1 * $NetBSD: setox.sa,v 1.3 1994/10/26 07:49:42 cgd Exp $
3 * MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
4 * M68000 Hi-Performance Microprocessor Division
5 * M68040 Software Package
7 * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
10 * THE SOFTWARE is provided on an "AS IS" basis and without warranty.
11 * To the maximum extent permitted by applicable law,
12 * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
13 * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
14 * PARTICULAR PURPOSE and any warranty against infringement with
15 * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
16 * and any accompanying written materials.
18 * To the maximum extent permitted by applicable law,
19 * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
20 * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
21 * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
22 * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
23 * SOFTWARE. Motorola assumes no responsibility for the maintenance
24 * and support of the SOFTWARE.
26 * You are hereby granted a copyright license to use, modify, and
27 * distribute the SOFTWARE so long as this entire notice is retained
28 * without alteration in any modified and/or redistributed versions,
29 * and that such modified versions are clearly identified as such.
30 * No licenses are granted by implication, estoppel or otherwise
31 * under any patents or trademarks of Motorola, Inc.
34 * setox.sa 3.1 12/10/90
36 * The entry point setox computes the exponential of a value.
37 * setoxd does the same except the input value is a denormalized
38 * number. setoxm1 computes exp(X)-1, and setoxm1d computes
39 * exp(X)-1 for denormalized X.
43 * Double-extended value in memory location pointed to by address
48 * exp(X) or exp(X)-1 returned in floating-point register fp0.
50 * ACCURACY and MONOTONICITY
51 * -------------------------
52 * The returned result is within 0.85 ulps in 64 significant bit, i.e.
53 * within 0.5001 ulp to 53 bits if the result is subsequently rounded
54 * to double precision. The result is provably monotonic in double
59 * Two timings are measured, both in the copy-back mode. The
60 * first one is measured when the function is invoked the first time
61 * (so the instructions and data are not in cache), and the
62 * second one is measured when the function is reinvoked at the same
65 * The program setox takes approximately 210/190 cycles for input
66 * argument X whose magnitude is less than 16380 log2, which
67 * is the usual situation. For the less common arguments,
68 * depending on their values, the program may run faster or slower --
69 * but no worse than 10% slower even in the extreme cases.
71 * The program setoxm1 takes approximately ???/??? cycles for input
72 * argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
73 * approximately ???/??? cycles. For the less common arguments,
74 * depending on their values, the program may run faster or slower --
75 * but no worse than 10% slower even in the extreme cases.
77 * ALGORITHM and IMPLEMENTATION NOTES
78 * ----------------------------------
82 * Step 1. Set ans := 1.0
84 * Step 2. Return ans := ans + sign(X)*2^(-126). Exit.
85 * Notes: This will always generate one exception -- inexact.
91 * Step 1. Filter out extreme cases of input argument.
92 * 1.1 If |X| >= 2^(-65), go to Step 1.3.
94 * 1.3 If |X| < 16380 log(2), go to Step 2.
96 * Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
97 * To avoid the use of floating-point comparisons, a
98 * compact representation of |X| is used. This format is a
99 * 32-bit integer, the upper (more significant) 16 bits are
100 * the sign and biased exponent field of |X|; the lower 16
101 * bits are the 16 most significant fraction (including the
102 * explicit bit) bits of |X|. Consequently, the comparisons
103 * in Steps 1.1 and 1.3 can be performed by integer comparison.
104 * Note also that the constant 16380 log(2) used in Step 1.3
105 * is also in the compact form. Thus taking the branch
106 * to Step 2 guarantees |X| < 16380 log(2). There is no harm
107 * to have a small number of cases where |X| is less than,
108 * but close to, 16380 log(2) and the branch to Step 9 is
111 * Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
112 * 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
113 * 2.2 N := round-to-nearest-integer( X * 64/log2 ).
114 * 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63.
115 * 2.4 Calculate M = (N - J)/64; so N = 64M + J.
116 * 2.5 Calculate the address of the stored value of 2^(J/64).
117 * 2.6 Create the value Scale = 2^M.
118 * Notes: The calculation in 2.2 is really performed by
121 * N := round-to-nearest-integer(Z)
125 * constant := single-precision( 64/log 2 ).
127 * Using a single-precision constant avoids memory access.
128 * Another effect of using a single-precision "constant" is
129 * that the calculated value Z is
131 * Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
133 * This error has to be considered later in Steps 3 and 4.
135 * Step 3. Calculate X - N*log2/64.
