1 /* $NetBSD: fpu_explode.c,v 1.9 2009/03/14 15:36:09 dsl Exp $ */
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
44 * FPU subroutines: `explode' the machine's `packed binary' format numbers
45 * into our internal format.
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.9 2009/03/14 15:36:09 dsl Exp $");
51 #include <sys/types.h>
52 #include <sys/systm.h>
54 #include <machine/ieee.h>
55 #include <machine/reg.h>
57 #include "fpu_arith.h"
58 #include "fpu_emulate.h"
61 /* Conversion to internal format -- note asymmetry. */
62 static int fpu_itof(struct fpn
*fp
, u_int i
);
63 static int fpu_stof(struct fpn
*fp
, u_int i
);
64 static int fpu_dtof(struct fpn
*fp
, u_int i
, u_int j
);
65 static int fpu_xtof(struct fpn
*fp
, u_int i
, u_int j
, u_int k
);
68 * N.B.: in all of the following, we assume the FP format is
70 * ---------------------------
71 * | s | exponent | fraction |
72 * ---------------------------
74 * (which represents -1**s * 1.fraction * 2**exponent), so that the
75 * sign bit is way at the top (bit 31), the exponent is next, and
76 * then the remaining bits mark the fraction. A zero exponent means
77 * zero or denormalized (0.fraction rather than 1.fraction), and the
78 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
80 * Since the sign bit is always the topmost bit---this holds even for
81 * integers---we set that outside all the *tof functions. Each function
82 * returns the class code for the new number (but note that we use
83 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
90 fpu_itof(register struct fpn
*fp
, register u_int i
)
96 * The value FP_1 represents 2^FP_LG, so set the exponent
97 * there and let normalization fix it up. Convert negative
98 * numbers to sign-and-magnitude. Note that this relies on
99 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
102 fp
->fp_mant
[0] = (int)i
< 0 ? -i
: i
;
109 #define mask(nbits) ((1 << (nbits)) - 1)
112 * All external floating formats convert to internal in the same manner,
113 * as defined here. Note that only normals get an implied 1.0 inserted.
115 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
119 fp->fp_exp = 1 - expbias; \
120 fp->fp_mant[0] = f0; \
121 fp->fp_mant[1] = f1; \
122 fp->fp_mant[2] = f2; \
126 if (exp == (2 * expbias + 1)) { \
129 fp->fp_mant[0] = f0; \
130 fp->fp_mant[1] = f1; \
131 fp->fp_mant[2] = f2; \
134 fp->fp_exp = exp - expbias; \
135 fp->fp_mant[0] = FP_1 | f0; \
136 fp->fp_mant[1] = f1; \
137 fp->fp_mant[2] = f2; \
141 * 32-bit single precision -> fpn.
142 * We assume a single occupies at most (64-FP_LG) bits in the internal
143 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
146 fpu_stof(register struct fpn
*fp
, register u_int i
)
149 register u_int frac
, f0
, f1
;
150 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
152 exp
= (i
>> (32 - 1 - SNG_EXPBITS
)) & mask(SNG_EXPBITS
);
153 frac
= i
& mask(SNG_FRACBITS
);
154 f0
= frac
>> SNG_SHIFT
;
155 f1
= frac
<< (32 - SNG_SHIFT
);
156 FP_TOF(exp
, SNG_EXP_BIAS
, frac
, f0
, f1
, 0, 0);
160 * 64-bit double -> fpn.
161 * We assume this uses at most (96-FP_LG) bits.
164 fpu_dtof(register struct fpn
*fp
, register u_int i
, register u_int j
)
167 register u_int frac
, f0
, f1
, f2
;
168 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
170 exp
= (i
>> (32 - 1 - DBL_EXPBITS
)) & mask(DBL_EXPBITS
);
171 frac
= i
& mask(DBL_FRACBITS
- 32);
172 f0
= frac
>> DBL_SHIFT
;
173 f1
= (frac
<< (32 - DBL_SHIFT
)) | (j
>> DBL_SHIFT
);
174 f2
= j
<< (32 - DBL_SHIFT
);
176 FP_TOF(exp
, DBL_EXP_BIAS
, frac
, f0
, f1
, f2
, 0);
180 * 96-bit extended -> fpn.
183 fpu_xtof(register struct fpn
*fp
, register u_int i
, register u_int j
, register u_int k
)
186 register u_int frac
, f0
, f1
, f2
;
187 #define EXT_SHIFT (EXT_FRACBITS - 1 - 32 - FP_LG)
189 exp
= (i
>> (32 - 1 - EXT_EXPBITS
)) & mask(EXT_EXPBITS
);
191 f1
= (j
<< (32 - EXT_SHIFT
)) | (k
>> EXT_SHIFT
);
192 f2
= k
<< (32 - EXT_SHIFT
);
195 /* m68k extended does not imply denormal by exp==0 */
199 fp
->fp_exp
= - EXT_EXP_BIAS
;
206 if (exp
== (2 * EXT_EXP_BIAS
+ 1)) {
214 fp
->fp_exp
= exp
- EXT_EXP_BIAS
;
215 fp
->fp_mant
[0] = FP_1
| f0
;
222 * Explode the contents of a memory operand.
225 fpu_explode(register struct fpemu
*fe
, register struct fpn
*fp
, int type
, register u_int
*space
)
230 fp
->fp_sign
= s
>> 31;
247 s
= fpu_dtof(fp
, s
, space
[1]);
251 s
= fpu_xtof(fp
, s
, space
[1], space
[2]);
255 panic("fpu_explode");
257 if (s
== FPC_QNAN
&& (fp
->fp_mant
[0] & FP_QUIETBIT
) == 0) {
259 * Input is a signalling NaN. All operations that return
260 * an input NaN operand put it through a ``NaN conversion'',
261 * which basically just means ``turn on the quiet bit''.
262 * We do this here so that all NaNs internally look quiet
263 * (we can tell signalling ones by their class).
265 fp
->fp_mant
[0] |= FP_QUIETBIT
;
266 fe
->fe_fpsr
|= FPSR_SNAN
; /* assert SNAN exception */