No empty .Rs/.Re
[netbsd-mini2440.git] / sys / arch / m68k / fpe / fpu_implode.c
blob106e544449ebe86e8ffa7d5b289f520628ca3d40
1 /* $NetBSD: fpu_implode.c,v 1.10 2009/03/14 14:46:01 dsl Exp $ */
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
44 * FPU subroutines: `implode' internal format numbers into the machine's
45 * `packed binary' format.
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.10 2009/03/14 14:46:01 dsl Exp $");
51 #include <sys/types.h>
52 #include <sys/systm.h>
54 #include <machine/ieee.h>
55 #include <machine/reg.h>
57 #include "fpu_emulate.h"
58 #include "fpu_arith.h"
60 /* Conversion from internal format -- note asymmetry. */
61 static u_int fpu_ftoi(struct fpemu *fe, struct fpn *fp);
62 static u_int fpu_ftos(struct fpemu *fe, struct fpn *fp);
63 static u_int fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *);
64 static u_int fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *);
67 * Round a number (algorithm from Motorola MC68882 manual, modified for
68 * our internal format). Set inexact exception if rounding is required.
69 * Return true iff we rounded up.
71 * After rounding, we discard the guard and round bits by shifting right
72 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
73 * This saves effort later.
75 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
76 * responsibility to fix this if necessary.
78 int
79 fpu_round(register struct fpemu *fe, register struct fpn *fp)
81 register u_int m0, m1, m2;
82 register int gr, s;
84 m0 = fp->fp_mant[0];
85 m1 = fp->fp_mant[1];
86 m2 = fp->fp_mant[2];
87 gr = m2 & 3;
88 s = fp->fp_sticky;
90 /* mant >>= FP_NG */
91 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
92 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
93 m0 >>= FP_NG;
95 if ((gr | s) == 0) /* result is exact: no rounding needed */
96 goto rounddown;
98 fe->fe_fpsr |= FPSR_INEX2; /* inexact */
100 /* Go to rounddown to round down; break to round up. */
101 switch (fe->fe_fpcr & FPCR_ROUND) {
103 case FPCR_NEAR:
104 default:
106 * Round only if guard is set (gr & 2). If guard is set,
107 * but round & sticky both clear, then we want to round
108 * but have a tie, so round to even, i.e., add 1 iff odd.
110 if ((gr & 2) == 0)
111 goto rounddown;
112 if ((gr & 1) || fp->fp_sticky || (m2 & 1))
113 break;
114 goto rounddown;
116 case FPCR_ZERO:
117 /* Round towards zero, i.e., down. */
118 goto rounddown;
120 case FPCR_MINF:
121 /* Round towards -Inf: up if negative, down if positive. */
122 if (fp->fp_sign)
123 break;
124 goto rounddown;
126 case FPCR_PINF:
127 /* Round towards +Inf: up if positive, down otherwise. */
128 if (!fp->fp_sign)
129 break;
130 goto rounddown;
133 /* Bump low bit of mantissa, with carry. */
134 if (++m2 == 0 && ++m1 == 0)
135 m0++;
136 fp->fp_sticky = 0;
137 fp->fp_mant[0] = m0;
138 fp->fp_mant[1] = m1;
139 fp->fp_mant[2] = m2;
140 return (1);
142 rounddown:
143 fp->fp_sticky = 0;
144 fp->fp_mant[0] = m0;
145 fp->fp_mant[1] = m1;
146 fp->fp_mant[2] = m2;
147 return (0);
151 * For overflow: return true if overflow is to go to +/-Inf, according
152 * to the sign of the overflowing result. If false, overflow is to go
153 * to the largest magnitude value instead.
155 static int
156 toinf(struct fpemu *fe, int sign)
158 int inf;
160 /* look at rounding direction */
161 switch (fe->fe_fpcr & FPCR_ROUND) {
163 default:
164 case FPCR_NEAR: /* the nearest value is always Inf */
165 inf = 1;
166 break;
168 case FPCR_ZERO: /* toward 0 => never towards Inf */
169 inf = 0;
170 break;
172 case FPCR_PINF: /* toward +Inf iff positive */
173 inf = (sign == 0);
174 break;
176 case FPCR_MINF: /* toward -Inf iff negative */
177 inf = sign;
178 break;
180 return (inf);
184 * fpn -> int (int value returned as return value).
186 * N.B.: this conversion always rounds towards zero (this is a peculiarity
187 * of the SPARC instruction set).