136 * 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
137 * 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
138 * Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate
139 * the value -log2/64 to 88 bits of accuracy.
140 * b) N*L1 is exact because N is no longer than 22 bits and
141 * L1 is no longer than 24 bits.
142 * c) The calculation X+N*L1 is also exact due to cancellation.
143 * Thus, R is practically X+N(L1+L2) to full 64 bits.
144 * d) It is important to estimate how large can |R| be after
147 * N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
148 * X*64/log2 (1+eps) = N + f, |f| <= 0.5
149 * X*64/log2 - N = f - eps*X 64/log2
150 * X - N*log2/64 = f*log2/64 - eps*X
153 * Now |X| <= 16446 log2, thus
155 * |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
157 * This bound will be used in Step 4.
159 * Step 4. Approximate exp(R)-1 by a polynomial
160 * p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
161 * Notes: a) In order to reduce memory access, the coefficients are
162 * made as "short" as possible: A1 (which is 1/2), A4 and A5
163 * are single precision; A2 and A3 are double precision.
164 * b) Even with the restrictions above,
165 * |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
166 * Note that 0.0062 is slightly bigger than 0.57 log2/64.
167 * c) To fully use the pipeline, p is separated into
168 * two independent pieces of roughly equal complexities
169 * p = [ R + R*S*(A2 + S*A4) ] +
170 * [ S*(A1 + S*(A3 + S*A5)) ]
173 * Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
174 * ans := T + ( T*p + t)
175 * where T and t are the stored values for 2^(J/64).
176 * Notes: 2^(J/64) is stored as T and t where T+t approximates
177 * 2^(J/64) to roughly 85 bits; T is in extended precision
178 * and t is in single precision. Note also that T is rounded
179 * to 62 bits so that the last two bits of T are zero. The
180 * reason for such a special form is that T-1, T-2, and T-8
181 * will all be exact --- a property that will give much
182 * more accurate computation of the function EXPM1.
184 * Step 6. Reconstruction of exp(X)
185 * exp(X) = 2^M * 2^(J/64) * exp(R).
186 * 6.1 If AdjFlag = 0, go to 6.3
187 * 6.2 ans := ans * AdjScale
188 * 6.3 Restore the user FPCR
189 * 6.4 Return ans := ans * Scale. Exit.
190 * Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
191 * |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
192 * neither overflow nor underflow. If AdjFlag = 1, that
194 * X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
195 * Hence, exp(X) may overflow or underflow or neither.
196 * When that is the case, AdjScale = 2^(M1) where M1 is
197 * approximately M. Thus 6.2 will never cause over/underflow.
198 * Possible exception in 6.4 is overflow or underflow.
199 * The inexact exception is not generated in 6.4. Although
200 * one can argue that the inexact flag should always be
201 * raised, to simulate that exception cost to much than the
202 * flag is worth in practical uses.
204 * Step 7. Return 1 + X.
206 * 7.2 Restore user FPCR.
207 * 7.3 Return ans := 1 + ans. Exit
208 * Notes: For non-zero X, the inexact exception will always be
209 * raised by 7.3. That is the only exception raised by 7.3.
210 * Note also that we use the FMOVEM instruction to move X
211 * in Step 7.1 to avoid unnecessary trapping. (Although
212 * the FMOVEM may not seem relevant since X is normalized,
213 * the precaution will be useful in the library version of
214 * this code where the separate entry for denormalized inputs
215 * will be done away with.)
217 * Step 8. Handle exp(X) where |X| >= 16380log2.
218 * 8.1 If |X| > 16480 log2, go to Step 9.
220 * 8.2 N := round-to-integer( X * 64/log2 )
221 * 8.3 Calculate J = N mod 64, J = 0,1,...,63
222 * 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
223 * 8.5 Calculate the address of the stored value 2^(J/64).
224 * 8.6 Create the values Scale = 2^M, AdjScale = 2^M1.
226 * Notes: Refer to notes for 2.2 - 2.6.
228 * Step 9. Handle exp(X), |X| > 16480 log2.
229 * 9.1 If X < 0, go to 9.3
230 * 9.2 ans := Huge, go to 9.4
232 * 9.4 Restore user FPCR.
233 * 9.5 Return ans := ans * ans. Exit.
234 * Notes: Exp(X) will surely overflow or underflow, depending on
235 * X's sign. "Huge" and "Tiny" are respectively large/tiny
236 * extended-precision numbers whose square over/underflow
237 * with an inexact result. Thus, 9.5 always raises the
238 * inexact together with either overflow or underflow.
