1 /* $NetBSD: fpu_implode.c,v 1.10 2009/03/14 14:46:01 dsl Exp $ */
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
44 * FPU subroutines: `implode' internal format numbers into the machine's
45 * `packed binary' format.
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.10 2009/03/14 14:46:01 dsl Exp $");
51 #include <sys/types.h>
52 #include <sys/systm.h>
54 #include <machine/ieee.h>
55 #include <machine/reg.h>
57 #include "fpu_emulate.h"
58 #include "fpu_arith.h"
60 /* Conversion from internal format -- note asymmetry. */
61 static u_int
fpu_ftoi(struct fpemu
*fe
, struct fpn
*fp
);
62 static u_int
fpu_ftos(struct fpemu
*fe
, struct fpn
*fp
);
63 static u_int
fpu_ftod(struct fpemu
*fe
, struct fpn
*fp
, u_int
*);
64 static u_int
fpu_ftox(struct fpemu
*fe
, struct fpn
*fp
, u_int
*);
67 * Round a number (algorithm from Motorola MC68882 manual, modified for
68 * our internal format). Set inexact exception if rounding is required.
69 * Return true iff we rounded up.
71 * After rounding, we discard the guard and round bits by shifting right
72 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
73 * This saves effort later.
75 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
76 * responsibility to fix this if necessary.
79 fpu_round(register struct fpemu
*fe
, register struct fpn
*fp
)
81 register u_int m0
, m1
, m2
;
91 m2
= (m2
>> FP_NG
) | (m1
<< (32 - FP_NG
));
92 m1
= (m1
>> FP_NG
) | (m0
<< (32 - FP_NG
));
95 if ((gr
| s
) == 0) /* result is exact: no rounding needed */
98 fe
->fe_fpsr
|= FPSR_INEX2
; /* inexact */
100 /* Go to rounddown to round down; break to round up. */
101 switch (fe
->fe_fpcr
& FPCR_ROUND
) {
106 * Round only if guard is set (gr & 2). If guard is set,
107 * but round & sticky both clear, then we want to round
108 * but have a tie, so round to even, i.e., add 1 iff odd.
112 if ((gr
& 1) || fp
->fp_sticky
|| (m2
& 1))
117 /* Round towards zero, i.e., down. */
121 /* Round towards -Inf: up if negative, down if positive. */
127 /* Round towards +Inf: up if positive, down otherwise. */
133 /* Bump low bit of mantissa, with carry. */
134 if (++m2
== 0 && ++m1
== 0)
151 * For overflow: return true if overflow is to go to +/-Inf, according
152 * to the sign of the overflowing result. If false, overflow is to go
153 * to the largest magnitude value instead.
156 toinf(struct fpemu
*fe
, int sign
)
160 /* look at rounding direction */
161 switch (fe
->fe_fpcr
& FPCR_ROUND
) {
164 case FPCR_NEAR
: /* the nearest value is always Inf */
168 case FPCR_ZERO
: /* toward 0 => never towards Inf */
172 case FPCR_PINF
: /* toward +Inf iff positive */
176 case FPCR_MINF
: /* toward -Inf iff negative */
184 * fpn -> int (int value returned as return value).
186 * N.B.: this conversion always rounds towards zero (this is a peculiarity
187 * of the SPARC instruction set).
190 fpu_ftoi(struct fpemu
*fe
, register struct fpn
*fp
)
193 register int sign
, exp
;
196 switch (fp
->fp_class
) {
203 * If exp >= 2^32, overflow. Otherwise shift value right
204 * into last mantissa word (this will not exceed 0xffffffff),
205 * shifting any guard and round bits out into the sticky
206 * bit. Then ``round'' towards zero, i.e., just set an
207 * inexact exception if sticky is set (see fpu_round()).
208 * If the result is > 0x80000000, or is positive and equals
209 * 0x80000000, overflow; otherwise the last fraction word
212 if ((exp
= fp
->fp_exp
) >= 32)
214 /* NB: the following includes exp < 0 cases */
215 if (fpu_shr(fp
, FP_NMANT
- 1 - FP_NG
- exp
) != 0)
216 /* m68881/2 do not underflow when
217 converting to integer */;
220 if (i
>= ((u_int
)0x80000000 + sign
))
222 return (sign
? -i
: i
);
224 default: /* Inf, qNaN, sNaN */
227 /* overflow: replace any inexact exception with invalid */
228 fe
->fe_fpsr
= (fe
->fe_fpsr
& ~FPSR_INEX2
) | FPSR_OPERR
;
229 return (0x7fffffff + sign
);
233 * fpn -> single (32 bit single returned as return value).