189 static u_int
190 fpu_ftoi(struct fpemu *fe, register struct fpn *fp)
192 register u_int i;
193 register int sign, exp;
195 sign = fp->fp_sign;
196 switch (fp->fp_class) {
198 case FPC_ZERO:
199 return (0);
201 case FPC_NUM:
203 * If exp >= 2^32, overflow. Otherwise shift value right
204 * into last mantissa word (this will not exceed 0xffffffff),
205 * shifting any guard and round bits out into the sticky
206 * bit. Then ``round'' towards zero, i.e., just set an
207 * inexact exception if sticky is set (see fpu_round()).
208 * If the result is > 0x80000000, or is positive and equals
209 * 0x80000000, overflow; otherwise the last fraction word
210 * is the result.
212 if ((exp = fp->fp_exp) >= 32)
213 break;
214 /* NB: the following includes exp < 0 cases */
215 if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
216 /* m68881/2 do not underflow when
217 converting to integer */;
218 fpu_round(fe, fp);
219 i = fp->fp_mant[2];
220 if (i >= ((u_int)0x80000000 + sign))
221 break;
222 return (sign ? -i : i);
224 default: /* Inf, qNaN, sNaN */
225 break;
227 /* overflow: replace any inexact exception with invalid */
228 fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
229 return (0x7fffffff + sign);
233 * fpn -> single (32 bit single returned as return value).
234 * We assume <= 29 bits in a single-precision fraction (1.f part).
236 static u_int
237 fpu_ftos(struct fpemu *fe, register struct fpn *fp)
239 register u_int sign = fp->fp_sign << 31;
240 register int exp;
242 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
243 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
245 /* Take care of non-numbers first. */
246 if (ISNAN(fp)) {
248 * Preserve upper bits of NaN, per SPARC V8 appendix N.
249 * Note that fp->fp_mant[0] has the quiet bit set,
250 * even if it is classified as a signalling NaN.
252 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
253 exp = SNG_EXP_INFNAN;
254 goto done;
256 if (ISINF(fp))
257 return (sign | SNG_EXP(SNG_EXP_INFNAN));
258 if (ISZERO(fp))
259 return (sign);
262 * Normals (including subnormals). Drop all the fraction bits
263 * (including the explicit ``implied'' 1 bit) down into the
264 * single-precision range. If the number is subnormal, move
265 * the ``implied'' 1 into the explicit range as well, and shift
266 * right to introduce leading zeroes. Rounding then acts
267 * differently for normals and subnormals: the largest subnormal
268 * may round to the smallest normal (1.0 x 2^minexp), or may
269 * remain subnormal. In the latter case, signal an underflow
270 * if the result was inexact or if underflow traps are enabled.
272 * Rounding a normal, on the other hand, always produces another
273 * normal (although either way the result might be too big for
274 * single precision, and cause an overflow). If rounding a
275 * normal produces 2.0 in the fraction, we need not adjust that
276 * fraction at all, since both 1.0 and 2.0 are zero under the
277 * fraction mask.
279 * Note that the guard and round bits vanish from the number after
280 * rounding.
282 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
283 fe->fe_fpsr |= FPSR_UNFL;
284 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
285 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
286 if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(1))
287 return (sign | SNG_EXP(1) | 0);
288 if (fe->fe_fpsr & FPSR_INEX2)
289 fe->fe_fpsr |= FPSR_UNFL
290 /* mc68881/2 don't underflow when converting */;
291 return (sign | SNG_EXP(0) | fp->fp_mant[2]);
293 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
294 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
295 #ifdef DIAGNOSTIC
296 if ((fp->fp_mant[2] & SNG_EXP(1 << FP_NG)) == 0)
297 panic("fpu_ftos");
298 #endif
299 if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(2))
300 exp++;
301 if (exp >= SNG_EXP_INFNAN) {
302 /* overflow to inf or to max single */
303 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
304 if (toinf(fe, sign))
305 return (sign | SNG_EXP(SNG_EXP_INFNAN));
306 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
308 done:
309 /* phew, made it */
310 return (sign | SNG_EXP(exp) | (fp->fp_mant[2] & SNG_MASK));
314 * fpn -> double (32 bit high-order result returned; 32-bit low order result
315 * left in res[1]). Assumes <= 61 bits in double precision fraction.
317 * This code mimics fpu_ftos; see it for comments.