244 * Step 1. Set ans := 0
246 * Step 2. Return ans := X + ans. Exit.
247 * Notes: This will return X with the appropriate rounding
248 * precision prescribed by the user FPCR.
254 * 1.1 If |X| >= 1/4, go to Step 1.3.
256 * 1.3 If |X| < 70 log(2), go to Step 2.
258 * Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
259 * However, it is conceivable |X| can be small very often
260 * because EXPM1 is intended to evaluate exp(X)-1 accurately
261 * when |X| is small. For further details on the comparisons,
262 * see the notes on Step 1 of setox.
264 * Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
265 * 2.1 N := round-to-nearest-integer( X * 64/log2 ).
266 * 2.2 Calculate J = N mod 64; so J = 0,1,2,..., or 63.
267 * 2.3 Calculate M = (N - J)/64; so N = 64M + J.
268 * 2.4 Calculate the address of the stored value of 2^(J/64).
269 * 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M).
270 * Notes: See the notes on Step 2 of setox.
272 * Step 3. Calculate X - N*log2/64.
273 * 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
274 * 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
275 * Notes: Applying the analysis of Step 3 of setox in this case
276 * shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
279 * Step 4. Approximate exp(R)-1 by a polynomial
280 * p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
281 * Notes: a) In order to reduce memory access, the coefficients are
282 * made as "short" as possible: A1 (which is 1/2), A5 and A6
283 * are single precision; A2, A3 and A4 are double precision.
284 * b) Even with the restriction above,
285 * |p - (exp(R)-1)| < |R| * 2^(-72.7)
286 * for all |R| <= 0.0055.
287 * c) To fully use the pipeline, p is separated into
288 * two independent pieces of roughly equal complexity
289 * p = [ R*S*(A2 + S*(A4 + S*A6)) ] +
290 * [ R + S*(A1 + S*(A3 + S*A5)) ]
293 * Step 5. Compute 2^(J/64)*p by
295 * where T and t are the stored values for 2^(J/64).
296 * Notes: 2^(J/64) is stored as T and t where T+t approximates
297 * 2^(J/64) to roughly 85 bits; T is in extended precision
298 * and t is in single precision. Note also that T is rounded
299 * to 62 bits so that the last two bits of T are zero. The
300 * reason for such a special form is that T-1, T-2, and T-8
301 * will all be exact --- a property that will be exploited
302 * in Step 6 below. The total relative error in p is no
303 * bigger than 2^(-67.7) compared to the final result.
305 * Step 6. Reconstruction of exp(X)-1
306 * exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
307 * 6.1 If M <= 63, go to Step 6.3.
308 * 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6
309 * 6.3 If M >= -3, go to 6.5.
310 * 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6
311 * 6.5 ans := (T + OnebySc) + (p + t).
312 * 6.6 Restore user FPCR.
313 * 6.7 Return ans := Sc * ans. Exit.
314 * Notes: The various arrangements of the expressions give accurate
317 * Step 7. exp(X)-1 for |X| < 1/4.
318 * 7.1 If |X| >= 2^(-65), go to Step 9.
321 * Step 8. Calculate exp(X)-1, |X| < 2^(-65).
322 * 8.1 If |X| < 2^(-16312), goto 8.3
323 * 8.2 Restore FPCR; return ans := X - 2^(-16382). Exit.
324 * 8.3 X := X * 2^(140).
325 * 8.4 Restore FPCR; ans := ans - 2^(-16382).
326 * Return ans := ans*2^(140). Exit
327 * Notes: The idea is to return "X - tiny" under the user
328 * precision and rounding modes. To avoid unnecessary
329 * inefficiency, we stay away from denormalized numbers the
330 * best we can. For |X| >= 2^(-16312), the straightforward
331 * 8.2 generates the inexact exception as the case warrants.
333 * Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
334 * p = X + X*X*(B1 + X*(B2 + ... + X*B12))
335 * Notes: a) In order to reduce memory access, the coefficients are
336 * made as "short" as possible: B1 (which is 1/2), B9 to B12
337 * are single precision; B3 to B8 are double precision; and
338 * B2 is double extended.
339 * b) Even with the restriction above,
340 * |p - (exp(X)-1)| < |X| 2^(-70.6)
341 * for all |X| <= 0.251.
342 * Note that 0.251 is slightly bigger than 1/4.
