No empty .Rs/.Re
[netbsd-mini2440.git] / sys / arch / m68k / fpe / fpu_rem.c
blob0c00dd75593a258f77a45273a127ee586c83dc1e
1 /* $NetBSD: fpu_rem.c,v 1.8 2009/03/14 15:36:09 dsl Exp $ */
3 /*
4 * Copyright (c) 1995 Ken Nakata
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the author nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
31 * @(#)fpu_rem.c 10/24/95
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: fpu_rem.c,v 1.8 2009/03/14 15:36:09 dsl Exp $");
37 #include <sys/types.h>
38 #include <sys/signal.h>
39 #include <machine/frame.h>
41 #include "fpu_emulate.h"
44 * ALGORITHM
46 * Step 1. Save and strip signs of X and Y: signX := sign(X),
47 * signY := sign(Y), X := *X*, Y := *Y*,
48 * signQ := signX EOR signY. Record whether MOD or REM
49 * is requested.
51 * Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0.
52 * If (L < 0) then
53 * R := X, go to Step 4.
54 * else
55 * R := 2^(-L)X, j := L.
56 * endif
58 * Step 3. Perform MOD(X,Y)
59 * 3.1 If R = Y, go to Step 9.
60 * 3.2 If R > Y, then { R := R - Y, Q := Q + 1}
61 * 3.3 If j = 0, go to Step 4.
62 * 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to
63 * Step 3.1.
65 * Step 4. At this point, R = X - QY = MOD(X,Y). Set
66 * Last_Subtract := false (used in Step 7 below). If
67 * MOD is requested, go to Step 6.
69 * Step 5. R = MOD(X,Y), but REM(X,Y) is requested.
70 * 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to
71 * Step 6.
72 * 5.2 If R > Y/2, then { set Last_Subtract := true,
73 * Q := Q + 1, Y := signY*Y }. Go to Step 6.
74 * 5.3 This is the tricky case of R = Y/2. If Q is odd,
75 * then { Q := Q + 1, signX := -signX }.
77 * Step 6. R := signX*R.
79 * Step 7. If Last_Subtract = true, R := R - Y.
81 * Step 8. Return signQ, last 7 bits of Q, and R as required.
83 * Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus,
84 * X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1),
85 * R := 0. Return signQ, last 7 bits of Q, and R.
86 */
88 static struct fpn * __fpu_modrem(struct fpemu *fe, int modrem);
90 static struct fpn *
91 __fpu_modrem(struct fpemu *fe, int modrem)
93 static struct fpn X, Y;
94 struct fpn *x, *y, *r;
95 u_int signX, signY, signQ;
96 int j, k, l, q;
97 int Last_Subtract;
99 CPYFPN(&X, &fe->fe_f1);
100 CPYFPN(&Y, &fe->fe_f2);
101 x = &X;
102 y = &Y;
103 r = &fe->fe_f2;
106 * Step 1
108 signX = x->fp_sign;
109 signY = y->fp_sign;
110 signQ = (signX ^ signY);
111 x->fp_sign = y->fp_sign = 0;
114 * Step 2
116 l = x->fp_exp - y->fp_exp;
117 k = 0;
118 q = 0;
119 if (l >= 0) {
120 CPYFPN(r, x);
121 r->fp_exp -= l;
122 j = l;
125 * Step 3
127 while (y->fp_exp != r->fp_exp || y->fp_mant[0] != r->fp_mant[0] ||
128 y->fp_mant[1] != r->fp_mant[1] ||
129 y->fp_mant[2] != r->fp_mant[2]) {
131 /* Step 3.2 */
132 if (y->fp_exp < r->fp_exp || y->fp_mant[0] < r->fp_mant[0] ||
133 y->fp_mant[1] < r->fp_mant[1] ||
134 y->fp_mant[2] < r->fp_mant[2]) {
135 CPYFPN(&fe->fe_f1, r);
136 CPYFPN(&fe->fe_f2, y);
137 fe->fe_f2.fp_sign = 1;
138 r = fpu_add(fe);
139 q++;
142 /* Step 3.3 */
143 if (j == 0)
144 goto Step4;
146 /* Step 3.4 */
147 k++;
148 j--;
149 q += q;
150 r->fp_exp++;
152 /* Step 9 */
153 goto Step9;
155 Step4:
156 Last_Subtract = 0;
157 if (modrem == 0)
158 goto Step6;
161 * Step 5
163 /* Step 5.1 */
164 if (r->fp_exp + 1 < y->fp_exp ||
165 (r->fp_exp + 1 == y->fp_exp &&
166 (r->fp_mant[0] < y->fp_mant[0] || r->fp_mant[1] < y->fp_mant[1] ||
167 r->fp_mant[2] < y->fp_mant[2])))
168 /* if r < y/2 */
169 goto Step6;
170 /* Step 5.2 */
171 if (r->fp_exp + 1 != y->fp_exp ||
172 r->fp_mant[0] != y->fp_mant[0] || r->fp_mant[1] != y->fp_mant[1] ||
173 r->fp_mant[2] != y->fp_mant[2]) {
174 /* if (!(r < y/2) && !(r == y/2)) */
175 Last_Subtract = 1;
176 q++;
177 y->fp_sign = signY;
178 } else {
179 /* Step 5.3 */
180 /* r == y/2 */
181 if (q % 2) {
182 q++;
183 signX = !signX;
187 Step6:
188 r->fp_sign = signX;
191 * Step 7
193 if (Last_Subtract) {
194 CPYFPN(&fe->fe_f1, r);
195 CPYFPN(&fe->fe_f2, y);
196 fe->fe_f2.fp_sign = !y->fp_sign;
197 r = fpu_add(fe);
200 * Step 8
202 q &= 0x7f;
203 q |= (signQ << 7);
204 fe->fe_fpframe->fpf_fpsr =
205 fe->fe_fpsr =
206 (fe->fe_fpsr & ~FPSR_QTT) | (q << 16);
207 return r;
209 Step9:
210 fe->fe_f1.fp_class = FPC_ZERO;
211 q++;
212 q &= 0x7f;
213 q |= (signQ << 7);
214 fe->fe_fpframe->fpf_fpsr =
215 fe->fe_fpsr =
216 (fe->fe_fpsr & ~FPSR_QTT) | (q << 16);
217 return &fe->fe_f1;
220 struct fpn *
221 fpu_rem(struct fpemu *fe)
223 return __fpu_modrem(fe, 1);
226 struct fpn *
227 fpu_mod(struct fpemu *fe)
229 return __fpu_modrem(fe, 0);