234 * We assume <= 29 bits in a single-precision fraction (1.f part).
237 fpu_ftos(struct fpemu
*fe
, register struct fpn
*fp
)
239 register u_int sign
= fp
->fp_sign
<< 31;
242 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
243 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
245 /* Take care of non-numbers first. */
248 * Preserve upper bits of NaN, per SPARC V8 appendix N.
249 * Note that fp->fp_mant[0] has the quiet bit set,
250 * even if it is classified as a signalling NaN.
252 (void) fpu_shr(fp
, FP_NMANT
- 1 - SNG_FRACBITS
);
253 exp
= SNG_EXP_INFNAN
;
257 return (sign
| SNG_EXP(SNG_EXP_INFNAN
));
262 * Normals (including subnormals). Drop all the fraction bits
263 * (including the explicit ``implied'' 1 bit) down into the
264 * single-precision range. If the number is subnormal, move
265 * the ``implied'' 1 into the explicit range as well, and shift
266 * right to introduce leading zeroes. Rounding then acts
267 * differently for normals and subnormals: the largest subnormal
268 * may round to the smallest normal (1.0 x 2^minexp), or may
269 * remain subnormal. In the latter case, signal an underflow
270 * if the result was inexact or if underflow traps are enabled.
272 * Rounding a normal, on the other hand, always produces another
273 * normal (although either way the result might be too big for
274 * single precision, and cause an overflow). If rounding a
275 * normal produces 2.0 in the fraction, we need not adjust that
276 * fraction at all, since both 1.0 and 2.0 are zero under the
279 * Note that the guard and round bits vanish from the number after
282 if ((exp
= fp
->fp_exp
+ SNG_EXP_BIAS
) <= 0) { /* subnormal */
283 fe
->fe_fpsr
|= FPSR_UNFL
;
284 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
285 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- SNG_FRACBITS
- exp
);
286 if (fpu_round(fe
, fp
) && fp
->fp_mant
[2] == SNG_EXP(1))
287 return (sign
| SNG_EXP(1) | 0);
288 if (fe
->fe_fpsr
& FPSR_INEX2
)
289 fe
->fe_fpsr
|= FPSR_UNFL
290 /* mc68881/2 don't underflow when converting */;
291 return (sign
| SNG_EXP(0) | fp
->fp_mant
[2]);
293 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
294 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- 1 - SNG_FRACBITS
);
296 if ((fp
->fp_mant
[2] & SNG_EXP(1 << FP_NG
)) == 0)
299 if (fpu_round(fe
, fp
) && fp
->fp_mant
[2] == SNG_EXP(2))
301 if (exp
>= SNG_EXP_INFNAN
) {
302 /* overflow to inf or to max single */
303 fe
->fe_fpsr
|= FPSR_OPERR
| FPSR_INEX2
| FPSR_OVFL
;
305 return (sign
| SNG_EXP(SNG_EXP_INFNAN
));
306 return (sign
| SNG_EXP(SNG_EXP_INFNAN
- 1) | SNG_MASK
);
310 return (sign
| SNG_EXP(exp
) | (fp
->fp_mant
[2] & SNG_MASK
));
314 * fpn -> double (32 bit high-order result returned; 32-bit low order result
315 * left in res[1]). Assumes <= 61 bits in double precision fraction.
317 * This code mimics fpu_ftos; see it for comments.