343 * c) To fully preserve accuracy, the polynomial is computed
344 * as X + ( S*B1 + Q ) where S = X*X and
345 * Q = X*S*(B2 + X*(B3 + ... + X*B12))
346 * d) To fully use the pipeline, Q is separated into
347 * two independent pieces of roughly equal complexity
348 * Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
349 * [ S*S*(B3 + S*(B5 + ... + S*B11)) ]
351 * Step 10. Calculate exp(X)-1 for |X| >= 70 log 2.
352 * 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
353 * purposes. Therefore, go to Step 1 of setox.
354 * 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
357 * Return ans := ans + 2^(-126). Exit.
358 * Notes: 10.2 will always create an inexact and return -1 + tiny
359 * in the user rounding precision and mode.
362 setox IDNT 2,1 Motorola 040 Floating Point Software Package
368 L2 DC.L $3FDC0000,$82E30865,$4361C4C6,$00000000
370 EXPA3 DC.L $3FA55555,$55554431
371 EXPA2 DC.L $3FC55555,$55554018
373 HUGE DC.L $7FFE0000,$FFFFFFFF,$FFFFFFFF,$00000000
374 TINY DC.L $00010000,$FFFFFFFF,$FFFFFFFF,$00000000
376 EM1A4 DC.L $3F811111,$11174385
377 EM1A3 DC.L $3FA55555,$55554F5A
379 EM1A2 DC.L $3FC55555,$55555555,$00000000,$00000000
381 EM1B8 DC.L $3EC71DE3,$A5774682
382 EM1B7 DC.L $3EFA01A0,$19D7CB68
384 EM1B6 DC.L $3F2A01A0,$1A019DF3
385 EM1B5 DC.L $3F56C16C,$16C170E2
387 EM1B4 DC.L $3F811111,$11111111
388 EM1B3 DC.L $3FA55555,$55555555
390 EM1B2 DC.L $3FFC0000,$AAAAAAAA,$AAAAAAAB
393 TWO140 DC.L $48B00000,$00000000
394 TWON140 DC.L $37300000,$00000000
397 DC.L $3FFF0000,$80000000,$00000000,$00000000
398 DC.L $3FFF0000,$8164D1F3,$BC030774,$9F841A9B
399 DC.L $3FFF0000,$82CD8698,$AC2BA1D8,$9FC1D5B9
400 DC.L $3FFF0000,$843A28C3,$ACDE4048,$A0728369
401 DC.L $3FFF0000,$85AAC367,$CC487B14,$1FC5C95C
402 DC.L $3FFF0000,$871F6196,$9E8D1010,$1EE85C9F
403 DC.L $3FFF0000,$88980E80,$92DA8528,$9FA20729
404 DC.L $3FFF0000,$8A14D575,$496EFD9C,$A07BF9AF
405 DC.L $3FFF0000,$8B95C1E3,$EA8BD6E8,$A0020DCF
406 DC.L $3FFF0000,$8D1ADF5B,$7E5BA9E4,$205A63DA
407 DC.L $3FFF0000,$8EA4398B,$45CD53C0,$1EB70051
408 DC.L $3FFF0000,$9031DC43,$1466B1DC,$1F6EB029
409 DC.L $3FFF0000,$91C3D373,$AB11C338,$A0781494
410 DC.L $3FFF0000,$935A2B2F,$13E6E92C,$9EB319B0
411 DC.L $3FFF0000,$94F4EFA8,$FEF70960,$2017457D
412 DC.L $3FFF0000,$96942D37,$20185A00,$1F11D537
413 DC.L $3FFF0000,$9837F051,$8DB8A970,$9FB952DD
414 DC.L $3FFF0000,$99E04593,$20B7FA64,$1FE43087
415 DC.L $3FFF0000,$9B8D39B9,$D54E5538,$1FA2A818
416 DC.L $3FFF0000,$9D3ED9A7,$2CFFB750,$1FDE494D
417 DC.L $3FFF0000,$9EF53260,$91A111AC,$20504890
