No empty .Rs/.Re
[netbsd-mini2440.git] / sys / arch / m68k / fpe / fpu_log.c
blobf65d6f086a2c2ba51cc4f738aefb5c29d0ad70e5
1 /* $NetBSD: fpu_log.c,v 1.11 2009/03/14 15:36:09 dsl Exp $ */
3 /*
4 * Copyright (c) 1995 Ken Nakata
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the author nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
31 * @(#)fpu_log.c 10/8/95
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: fpu_log.c,v 1.11 2009/03/14 15:36:09 dsl Exp $");
37 #include <sys/types.h>
38 #include <sys/systm.h>
40 #include "fpu_emulate.h"
42 static u_int logA6[] = { 0x3FC2499A, 0xB5E4040B };
43 static u_int logA5[] = { 0xBFC555B5, 0x848CB7DB };
44 static u_int logA4[] = { 0x3FC99999, 0x987D8730 };
45 static u_int logA3[] = { 0xBFCFFFFF, 0xFF6F7E97 };
46 static u_int logA2[] = { 0x3FD55555, 0x555555A4 };
47 static u_int logA1[] = { 0xBFE00000, 0x00000008 };
49 static u_int logB5[] = { 0x3F175496, 0xADD7DAD6 };
50 static u_int logB4[] = { 0x3F3C71C2, 0xFE80C7E0 };
51 static u_int logB3[] = { 0x3F624924, 0x928BCCFF };
52 static u_int logB2[] = { 0x3F899999, 0x999995EC };
53 static u_int logB1[] = { 0x3FB55555, 0x55555555 };
55 /* sfpn = shortened fp number; can represent only positive numbers */
56 static struct sfpn {
57 int sp_exp;
58 u_int sp_m0, sp_m1;
59 } logtbl[] = {
60 { 0x3FFE - 0x3fff, 0xFE03F80FU, 0xE03F80FEU },
61 { 0x3FF7 - 0x3fff, 0xFF015358U, 0x833C47E2U },
62 { 0x3FFE - 0x3fff, 0xFA232CF2U, 0x52138AC0U },
63 { 0x3FF9 - 0x3fff, 0xBDC8D83EU, 0xAD88D549U },
64 { 0x3FFE - 0x3fff, 0xF6603D98U, 0x0F6603DAU },
65 { 0x3FFA - 0x3fff, 0x9CF43DCFU, 0xF5EAFD48U },
66 { 0x3FFE - 0x3fff, 0xF2B9D648U, 0x0F2B9D65U },
67 { 0x3FFA - 0x3fff, 0xDA16EB88U, 0xCB8DF614U },
68 { 0x3FFE - 0x3fff, 0xEF2EB71FU, 0xC4345238U },
69 { 0x3FFB - 0x3fff, 0x8B29B775U, 0x1BD70743U },
70 { 0x3FFE - 0x3fff, 0xEBBDB2A5U, 0xC1619C8CU },
71 { 0x3FFB - 0x3fff, 0xA8D839F8U, 0x30C1FB49U },
72 { 0x3FFE - 0x3fff, 0xE865AC7BU, 0x7603A197U },
73 { 0x3FFB - 0x3fff, 0xC61A2EB1U, 0x8CD907ADU },
74 { 0x3FFE - 0x3fff, 0xE525982AU, 0xF70C880EU },
75 { 0x3FFB - 0x3fff, 0xE2F2A47AU, 0xDE3A18AFU },
76 { 0x3FFE - 0x3fff, 0xE1FC780EU, 0x1FC780E2U },
77 { 0x3FFB - 0x3fff, 0xFF64898EU, 0xDF55D551U },
78 { 0x3FFE - 0x3fff, 0xDEE95C4CU, 0xA037BA57U },
79 { 0x3FFC - 0x3fff, 0x8DB956A9U, 0x7B3D0148U },