319 static u_int
320 fpu_ftod(struct fpemu *fe, register struct fpn *fp, u_int *res)
322 register u_int sign = fp->fp_sign << 31;
323 register int exp;
325 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
326 #define DBL_MASK (DBL_EXP(1) - 1)
328 if (ISNAN(fp)) {
329 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
330 exp = DBL_EXP_INFNAN;
331 goto done;
333 if (ISINF(fp)) {
334 sign |= DBL_EXP(DBL_EXP_INFNAN);
335 res[1] = 0;
336 return (sign);
338 if (ISZERO(fp)) {
339 res[1] = 0;
340 return (sign);
343 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
344 fe->fe_fpsr |= FPSR_UNFL;
345 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
346 if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(1)) {
347 res[1] = 0;
348 return (sign | DBL_EXP(1) | 0);
350 if (fe->fe_fpsr & FPSR_INEX2)
351 fe->fe_fpsr |= FPSR_UNFL
352 /* mc68881/2 don't underflow when converting */;
353 exp = 0;
354 goto done;
356 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
357 if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(2))
358 exp++;
359 if (exp >= DBL_EXP_INFNAN) {
360 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
361 if (toinf(fe, sign)) {
362 res[1] = 0;
363 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
365 res[1] = ~0;
366 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
368 done:
369 res[1] = fp->fp_mant[2];
370 return (sign | DBL_EXP(exp) | (fp->fp_mant[1] & DBL_MASK));
374 * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
375 * order result left in res[1] & res[2]). Assumes == 64 bits in extended
376 * precision fraction.
378 * This code mimics fpu_ftos; see it for comments.
380 static u_int
381 fpu_ftox(struct fpemu *fe, register struct fpn *fp, u_int *res)
383 register u_int sign = fp->fp_sign << 31;
384 register int exp;
386 #define EXT_EXP(e) ((e) << 16)
388 * on m68k extended prec, significand does not share the same long
389 * word with exponent
391 #define EXT_MASK 0
392 #define EXT_EXPLICIT1 (1UL << (63 & 31))
393 #define EXT_EXPLICIT2 (1UL << (64 & 31))
395 if (ISNAN(fp)) {
396 (void) fpu_shr(fp, FP_NMANT - EXT_FRACBITS);
397 exp = EXT_EXP_INFNAN;
398 goto done;
400 if (ISINF(fp)) {
401 sign |= EXT_EXP(EXT_EXP_INFNAN);
402 res[1] = res[2] = 0;
403 return (sign);
405 if (ISZERO(fp)) {
406 res[1] = res[2] = 0;
407 return (sign);
410 if ((exp = fp->fp_exp + EXT_EXP_BIAS) < 0) {
411 fe->fe_fpsr |= FPSR_UNFL;
412 /* I'm not sure about this <=... exp==0 doesn't mean
413 it's a denormal in extended format */
414 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
415 if (fpu_round(fe, fp) && fp->fp_mant[1] == EXT_EXPLICIT1) {
416 res[1] = res[2] = 0;
417 return (sign | EXT_EXP(1) | 0);
419 if (fe->fe_fpsr & FPSR_INEX2)
420 fe->fe_fpsr |= FPSR_UNFL
421 /* mc68881/2 don't underflow */;
422 exp = 0;
423 goto done;
425 #if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0
426 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
427 #endif
428 if (fpu_round(fe, fp) && fp->fp_mant[0] == EXT_EXPLICIT2)
429 exp++;
430 if (exp >= EXT_EXP_INFNAN) {
431 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
432 if (toinf(fe, sign)) {
433 res[1] = res[2] = 0;
434 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
436 res[1] = res[2] = ~0;
437 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
439 done:
440 res[1] = fp->fp_mant[1];
441 res[2] = fp->fp_mant[2];
442 return (sign | EXT_EXP(exp));
446 * Implode an fpn, writing the result into the given space.
448 void
449 fpu_implode(struct fpemu *fe, register struct fpn *fp, int type, register u_int *space)
451 /* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */
453 switch (type) {
454 case FTYPE_LNG:
455 space[0] = fpu_ftoi(fe, fp);
456 break;
458 case FTYPE_SNG:
459 space[0] = fpu_ftos(fe, fp);
460 break;
462 case FTYPE_DBL:
463 space[0] = fpu_ftod(fe, fp, space);
464 break;
466 case FTYPE_EXT:
467 /* funky rounding precision options ?? */
468 space[0] = fpu_ftox(fe, fp, space);
469 break;
471 default:
472 panic("fpu_implode");