418 DC.L $3FFF0000,$A0B0510F,$B9714FC4,$A073691C
419 DC.L $3FFF0000,$A2704303,$0C496818,$1F9B7A05
420 DC.L $3FFF0000,$A43515AE,$09E680A0,$A0797126
421 DC.L $3FFF0000,$A5FED6A9,$B15138EC,$A071A140
422 DC.L $3FFF0000,$A7CD93B4,$E9653568,$204F62DA
423 DC.L $3FFF0000,$A9A15AB4,$EA7C0EF8,$1F283C4A
424 DC.L $3FFF0000,$AB7A39B5,$A93ED338,$9F9A7FDC
425 DC.L $3FFF0000,$AD583EEA,$42A14AC8,$A05B3FAC
426 DC.L $3FFF0000,$AF3B78AD,$690A4374,$1FDF2610
427 DC.L $3FFF0000,$B123F581,$D2AC2590,$9F705F90
428 DC.L $3FFF0000,$B311C412,$A9112488,$201F678A
429 DC.L $3FFF0000,$B504F333,$F9DE6484,$1F32FB13
430 DC.L $3FFF0000,$B6FD91E3,$28D17790,$20038B30
431 DC.L $3FFF0000,$B8FBAF47,$62FB9EE8,$200DC3CC
432 DC.L $3FFF0000,$BAFF5AB2,$133E45FC,$9F8B2AE6
433 DC.L $3FFF0000,$BD08A39F,$580C36C0,$A02BBF70
434 DC.L $3FFF0000,$BF1799B6,$7A731084,$A00BF518
435 DC.L $3FFF0000,$C12C4CCA,$66709458,$A041DD41
436 DC.L $3FFF0000,$C346CCDA,$24976408,$9FDF137B
437 DC.L $3FFF0000,$C5672A11,$5506DADC,$201F1568
438 DC.L $3FFF0000,$C78D74C8,$ABB9B15C,$1FC13A2E
439 DC.L $3FFF0000,$C9B9BD86,$6E2F27A4,$A03F8F03
440 DC.L $3FFF0000,$CBEC14FE,$F2727C5C,$1FF4907D
441 DC.L $3FFF0000,$CE248C15,$1F8480E4,$9E6E53E4
442 DC.L $3FFF0000,$D06333DA,$EF2B2594,$1FD6D45C
443 DC.L $3FFF0000,$D2A81D91,$F12AE45C,$A076EDB9
444 DC.L $3FFF0000,$D4F35AAB,$CFEDFA20,$9FA6DE21
445 DC.L $3FFF0000,$D744FCCA,$D69D6AF4,$1EE69A2F
446 DC.L $3FFF0000,$D99D15C2,$78AFD7B4,$207F439F
447 DC.L $3FFF0000,$DBFBB797,$DAF23754,$201EC207
448 DC.L $3FFF0000,$DE60F482,$5E0E9124,$9E8BE175
449 DC.L $3FFF0000,$E0CCDEEC,$2A94E110,$20032C4B
450 DC.L $3FFF0000,$E33F8972,$BE8A5A50,$2004DFF5
451 DC.L $3FFF0000,$E5B906E7,$7C8348A8,$1E72F47A
452 DC.L $3FFF0000,$E8396A50,$3C4BDC68,$1F722F22
453 DC.L $3FFF0000,$EAC0C6E7,$DD243930,$A017E945
454 DC.L $3FFF0000,$ED4F301E,$D9942B84,$1F401A5B
455 DC.L $3FFF0000,$EFE4B99B,$DCDAF5CC,$9FB9A9E3
456 DC.L $3FFF0000,$F281773C,$59FFB138,$20744C05
457 DC.L $3FFF0000,$F5257D15,$2486CC2C,$1F773A19
458 DC.L $3FFF0000,$F7D0DF73,$0AD13BB8,$1FFE90D5
459 DC.L $3FFF0000,$FA83B2DB,$722A033C,$A041ED22
460 DC.L $3FFF0000,$FD3E0C0C,$F486C174,$1F853F3A
475 *--entry point for EXP(X), X is denormalized
478 ORI.L #$00800000,d0 ...sign(X)*2^(-126)
480 FMOVE.S #:3F800000,fp0
487 *--entry point for EXP(X), here X is finite, non-zero, and not NaN's
490 MOVE.L (a0),d0 ...load part of input X
491 ANDI.L #$7FFF0000,d0 ...biased expo. of X
492 CMPI.L #$3FBE0000,d0 ...2^(-65)
493 BGE.B EXPC1 ...normal case
497 *--The case |X| >= 2^(-65)