80 { 0x3FFE - 0x3fff, 0xDBEB61EEU, 0xD19C5958U },
81 { 0x3FFC - 0x3fff, 0x9B8FE100U, 0xF47BA1DEU },
82 { 0x3FFE - 0x3fff, 0xD901B203U, 0x6406C80EU },
83 { 0x3FFC - 0x3fff, 0xA9372F1DU, 0x0DA1BD17U },
84 { 0x3FFE - 0x3fff, 0xD62B80D6U, 0x2B80D62CU },
85 { 0x3FFC - 0x3fff, 0xB6B07F38U, 0xCE90E46BU },
86 { 0x3FFE - 0x3fff, 0xD3680D36U, 0x80D3680DU },
87 { 0x3FFC - 0x3fff, 0xC3FD0329U, 0x06488481U },
88 { 0x3FFE - 0x3fff, 0xD0B69FCBU, 0xD2580D0BU },
89 { 0x3FFC - 0x3fff, 0xD11DE0FFU, 0x15AB18CAU },
90 { 0x3FFE - 0x3fff, 0xCE168A77U, 0x25080CE1U },
91 { 0x3FFC - 0x3fff, 0xDE1433A1U, 0x6C66B150U },
92 { 0x3FFE - 0x3fff, 0xCB8727C0U, 0x65C393E0U },
93 { 0x3FFC - 0x3fff, 0xEAE10B5AU, 0x7DDC8ADDU },
94 { 0x3FFE - 0x3fff, 0xC907DA4EU, 0x871146ADU },
95 { 0x3FFC - 0x3fff, 0xF7856E5EU, 0xE2C9B291U },
96 { 0x3FFE - 0x3fff, 0xC6980C69U, 0x80C6980CU },
97 { 0x3FFD - 0x3fff, 0x82012CA5U, 0xA68206D7U },
98 { 0x3FFE - 0x3fff, 0xC4372F85U, 0x5D824CA6U },
99 { 0x3FFD - 0x3fff, 0x882C5FCDU, 0x7256A8C5U },
100 { 0x3FFE - 0x3fff, 0xC1E4BBD5U, 0x95F6E947U },
101 { 0x3FFD - 0x3fff, 0x8E44C60BU, 0x4CCFD7DEU },
102 { 0x3FFE - 0x3fff, 0xBFA02FE8U, 0x0BFA02FFU },
103 { 0x3FFD - 0x3fff, 0x944AD09EU, 0xF4351AF6U },
104 { 0x3FFE - 0x3fff, 0xBD691047U, 0x07661AA3U },
105 { 0x3FFD - 0x3fff, 0x9A3EECD4U, 0xC3EAA6B2U },
106 { 0x3FFE - 0x3fff, 0xBB3EE721U, 0xA54D880CU },
107 { 0x3FFD - 0x3fff, 0xA0218434U, 0x353F1DE8U },
108 { 0x3FFE - 0x3fff, 0xB92143FAU, 0x36F5E02EU },
109 { 0x3FFD - 0x3fff, 0xA5F2FCABU, 0xBBC506DAU },
110 { 0x3FFE - 0x3fff, 0xB70FBB5AU, 0x19BE3659U },
111 { 0x3FFD - 0x3fff, 0xABB3B8BAU, 0x2AD362A5U },
112 { 0x3FFE - 0x3fff, 0xB509E68AU, 0x9B94821FU },
113 { 0x3FFD - 0x3fff, 0xB1641795U, 0xCE3CA97BU },
114 { 0x3FFE - 0x3fff, 0xB30F6352U, 0x8917C80BU },
115 { 0x3FFD - 0x3fff, 0xB7047551U, 0x5D0F1C61U },
116 { 0x3FFE - 0x3fff, 0xB11FD3B8U, 0x0B11FD3CU },
117 { 0x3FFD - 0x3fff, 0xBC952AFEU, 0xEA3D13E1U },
118 { 0x3FFE - 0x3fff, 0xAF3ADDC6U, 0x80AF3ADEU },
119 { 0x3FFD - 0x3fff, 0xC2168ED0U, 0xF458BA4AU },
120 { 0x3FFE - 0x3fff, 0xAD602B58U, 0x0AD602B6U },
121 { 0x3FFD - 0x3fff, 0xC788F439U, 0xB3163BF1U },
122 { 0x3FFE - 0x3fff, 0xAB8F69E2U, 0x8359CD11U },
123 { 0x3FFD - 0x3fff, 0xCCECAC08U, 0xBF04565DU },
124 { 0x3FFE - 0x3fff, 0xA9C84A47U, 0xA07F5638U },
125 { 0x3FFD - 0x3fff, 0xD2420487U, 0x2DD85160U },
