * Floating point numbers are carried around internally in an `expanded'
49 * or `unpacked' form consisting of:
52 * - mantissa (`1.' + 80-bit fraction + guard + round)
54 * Any implied `1' bit is inserted, giving a 81-bit mantissa that is
55 * always nonzero. Additional low-order `guard' and `round' bits are
56 * scrunched in, making the entire mantissa 83 bits long. This is divided
57 * into three 32-bit words, with `spare' bits left over in the upper part
58 * of the top word (the high bits of fp_mant[0]). An internal `exploded'
59 * number is thus kept within the half-open interval [1.0,2.0) (but see
60 * the `number classes' below). This holds even for denormalized numbers:
61 * when we explode an external denorm, we normalize it, introducing low-order
62 * zero bits, so that the rest of the code always sees normalized values.
64 * Note that a number of our algorithms use the `spare' bits at the top.
65 * The most demanding algorithm---the one for sqrt---depends on two such
66 * bits, so that it can represent values up to (but not including) 8.0,
67 * and then it needs a carry on top of that, so that we need three `spares'.
69 * The sticky-word is 32 bits so that we can use `OR' operators to goosh
70 * whole words from the mantissa into it.
72 * All operations are done in this internal extended precision. According
73 * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
74 * it is OK to do a+b in extended precision and then round the result to
75 * single precision---provided single, double, and extended precisions are
76 * `far enough apart' (they always are), but we will try to avoid any such
77 * extra work where possible.
80 int fp_class
; /* see below */
81 int fp_sign
; /* 0 => positive, 1 => negative */
82 int fp_exp
; /* exponent (unbiased) */
83 int fp_sticky
; /* nonzero bits lost at right end */
84 u_int fp_mant
[3]; /* 83-bit mantissa */
87 #define FP_NMANT 83 /* total bits in mantissa (incl g,r) */
88 #define FP_NG 2 /* number of low-order guard bits */
89 #define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */
90 #define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */
91 #define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */
92 #define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */
94 #define CPYFPN(dst, src) \
95 if ((dst) != (src)) { \
96 (dst)->fp_class = (src)->fp_class; \
97 (dst)->fp_sign = (src)->fp_sign; \
98 (dst)->fp_exp = (src)->fp_exp; \
99 (dst)->fp_sticky = (src)->fp_sticky; \
100 (dst)->fp_mant[0] = (src)->fp_mant[0]; \
101 (dst)->fp_mant[1] = (src)->fp_mant[1]; \
102 (dst)->fp_mant[2] = (src)->fp_mant[2]; \
106 * Number classes. Since zero, Inf, and NaN cannot be represented using
107 * the above layout, we distinguish these from other numbers via a class.
109 #define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */
110 #define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */
111 #define FPC_ZERO 0 /* zero (sign matters) */
112 #define FPC_NUM 1 /* number (sign matters) */
113 #define FPC_INF 2 /* infinity (sign matters) */
115 #define ISNAN(fp) ((fp)->fp_class < 0)
116 #define ISZERO(fp) ((fp)->fp_class == 0)
117 #define ISINF(fp) ((fp)->fp_class == FPC_INF)
120 * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
121 * to the `more significant' operand for our purposes. Appendix N says that
122 * the result of a computation involving two numbers are:
124 * If both are SNaN: operand 2, converted to Quiet
125 * If only one is SNaN: the SNaN operand, converted to Quiet
126 * If both are QNaN: operand 2
127 * If only one is QNaN: the QNaN operand
129 * In addition, in operations with an Inf operand, the result is usually
130 * Inf. The class numbers are carefully arranged so that if
131 * (unsigned)class(op1) > (unsigned)class(op2)
132 * then op1 is the one we want; otherwise op2 is the one we want.
134 #define ORDER(x, y) { \
135 if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
138 #define SWAP(x, y) { \
139 register struct fpn *swap; \
140 swap = (x), (x) = (y), (y) = swap; \
147 struct frame
*fe_frame
; /* integer regs, etc */
148 struct fpframe
*fe_fpframe
; /* FP registers, etc */
149 u_int fe_fpsr
; /* fpsr copy (modified during op) */
150 u_int fe_fpcr
; /* fpcr copy */
151 struct fpn fe_f1
; /* operand 1 */
152 struct fpn fe_f2
; /* operand 2, if required */
153 struct fpn fe_f3
; /* available storage for result */
156 /*****************************************************************************
157 * End of definitions derived from Sparc FPE
158 *****************************************************************************/
161 * Internal info about a decoded effective address.