498 MOVE.W 4(a0),d0 ...expo. and partial sig. of |X|
499 CMPI.L #$400CB167,d0 ...16380 log2 trunc. 16 bits
500 BLT.B EXPMAIN ...normal case
505 *--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
506 FMOVE.X (a0),fp0 ...load input from (a0)
509 FMUL.S #:42B8AA3B,fp0 ...64/log2 * X
510 fmovem.x fp2/fp3,-(a7) ...save fp2
512 FMOVE.L fp0,d0 ...N = int( X * 64/log2 )
514 FMOVE.L d0,fp0 ...convert to floating-format
516 MOVE.L d0,L_SCR1(a6) ...save N temporarily
517 ANDI.L #$3F,d0 ...D0 is J = N mod 64
519 ADDA.L d0,a1 ...address of 2^(J/64)
521 ASR.L #6,d0 ...D0 is M
522 ADDI.W #$3FFF,d0 ...biased expo. of 2^(M)
523 MOVE.W L2,L_SCR1(a6) ...prefetch L2, no need in CB
527 *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
528 *--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
530 FMUL.S #:BC317218,fp0 ...N * L1, L1 = lead(-log2/64)
531 FMUL.X L2,fp2 ...N * L2, L1+L2 = -log2/64
532 FADD.X fp1,fp0 ...X + N*L1
533 FADD.X fp2,fp0 ...fp0 is R, reduced arg.
534 * MOVE.W #$3FA5,EXPA3 ...load EXPA3 in cache
537 *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
538 *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
539 *--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R
540 *--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
543 FMUL.X fp1,fp1 ...fp1 IS S = R*R
545 FMOVE.S #:3AB60B70,fp2 ...fp2 IS A5
546 * CLR.W 2(a1) ...load 2^(J/64) in cache
548 FMUL.X fp1,fp2 ...fp2 IS S*A5
550 FMUL.S #:3C088895,fp3 ...fp3 IS S*A4
552 FADD.D EXPA3,fp2 ...fp2 IS A3+S*A5
553 FADD.D EXPA2,fp3 ...fp3 IS A2+S*A4
555 FMUL.X fp1,fp2 ...fp2 IS S*(A3+S*A5)
556 MOVE.W d0,SCALE(a6) ...SCALE is 2^(M) in extended
558 move.l #$80000000,SCALE+4(a6)
561 FMUL.X fp1,fp3 ...fp3 IS S*(A2+S*A4)
563 FADD.S #:3F000000,fp2 ...fp2 IS A1+S*(A3+S*A5)
564 FMUL.X fp0,fp3 ...fp3 IS R*S*(A2+S*A4)
566 FMUL.X fp1,fp2 ...fp2 IS S*(A1+S*(A3+S*A5))
567 FADD.X fp3,fp0 ...fp0 IS R+R*S*(A2+S*A4),
570 FMOVE.X (a1)+,fp1 ...fp1 is lead. pt. of 2^(J/64)
571 FADD.X fp2,fp0 ...fp0 is EXP(R) - 1
575 *--final reconstruction process
576 *--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
578 FMUL.X fp1,fp0 ...2^(J/64)*(Exp(R)-1)
579 fmovem.x (a7)+,fp2/fp3 ...fp2 restored
580 FADD.S (a1),fp0 ...accurate 2^(J/64)
582 FADD.X fp1,fp0 ...2^(J/64) + 2^(J/64)*...
583 MOVE.L ADJFLAG(a6),d0
589 FMUL.X ADJSCALE(a6),fp0
591 FMOVE.L d1,FPCR ...restore user FPCR
592 FMUL.X SCALE(a6),fp0 ...multiply 2^(M)
597 FMOVEM.X (a0),fp0 ...in case X is denormalized
599 FADD.S #:3F800000,fp0 ...1+X in user mode
604 CMPI.L #$400CB27C,d0 ...16480 log2
607 FMOVE.X (a0),fp0 ...load input from (a0)
610 FMUL.S #:42B8AA3B,fp0 ...64/log2 * X
611 fmovem.x fp2/fp3,-(a7) ...save fp2
612 MOVE.L #1,ADJFLAG(a6)
613 FMOVE.L fp0,d0 ...N = int( X * 64/log2 )
615 FMOVE.L d0,fp0 ...convert to floating-format
616 MOVE.L d0,L_SCR1(a6) ...save N temporarily
617 ANDI.L #$3F,d0 ...D0 is J = N mod 64
619 ADDA.L d0,a1 ...address of 2^(J/64)
621 ASR.L #6,d0 ...D0 is K
622 MOVE.L d0,L_SCR1(a6) ...save K temporarily
623 ASR.L #1,d0 ...D0 is M1
624 SUB.L d0,L_SCR1(a6) ...a1 is M
625 ADDI.W #$3FFF,d0 ...biased expo. of 2^(M1)
626 MOVE.W d0,ADJSCALE(a6) ...ADJSCALE := 2^(M1)
628 move.l #$80000000,ADJSCALE+4(a6)
630 MOVE.L L_SCR1(a6),d0 ...D0 is M
631 ADDI.W #$3FFF,d0 ...biased expo. of 2^(M)
632 BRA.W EXPCONT1 ...go back to Step 3
638 bclr.b #sign_bit,(a0) ...setox always returns positive
645 *--entry point for EXPM1(X), here X is denormalized
652 *--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
656 MOVE.L (a0),d0 ...load part of input X
657 ANDI.L #$7FFF0000,d0 ...biased expo. of X
658 CMPI.L #$3FFD0000,d0 ...1/4
659 BGE.B EM1CON1 ...|X| >= 1/4
664 *--The case |X| >= 1/4
665 MOVE.W 4(a0),d0 ...expo. and partial sig. of |X|
666 CMPI.L #$4004C215,d0 ...70log2 rounded up to 16 bits
667 BLE.B EM1MAIN ...1/4 <= |X| <= 70log2
672 *--This is the case: 1/4 <= |X| <= 70 log2.