126 { 0x3FFE - 0x3fff, 0xA80A80A8U, 0x0A80A80BU },
127 { 0x3FFD - 0x3fff, 0xD7894992U, 0x3BC3588AU },
128 { 0x3FFE - 0x3fff, 0xA655C439U, 0x2D7B73A8U },
129 { 0x3FFD - 0x3fff, 0xDCC2C4B4U, 0x9887DACCU },
130 { 0x3FFE - 0x3fff, 0xA4A9CF1DU, 0x96833751U },
131 { 0x3FFD - 0x3fff, 0xE1EEBD3EU, 0x6D6A6B9EU },
132 { 0x3FFE - 0x3fff, 0xA3065E3FU, 0xAE7CD0E0U },
133 { 0x3FFD - 0x3fff, 0xE70D785CU, 0x2F9F5BDCU },
134 { 0x3FFE - 0x3fff, 0xA16B312EU, 0xA8FC377DU },
135 { 0x3FFD - 0x3fff, 0xEC1F392CU, 0x5179F283U },
136 { 0x3FFE - 0x3fff, 0x9FD809FDU, 0x809FD80AU },
137 { 0x3FFD - 0x3fff, 0xF12440D3U, 0xE36130E6U },
138 { 0x3FFE - 0x3fff, 0x9E4CAD23U, 0xDD5F3A20U },
139 { 0x3FFD - 0x3fff, 0xF61CCE92U, 0x346600BBU },
140 { 0x3FFE - 0x3fff, 0x9CC8E160U, 0xC3FB19B9U },
141 { 0x3FFD - 0x3fff, 0xFB091FD3U, 0x8145630AU },
142 { 0x3FFE - 0x3fff, 0x9B4C6F9EU, 0xF03A3CAAU },
143 { 0x3FFD - 0x3fff, 0xFFE97042U, 0xBFA4C2ADU },
144 { 0x3FFE - 0x3fff, 0x99D722DAU, 0xBDE58F06U },
145 { 0x3FFE - 0x3fff, 0x825EFCEDU, 0x49369330U },
146 { 0x3FFE - 0x3fff, 0x9868C809U, 0x868C8098U },
147 { 0x3FFE - 0x3fff, 0x84C37A7AU, 0xB9A905C9U },
148 { 0x3FFE - 0x3fff, 0x97012E02U, 0x5C04B809U },
149 { 0x3FFE - 0x3fff, 0x87224C2EU, 0x8E645FB7U },
150 { 0x3FFE - 0x3fff, 0x95A02568U, 0x095A0257U },
151 { 0x3FFE - 0x3fff, 0x897B8CACU, 0x9F7DE298U },
152 { 0x3FFE - 0x3fff, 0x94458094U, 0x45809446U },
153 { 0x3FFE - 0x3fff, 0x8BCF55DEU, 0xC4CD05FEU },
154 { 0x3FFE - 0x3fff, 0x92F11384U, 0x0497889CU },
155 { 0x3FFE - 0x3fff, 0x8E1DC0FBU, 0x89E125E5U },
156 { 0x3FFE - 0x3fff, 0x91A2B3C4U, 0xD5E6F809U },
157 { 0x3FFE - 0x3fff, 0x9066E68CU, 0x955B6C9BU },
158 { 0x3FFE - 0x3fff, 0x905A3863U, 0x3E06C43BU },
159 { 0x3FFE - 0x3fff, 0x92AADE74U, 0xC7BE59E0U },
160 { 0x3FFE - 0x3fff, 0x8F1779D9U, 0xFDC3A219U },
161 { 0x3FFE - 0x3fff, 0x94E9BFF6U, 0x15845643U },
162 { 0x3FFE - 0x3fff, 0x8DDA5202U, 0x37694809U },
163 { 0x3FFE - 0x3fff, 0x9723A1B7U, 0x20134203U },
164 { 0x3FFE - 0x3fff, 0x8CA29C04U, 0x6514E023U },
165 { 0x3FFE - 0x3fff, 0x995899C8U, 0x90EB8990U },
166 { 0x3FFE - 0x3fff, 0x8B70344AU, 0x139BC75AU },
167 { 0x3FFE - 0x3fff, 0x9B88BDAAU, 0x3A3DAE2FU },
168 { 0x3FFE - 0x3fff, 0x8A42F870U, 0x5669DB46U },
169 { 0x3FFE - 0x3fff, 0x9DB4224FU, 0xFFE1157CU },
170 { 0x3FFE - 0x3fff, 0x891AC73AU, 0xE9819B50U },