320 fpu_ftod(struct fpemu
*fe
, register struct fpn
*fp
, u_int
*res
)
322 register u_int sign
= fp
->fp_sign
<< 31;
325 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
326 #define DBL_MASK (DBL_EXP(1) - 1)
329 (void) fpu_shr(fp
, FP_NMANT
- 1 - DBL_FRACBITS
);
330 exp
= DBL_EXP_INFNAN
;
334 sign
|= DBL_EXP(DBL_EXP_INFNAN
);
343 if ((exp
= fp
->fp_exp
+ DBL_EXP_BIAS
) <= 0) {
344 fe
->fe_fpsr
|= FPSR_UNFL
;
345 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- DBL_FRACBITS
- exp
);
346 if (fpu_round(fe
, fp
) && fp
->fp_mant
[1] == DBL_EXP(1)) {
348 return (sign
| DBL_EXP(1) | 0);
350 if (fe
->fe_fpsr
& FPSR_INEX2
)
351 fe
->fe_fpsr
|= FPSR_UNFL
352 /* mc68881/2 don't underflow when converting */;
356 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- 1 - DBL_FRACBITS
);
357 if (fpu_round(fe
, fp
) && fp
->fp_mant
[1] == DBL_EXP(2))
359 if (exp
>= DBL_EXP_INFNAN
) {
360 fe
->fe_fpsr
|= FPSR_OPERR
| FPSR_INEX2
| FPSR_OVFL
;
361 if (toinf(fe
, sign
)) {
363 return (sign
| DBL_EXP(DBL_EXP_INFNAN
) | 0);
366 return (sign
| DBL_EXP(DBL_EXP_INFNAN
) | DBL_MASK
);
369 res
[1] = fp
->fp_mant
[2];
370 return (sign
| DBL_EXP(exp
) | (fp
->fp_mant
[1] & DBL_MASK
));
374 * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
375 * order result left in res[1] & res[2]). Assumes == 64 bits in extended
376 * precision fraction.
378 * This code mimics fpu_ftos; see it for comments.
381 fpu_ftox(struct fpemu
*fe
, register struct fpn
*fp
, u_int
*res
)
383 register u_int sign
= fp
->fp_sign
<< 31;
386 #define EXT_EXP(e) ((e) << 16)
388 * on m68k extended prec, significand does not share the same long
392 #define EXT_EXPLICIT1 (1UL << (63 & 31))
393 #define EXT_EXPLICIT2 (1UL << (64 & 31))
396 (void) fpu_shr(fp
, FP_NMANT
- EXT_FRACBITS
);
397 exp
= EXT_EXP_INFNAN
;
401 sign
|= EXT_EXP(EXT_EXP_INFNAN
);
410 if ((exp
= fp
->fp_exp
+ EXT_EXP_BIAS
) < 0) {
411 fe
->fe_fpsr
|= FPSR_UNFL
;
412 /* I'm not sure about this <=... exp==0 doesn't mean
413 it's a denormal in extended format */
414 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- EXT_FRACBITS
- exp
);
415 if (fpu_round(fe
, fp
) && fp
->fp_mant
[1] == EXT_EXPLICIT1
) {
417 return (sign
| EXT_EXP(1) | 0);
419 if (fe
->fe_fpsr
& FPSR_INEX2
)
420 fe
->fe_fpsr
|= FPSR_UNFL
421 /* mc68881/2 don't underflow */;
425 #if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0
426 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- EXT_FRACBITS
);
428 if (fpu_round(fe
, fp
) && fp
->fp_mant
[0] == EXT_EXPLICIT2
)
430 if (exp
>= EXT_EXP_INFNAN
) {
431 fe
->fe_fpsr
|= FPSR_OPERR
| FPSR_INEX2
| FPSR_OVFL
;
432 if (toinf(fe
, sign
)) {
434 return (sign
| EXT_EXP(EXT_EXP_INFNAN
) | 0);
436 res
[1] = res
[2] = ~0;
437 return (sign
| EXT_EXP(EXT_EXP_INFNAN
) | EXT_MASK
);
440 res
[1] = fp
->fp_mant
[1];
441 res
[2] = fp
->fp_mant
[2];
442 return (sign
| EXT_EXP(exp
));
446 * Implode an fpn, writing the result into the given space.
449 fpu_implode(struct fpemu
*fe
, register struct fpn
*fp
, int type
, register u_int
*space
)
451 /* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */
455 space
[0] = fpu_ftoi(fe
, fp
);
459 space
[0] = fpu_ftos(fe
, fp
);
463 space
[0] = fpu_ftod(fe
, fp
, space
);
467 /* funky rounding precision options ?? */
468 space
[0] = fpu_ftox(fe
, fp
, space
);
472 panic("fpu_implode");