673 FMOVE.X (a0),fp0 ...load input from (a0)
676 FMUL.S #:42B8AA3B,fp0 ...64/log2 * X
677 fmovem.x fp2/fp3,-(a7) ...save fp2
678 * MOVE.W #$3F81,EM1A4 ...prefetch in CB mode
679 FMOVE.L fp0,d0 ...N = int( X * 64/log2 )
681 FMOVE.L d0,fp0 ...convert to floating-format
683 MOVE.L d0,L_SCR1(a6) ...save N temporarily
684 ANDI.L #$3F,d0 ...D0 is J = N mod 64
686 ADDA.L d0,a1 ...address of 2^(J/64)
688 ASR.L #6,d0 ...D0 is M
689 MOVE.L d0,L_SCR1(a6) ...save a copy of M
690 * MOVE.W #$3FDC,L2 ...prefetch L2 in CB mode
693 *--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
694 *--a0 points to 2^(J/64), D0 and a1 both contain M
696 FMUL.S #:BC317218,fp0 ...N * L1, L1 = lead(-log2/64)
697 FMUL.X L2,fp2 ...N * L2, L1+L2 = -log2/64
698 FADD.X fp1,fp0 ...X + N*L1
699 FADD.X fp2,fp0 ...fp0 is R, reduced arg.
700 * MOVE.W #$3FC5,EM1A2 ...load EM1A2 in cache
701 ADDI.W #$3FFF,d0 ...D0 is biased expo. of 2^M
704 *--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
705 *-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
706 *--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R
707 *--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
710 FMUL.X fp1,fp1 ...fp1 IS S = R*R
712 FMOVE.S #:3950097B,fp2 ...fp2 IS a6
713 * CLR.W 2(a1) ...load 2^(J/64) in cache
715 FMUL.X fp1,fp2 ...fp2 IS S*A6
717 FMUL.S #:3AB60B6A,fp3 ...fp3 IS S*A5
719 FADD.D EM1A4,fp2 ...fp2 IS A4+S*A6
720 FADD.D EM1A3,fp3 ...fp3 IS A3+S*A5
721 MOVE.W d0,SC(a6) ...SC is 2^(M) in extended
723 move.l #$80000000,SC+4(a6)
726 FMUL.X fp1,fp2 ...fp2 IS S*(A4+S*A6)
727 MOVE.L L_SCR1(a6),d0 ...D0 is M
729 FMUL.X fp1,fp3 ...fp3 IS S*(A3+S*A5)
730 ADDI.W #$3FFF,d0 ...biased expo. of 2^(-M)
731 FADD.D EM1A2,fp2 ...fp2 IS A2+S*(A4+S*A6)
732 FADD.S #:3F000000,fp3 ...fp3 IS A1+S*(A3+S*A5)
734 FMUL.X fp1,fp2 ...fp2 IS S*(A2+S*(A4+S*A6))
735 ORI.W #$8000,d0 ...signed/expo. of -2^(-M)
736 MOVE.W d0,ONEBYSC(a6) ...OnebySc is -2^(-M)
738 move.l #$80000000,ONEBYSC+4(a6)
740 FMUL.X fp3,fp1 ...fp1 IS S*(A1+S*(A3+S*A5))
743 FMUL.X fp0,fp2 ...fp2 IS R*S*(A2+S*(A4+S*A6))
744 FADD.X fp1,fp0 ...fp0 IS R+S*(A1+S*(A3+S*A5))
747 FADD.X fp2,fp0 ...fp0 IS EXP(R)-1
749 fmovem.x (a7)+,fp2/fp3 ...fp2 restored