165 int ea_ext
[3]; /* extension words if any */
166 int ea_flags
; /* flags == 0 means mode 2: An@ */
167 #define EA_DIRECT 0x001 /* mode [01]: Dn or An */
168 #define EA_PREDECR 0x002 /* mode 4: An@- */
169 #define EA_POSTINCR 0x004 /* mode 3: An@+ */
170 #define EA_OFFSET 0x008 /* mode 5 or (7,2): APC@(d16) */
171 #define EA_INDEXED 0x010 /* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */
172 #define EA_ABS 0x020 /* mode (7,[01]): abs */
173 #define EA_PC_REL 0x040 /* mode (7,[23]): PC@(d16) etc */
174 #define EA_IMMED 0x080 /* mode (7,4): #immed */
175 #define EA_MEM_INDIR 0x100 /* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */
176 #define EA_BASE_SUPPRSS 0x200 /* mode 6 or (7,3): base register suppressed */
177 #define EA_FRAME_EA 0x400 /* MC68LC040 only: precalculated EA from
178 format 4 stack frame */
179 int ea_moffs
; /* offset used for fmoveMulti */
182 #define ea_offset ea_ext[0] /* mode 5: offset word */
183 #define ea_absaddr ea_ext[0] /* mode (7,[01]): absolute address */
184 #define ea_immed ea_ext /* mode (7,4): immediate value */
185 #define ea_basedisp ea_ext[0] /* mode 6: base displacement */
186 #define ea_outerdisp ea_ext[1] /* mode 6: outer displacement */
187 #define ea_idxreg ea_ext[2] /* mode 6: index register number */
188 #define ea_fea ea_ext[0] /* MC68LC040 only: frame EA */
191 u_int is_pc
; /* insn's address */
192 u_int is_nextpc
; /* next PC */
193 int is_advance
; /* length of instruction */
194 int is_datasize
; /* size of memory operand */
195 int is_opcode
; /* opcode word */
196 int is_word1
; /* second word */
197 struct insn_ea is_ea
; /* decoded effective address mode */
203 #define FTYPE_LNG 0 /* Long Word Integer */
204 #define FTYPE_SNG 1 /* Single Prec */
205 #define FTYPE_EXT 2 /* Extended Prec */
206 #define FTYPE_BCD 3 /* Packed BCD */
207 #define FTYPE_WRD 4 /* Word Integer */
208 #define FTYPE_DBL 5 /* Double Prec */
209 #define FTYPE_BYT 6 /* Byte Integer */
215 /* Build a new Quiet NaN (sign=0, frac=all 1's). */
216 struct fpn
*fpu_newnan(struct fpemu
*fe
);
219 * Shift a number right some number of bits, taking care of round/sticky.
220 * Note that the result is probably not a well-formed number (it will lack
221 * the normal 1-bit mant[0]&FP_1).
223 int fpu_shr(struct fpn
* fp
, int shr
);
225 * Round a number according to the round mode in FPCR
227 int fpu_round(register struct fpemu
*fe
, register struct fpn
*fp
);
229 /* type conversion */
230 void fpu_explode(struct fpemu
*fe
, struct fpn
*fp
, int t
, u_int
*src
);
231 void fpu_implode(struct fpemu
*fe
, struct fpn
*fp
, int t
, u_int
*dst
);
234 * non-static emulation functions
237 int fpu_emul_fmovecr(struct fpemu
*fe
, struct instruction
*insn
);
238 int fpu_emul_fstore(struct fpemu
*fe
, struct instruction
*insn
);
239 int fpu_emul_fscale(struct fpemu
*fe
, struct instruction
*insn
);
242 * include function declarations of those which are called by fpu_emul_arith()
244 #include "fpu_arith_proto.h"
246 int fpu_emulate(struct frame
*frame
, struct fpframe
*fpf
, ksiginfo_t
*ksi
);
251 /* return values from constant rom */
252 struct fpn
*fpu_const(struct fpn
*fp
, u_int offset
);
253 /* update exceptions and FPSR */
254 int fpu_upd_excp(struct fpemu
*fe
);
255 u_int
fpu_upd_fpsr(struct fpemu
*fe
, struct fpn
*fp
);
257 /* address mode decoder, and load/store */
258 int fpu_decode_ea(struct frame
*frame
, struct instruction
*insn
,
259 struct insn_ea
*ea
, int modreg
);
260 int fpu_load_ea(struct frame
*frame
, struct instruction
*insn
,
261 struct insn_ea
*ea
, char *dst
);
262 int fpu_store_ea(struct frame
*frame
, struct instruction
*insn
,
263 struct insn_ea
*ea
, char *src
);
266 void fpu_norm(register struct fpn
*fp
);
268 #if !defined(FPE_DEBUG)
272 #endif /* _FPU_EMULATE_H_ */