171 { 0x3FFE - 0x3fff, 0x9FDADC26U, 0x8B7A12DAU },
172 { 0x3FFE - 0x3fff, 0x87F78087U, 0xF78087F8U },
173 { 0x3FFE - 0x3fff, 0xA1FCFF17U, 0xCE733BD4U },
174 { 0x3FFE - 0x3fff, 0x86D90544U, 0x7A34ACC6U },
175 { 0x3FFE - 0x3fff, 0xA41A9E8FU, 0x5446FB9FU },
176 { 0x3FFE - 0x3fff, 0x85BF3761U, 0x2CEE3C9BU },
177 { 0x3FFE - 0x3fff, 0xA633CD7EU, 0x6771CD8BU },
178 { 0x3FFE - 0x3fff, 0x84A9F9C8U, 0x084A9F9DU },
179 { 0x3FFE - 0x3fff, 0xA8489E60U, 0x0B435A5EU },
180 { 0x3FFE - 0x3fff, 0x83993052U, 0x3FBE3368U },
181 { 0x3FFE - 0x3fff, 0xAA59233CU, 0xCCA4BD49U },
182 { 0x3FFE - 0x3fff, 0x828CBFBEU, 0xB9A020A3U },
183 { 0x3FFE - 0x3fff, 0xAC656DAEU, 0x6BCC4985U },
184 { 0x3FFE - 0x3fff, 0x81848DA8U, 0xFAF0D277U },
185 { 0x3FFE - 0x3fff, 0xAE6D8EE3U, 0x60BB2468U },
186 { 0x3FFE - 0x3fff, 0x80808080U, 0x80808081U },
187 { 0x3FFE - 0x3fff, 0xB07197A2U, 0x3C46C654U },
190 static struct fpn *__fpu_logn(struct fpemu *fe);
193 * natural log - algorithm taken from Motorola FPSP,
194 * except this doesn't bother to check for invalid input.
196 static struct fpn *
197 __fpu_logn(struct fpemu *fe)
199 static struct fpn X, F, U, V, W, KLOG2;
200 struct fpn *d;
201 int i, k;
203 CPYFPN(&X, &fe->fe_f2);
205 /* see if |X-1| < 1/16 approx. */
206 if ((-1 == X.fp_exp && (0xf07d0000U >> (31 - FP_LG)) <= X.fp_mant[0]) ||
207 (0 == X.fp_exp && X.fp_mant[0] <= (0x88410000U >> (31 - FP_LG)))) {
208 /* log near 1 */
209 #if FPE_DEBUG
210 printf("__fpu_logn: log near 1\n");
211 #endif
213 fpu_const(&fe->fe_f1, 0x32);
214 /* X+1 */
215 d = fpu_add(fe);
216 CPYFPN(&V, d);
218 CPYFPN(&fe->fe_f1, &X);
219 fpu_const(&fe->fe_f2, 0x32); /* 1.0 */
220 fe->fe_f2.fp_sign = 1; /* -1.0 */
221 /* X-1 */
222 d = fpu_add(fe);
223 CPYFPN(&fe->fe_f1, d);
224 /* 2(X-1) */
225 fe->fe_f1.fp_exp++; /* *= 2 */
226 CPYFPN(&fe->fe_f2, &V);
227 /* U=2(X-1)/(X+1) */
228 d = fpu_div(fe);
229 CPYFPN(&U, d);
230 CPYFPN(&fe->fe_f1, d);
231 CPYFPN(&fe->fe_f2, d);
232 /* V=U*U */
233 d = fpu_mul(fe);
234 CPYFPN(&V, d);
235 CPYFPN(&fe->fe_f1, d);
236 CPYFPN(&fe->fe_f2, d);
237 /* W=V*V */
238 d = fpu_mul(fe);
239 CPYFPN(&W, d);
241 /* calculate U+U*V*([B1+W*(B3+W*B5)]+[V*(B2+W*B4)]) */
243 /* B1+W*(B3+W*B5) part */
244 CPYFPN(&fe->fe_f1, d);
245 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logB5);
246 /* W*B5 */
247 d = fpu_mul(fe);