752 *--Compute 2^(J/64)*p
754 FMUL.X (a1),fp0 ...2^(J/64)*(Exp(R)-1)
758 MOVE.L L_SCR1(a6),d0 ...retrieve M
762 FMOVE.S 12(a1),fp1 ...fp1 is t
763 FADD.X ONEBYSC(a6),fp1 ...fp1 is t+OnebySc
764 FADD.X fp1,fp0 ...p+(t+OnebySc), fp1 released
765 FADD.X (a1),fp0 ...T+(p+(t+OnebySc))
773 FADD.S 12(a1),fp0 ...p+t
774 FADD.X (a1),fp0 ...T+(p+t)
775 FADD.X ONEBYSC(a6),fp0 ...OnebySc + (T+(p+t))
778 *--Step 6.5 -3 <= M <= 63
779 FMOVE.X (a1)+,fp1 ...fp1 is T
780 FADD.S (a1),fp0 ...fp0 is p+t
781 FADD.X ONEBYSC(a6),fp1 ...fp1 is T+OnebySc
782 FADD.X fp1,fp0 ...(T+OnebySc)+(p+t)
793 CMPI.L #$3FBE0000,d0 ...2^(-65)
797 *--Step 8 |X| < 2^(-65)
798 CMPI.L #$00330000,d0 ...2^(-16312)
801 MOVE.L #$80010000,SC(a6) ...SC is -2^(-16382)
802 move.l #$80000000,SC+4(a6)
814 MOVE.L #$80010000,SC(a6)
815 move.l #$80000000,SC+4(a6)
824 *--Step 9 exp(X)-1 by a simple polynomial
825 FMOVE.X (a0),fp0 ...fp0 is X
826 FMUL.X fp0,fp0 ...fp0 is S := X*X
827 fmovem.x fp2/fp3,-(a7) ...save fp2
828 FMOVE.S #:2F30CAA8,fp1 ...fp1 is B12
829 FMUL.X fp0,fp1 ...fp1 is S*B12
830 FMOVE.S #:310F8290,fp2 ...fp2 is B11
831 FADD.S #:32D73220,fp1 ...fp1 is B10+S*B12
833 FMUL.X fp0,fp2 ...fp2 is S*B11
834 FMUL.X fp0,fp1 ...fp1 is S*(B10 + ...
836 FADD.S #:3493F281,fp2 ...fp2 is B9+S*...
837 FADD.D EM1B8,fp1 ...fp1 is B8+S*...
839 FMUL.X fp0,fp2 ...fp2 is S*(B9+...
840 FMUL.X fp0,fp1 ...fp1 is S*(B8+...
842 FADD.D EM1B7,fp2 ...fp2 is B7+S*...
843 FADD.D EM1B6,fp1 ...fp1 is B6+S*...
845 FMUL.X fp0,fp2 ...fp2 is S*(B7+...
846 FMUL.X fp0,fp1 ...fp1 is S*(B6+...
848 FADD.D EM1B5,fp2 ...fp2 is B5+S*...
849 FADD.D EM1B4,fp1 ...fp1 is B4+S*...
851 FMUL.X fp0,fp2 ...fp2 is S*(B5+...
852 FMUL.X fp0,fp1 ...fp1 is S*(B4+...
854 FADD.D EM1B3,fp2 ...fp2 is B3+S*...
855 FADD.X EM1B2,fp1 ...fp1 is B2+S*...
857 FMUL.X fp0,fp2 ...fp2 is S*(B3+...
858 FMUL.X fp0,fp1 ...fp1 is S*(B2+...
860 FMUL.X fp0,fp2 ...fp2 is S*S*(B3+...)
861 FMUL.X (a0),fp1 ...fp1 is X*S*(B2...
863 FMUL.S #:3F000000,fp0 ...fp0 is S*B1
864 FADD.X fp2,fp1 ...fp1 is Q
867 fmovem.x (a7)+,fp2/fp3 ...fp2 restored
869 FADD.X fp1,fp0 ...fp0 is S*B1+Q
878 *--Step 10 |X| > 70 log2
883 FMOVE.S #:BF800000,fp0 ...fp0 is -1
885 FADD.S #:00800000,fp0 ...-1 + 2^(-126)