248 CPYFPN(&fe->fe_f1, d);
249 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logB3);
250 /* B3+W*B5 */
251 d = fpu_add(fe);
252 CPYFPN(&fe->fe_f1, d);
253 CPYFPN(&fe->fe_f2, &W);
254 /* W*(B3+W*B5) */
255 d = fpu_mul(fe);
256 CPYFPN(&fe->fe_f1, d);
257 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logB1);
258 /* B1+W*(B3+W*B5) */
259 d = fpu_add(fe);
260 CPYFPN(&X, d);
262 /* [V*(B2+W*B4)] part */
263 CPYFPN(&fe->fe_f1, &W);
264 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logB4);
265 /* W*B4 */
266 d = fpu_mul(fe);
267 CPYFPN(&fe->fe_f1, d);
268 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logB2);
269 /* B2+W*B4 */
270 d = fpu_add(fe);
271 CPYFPN(&fe->fe_f1, d);
272 CPYFPN(&fe->fe_f2, &V);
273 /* V*(B2+W*B4) */
274 d = fpu_mul(fe);
275 CPYFPN(&fe->fe_f1, d);
276 CPYFPN(&fe->fe_f2, &X);
277 /* B1+W*(B3+W*B5)+V*(B2+W*B4) */
278 d = fpu_add(fe);
279 CPYFPN(&fe->fe_f1, d);
280 CPYFPN(&fe->fe_f2, &V);
281 /* V*(B1+W*(B3+W*B5)+V*(B2+W*B4)) */
282 d = fpu_mul(fe);
283 CPYFPN(&fe->fe_f1, d);
284 CPYFPN(&fe->fe_f2, &U);
285 /* U*V*(B1+W*(B3+W*B5)+V*(B2+W*B4)) */
286 d = fpu_mul(fe);
287 CPYFPN(&fe->fe_f1, d);
288 CPYFPN(&fe->fe_f2, &U);
289 /* U+U*V*(B1+W*(B3+W*B5)+V*(B2+W*B4)) */
290 d = fpu_add(fe);
291 } else /* the usual case */ {
292 #if FPE_DEBUG
293 printf("__fpu_logn: the usual case. X=(%d,%08x,%08x...)\n",
294 X.fp_exp, X.fp_mant[0], X.fp_mant[1]);
295 #endif
297 k = X.fp_exp;
298 /* X <- Y */
299 X.fp_exp = fe->fe_f2.fp_exp = 0;
301 /* get the most significant 7 bits of X */
302 F.fp_class = FPC_NUM;
303 F.fp_sign = 0;
304 F.fp_exp = X.fp_exp;
305 F.fp_mant[0] = X.fp_mant[0] & (0xfe000000U >> (31 - FP_LG));
306 F.fp_mant[0] |= (0x01000000U >> (31 - FP_LG));
307 F.fp_mant[1] = F.fp_mant[2] = 0;
308 F.fp_sticky = 0;
310 #if FPE_DEBUG
311 printf("__fpu_logn: X=Y*2^k=(%d,%08x,%08x...)*2^%d\n",
312 fe->fe_f2.fp_exp, fe->fe_f2.fp_mant[0],
313 fe->fe_f2.fp_mant[1], k);
314 printf("__fpu_logn: F=(%d,%08x,%08x...)\n",
315 F.fp_exp, F.fp_mant[0], F.fp_mant[1]);
316 #endif
318 /* index to the table */
319 i = (F.fp_mant[0] >> (FP_LG - 7)) & 0x7e;
321 #if FPE_DEBUG
322 printf("__fpu_logn: index to logtbl i=%d(%x)\n", i, i);
323 #endif
325 CPYFPN(&fe->fe_f1, &F);
326 /* -F */
327 fe->fe_f1.fp_sign = 1;
328 /* Y-F */
329 d = fpu_add(fe);
330 CPYFPN(&fe->fe_f1, d);
332 /* fe_f2 = 1/F */
333 fe->fe_f2.fp_class = FPC_NUM;
334 fe->fe_f2.fp_sign = fe->fe_f2.fp_sticky = fe->fe_f2.fp_mant[2] = 0;
335 fe->fe_f2.fp_exp = logtbl[i].sp_exp;
336 fe->fe_f2.fp_mant[0] = (logtbl[i].sp_m0 >> (31 - FP_LG));
337 fe->fe_f2.fp_mant[1] = (logtbl[i].sp_m0 << (FP_LG + 1)) |
338 (logtbl[i].sp_m1 >> (31 - FP_LG));
339 fe->fe_f2.fp_mant[2] = (u_int)(logtbl[i].sp_m1 << (FP_LG + 1));
341 #if FPE_DEBUG
342 printf("__fpu_logn: 1/F=(%d,%08x,%08x...)\n", fe->fe_f2.fp_exp,
343 fe->fe_f2.fp_mant[0], fe->fe_f2.fp_mant[1]);
344 #endif
346 /* U = (Y-F) * (1/F) */
347 d = fpu_mul(fe);
348 CPYFPN(&U, d);
350 /* KLOG2 = K * ln(2) */
351 /* fe_f1 == (fpn)k */
352 fpu_explode(fe, &fe->fe_f1, FTYPE_LNG, &k);
353 (void)fpu_const(&fe->fe_f2, 0x30 /* ln(2) */);
354 #if FPE_DEBUG
355 printf("__fpu_logn: fp(k)=(%d,%08x,%08x...)\n", fe->fe_f1.fp_exp,
356 fe->fe_f1.fp_mant[0], fe->fe_f1.fp_mant[1]);
357 printf("__fpu_logn: ln(2)=(%d,%08x,%08x...)\n", fe->fe_f2.fp_exp,
358 fe->fe_f2.fp_mant[0], fe->fe_f2.fp_mant[1]);
359 #endif
360 /* K * LOGOF2 */
361 d = fpu_mul(fe);
362 CPYFPN(&KLOG2, d);
364 /* V=U*U */
365 CPYFPN(&fe->fe_f1, &U);
366 CPYFPN(&fe->fe_f2, &U);
367 d = fpu_mul(fe);
368 CPYFPN(&V, d);
371 * approximation of LOG(1+U) by
372 * (U+V*(A1+V*(A3+V*A5)))+(U*V*(A2+V*(A4+V*A6)))
375 /* (U+V*(A1+V*(A3+V*A5))) part */
376 CPYFPN(&fe->fe_f1, d);
377 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logA5);
378 /* V*A5 */
379 d = fpu_mul(fe);
381 CPYFPN(&fe->fe_f1, d);
382 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logA3);
383 /* A3+V*A5 */
384 d = fpu_add(fe);
386 CPYFPN(&fe->fe_f1, d);
387 CPYFPN(&fe->fe_f2, &V);
388 /* V*(A3+V*A5) */
389 d = fpu_mul(fe);
391 CPYFPN(&fe->fe_f1, d);
392 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logA1);
393 /* A1+V*(A3+V*A5) */
394 d = fpu_add(fe);
396 CPYFPN(&fe->fe_f1, d);
397 CPYFPN(&fe->fe_f2, &V);
398 /* V*(A1+V*(A3+V*A5)) */
399 d = fpu_mul(fe);
401 CPYFPN(&fe->fe_f1, d);
402 CPYFPN(&fe->fe_f2, &U);
403 /* U+V*(A1+V*(A3+V*A5)) */
404 d = fpu_add(fe);
406 CPYFPN(&X, d);
408 /* (U*V*(A2+V*(A4+V*A6))) part */
409 CPYFPN(&fe->fe_f1, &V);
410 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logA6);
411 /* V*A6 */
412 d = fpu_mul(fe);
413 CPYFPN(&fe->fe_f1, d);
414 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logA4);
415 /* A4+V*A6 */
416 d = fpu_add(fe);
417 CPYFPN(&fe->fe_f1, d);
418 CPYFPN(&fe->fe_f2, &V);
419 /* V*(A4+V*A6) */
420 d = fpu_mul(fe);
421 CPYFPN(&fe->fe_f1, d);
422 fpu_explode(fe, &fe->fe_f2, FTYPE_DBL, logA2);
423 /* A2+V*(A4+V*A6) */
424 d = fpu_add(fe);
425 CPYFPN(&fe->fe_f1, d);
426 CPYFPN(&fe->fe_f2, &V);
427 /* V*(A2+V*(A4+V*A6)) */
428 d = fpu_mul(fe);
429 CPYFPN(&fe->fe_f1, d);
430 CPYFPN(&fe->fe_f2, &U);
431 /* U*V*(A2+V*(A4+V*A6)) */
432 d = fpu_mul(fe);
433 CPYFPN(&fe->fe_f1, d);
434 i++;
435 /* fe_f2 = logtbl[i+1] (== LOG(F)) */
436 fe->fe_f2.fp_class = FPC_NUM;
437 fe->fe_f2.fp_sign = fe->fe_f2.fp_sticky = fe->fe_f2.fp_mant[2] = 0;
438 fe->fe_f2.fp_exp = logtbl[i].sp_exp;
439 fe->fe_f2.fp_mant[0] = (logtbl[i].sp_m0 >> (31 - FP_LG));
440 fe->fe_f2.fp_mant[1] = (logtbl[i].sp_m0 << (FP_LG + 1)) |
441 (logtbl[i].sp_m1 >> (31 - FP_LG));
442 fe->fe_f2.fp_mant[2] = (logtbl[i].sp_m1 << (FP_LG + 1));
444 #if FPE_DEBUG
445 printf("__fpu_logn: ln(F)=(%d,%08x,%08x,...)\n", fe->fe_f2.fp_exp,
446 fe->fe_f2.fp_mant[0], fe->fe_f2.fp_mant[1]);
447 #endif
449 /* LOG(F)+U*V*(A2+V*(A4+V*A6)) */
450 d = fpu_add(fe);
451 CPYFPN(&fe->fe_f1, d);
452 CPYFPN(&fe->fe_f2, &X);
453 /* LOG(F)+U+V*(A1+V*(A3+V*A5))+U*V*(A2+V*(A4+V*A6)) */
454 d = fpu_add(fe);
456 #if FPE_DEBUG
457 printf("__fpu_logn: ln(Y)=(%c,%d,%08x,%08x,%08x)\n",
458 d->fp_sign ? '-' : '+', d->fp_exp,
459 d->fp_mant[0], d->fp_mant[1], d->fp_mant[2]);
460 #endif
462 CPYFPN(&fe->fe_f1, d);
463 CPYFPN(&fe->fe_f2, &KLOG2);
464 /* K*LOGOF2+LOG(F)+U+V*(A1+V*(A3+V*A5))+U*V*(A2+V*(A4+V*A6)) */
465 d = fpu_add(fe);
468 return d;
471 struct fpn *
472 fpu_log10(struct fpemu *fe)
474 struct fpn *fp = &fe->fe_f2;
475 u_int fpsr;
477 fpsr = fe->fe_fpsr & ~FPSR_EXCP; /* clear all exceptions */
479 if (fp->fp_class >= FPC_NUM) {
480 if (fp->fp_sign) { /* negative number or Inf */
481 fp = fpu_newnan(fe);
482 fpsr |= FPSR_OPERR;
483 } else if (fp->fp_class == FPC_NUM) {
484 /* the real work here */
485 fp = __fpu_logn(fe);
486 if (fp != &fe->fe_f1)
487 CPYFPN(&fe->fe_f1, fp);
488 (void)fpu_const(&fe->fe_f2, 0x31 /* ln(10) */);
489 fp = fpu_div(fe);
490 } /* else if fp == +Inf, return +Inf */
491 } else if (fp->fp_class == FPC_ZERO) {
492 /* return -Inf */
493 fp->fp_class = FPC_INF;
494 fp->fp_sign = 1;
495 fpsr |= FPSR_DZ;
496 } else if (fp->fp_class == FPC_SNAN) {
497 fpsr |= FPSR_SNAN;
498 fp = fpu_newnan(fe);
499 } else {
500 fp = fpu_newnan(fe);
503 fe->fe_fpsr = fpsr;
505 return fp;
508 struct fpn *
509 fpu_log2(struct fpemu *fe)
511 struct fpn *fp = &fe->fe_f2;
512 u_int fpsr;
514 fpsr = fe->fe_fpsr & ~FPSR_EXCP; /* clear all exceptions */
516 if (fp->fp_class >= FPC_NUM) {
517 if (fp->fp_sign) { /* negative number or Inf */
518 fp = fpu_newnan(fe);
519 fpsr |= FPSR_OPERR;
520 } else if (fp->fp_class == FPC_NUM) {
521 /* the real work here */
522 if (fp->fp_mant[0] == FP_1 && fp->fp_mant[1] == 0 &&
523 fp->fp_mant[2] == 0) {
524 /* fp == 2.0 ^ exp <--> log2(fp) == exp */
525 fpu_explode(fe, &fe->fe_f3, FTYPE_LNG, &fp->fp_exp);
526 fp = &fe->fe_f3;
527 } else {
528 fp = __fpu_logn(fe);
529 if (fp != &fe->fe_f1)
530 CPYFPN(&fe->fe_f1, fp);
531 (void)fpu_const(&fe->fe_f2, 0x30 /* ln(2) */);
532 fp = fpu_div(fe);
534 } /* else if fp == +Inf, return +Inf */
535 } else if (fp->fp_class == FPC_ZERO) {
536 /* return -Inf */
537 fp->fp_class = FPC_INF;
538 fp->fp_sign = 1;
539 fpsr |= FPSR_DZ;
540 } else if (fp->fp_class == FPC_SNAN) {
541 fpsr |= FPSR_SNAN;
542 fp = fpu_newnan(fe);
543 } else {
544 fp = fpu_newnan(fe);
547 fe->fe_fpsr = fpsr;
548 return fp;
551 struct fpn *
552 fpu_logn(struct fpemu *fe)
554 struct fpn *fp = &fe->fe_f2;
555 u_int fpsr;
557 fpsr = fe->fe_fpsr & ~FPSR_EXCP; /* clear all exceptions */
559 if (fp->fp_class >= FPC_NUM) {
560 if (fp->fp_sign) { /* negative number or Inf */
561 fp = fpu_newnan(fe);
562 fpsr |= FPSR_OPERR;
563 } else if (fp->fp_class == FPC_NUM) {
564 /* the real work here */
565 fp = __fpu_logn(fe);
566 } /* else if fp == +Inf, return +Inf */
567 } else if (fp->fp_class == FPC_ZERO) {
568 /* return -Inf */
569 fp->fp_class = FPC_INF;
570 fp->fp_sign = 1;
571 fpsr |= FPSR_DZ;
572 } else if (fp->fp_class == FPC_SNAN) {
573 fpsr |= FPSR_SNAN;
574 fp = fpu_newnan(fe);
575 } else {
576 fp = fpu_newnan(fe);
579 fe->fe_fpsr = fpsr;
581 return fp;
584 struct fpn *
585 fpu_lognp1(struct fpemu *fe)
587 struct fpn *fp;
589 /* build a 1.0 */
590 fp = fpu_const(&fe->fe_f1, 0x32); /* get 1.0 */
591 /* fp = 1.0 + f2 */
592 fp = fpu_add(fe);
594 /* copy the result to the src opr */
595 if (&fe->fe_f2 != fp)
596 CPYFPN(&fe->fe_f2, fp);
598 return fpu_logn(fe);