1 * $NetBSD: slogn.sa,v 1.3 1994/10/26 07:49:54 cgd Exp $
3 * MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
4 * M68000 Hi-Performance Microprocessor Division
5 * M68040 Software Package
7 * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
10 * THE SOFTWARE is provided on an "AS IS" basis and without warranty.
11 * To the maximum extent permitted by applicable law,
12 * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
13 * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
14 * PARTICULAR PURPOSE and any warranty against infringement with
15 * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
16 * and any accompanying written materials.
18 * To the maximum extent permitted by applicable law,
19 * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
20 * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
21 * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
22 * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
23 * SOFTWARE. Motorola assumes no responsibility for the maintenance
24 * and support of the SOFTWARE.
26 * You are hereby granted a copyright license to use, modify, and
27 * distribute the SOFTWARE so long as this entire notice is retained
28 * without alteration in any modified and/or redistributed versions,
29 * and that such modified versions are clearly identified as such.
30 * No licenses are granted by implication, estoppel or otherwise
31 * under any patents or trademarks of Motorola, Inc.
34 * slogn.sa 3.1 12/10/90
36 * slogn computes the natural logarithm of an
37 * input value. slognd does the same except the input value is a
38 * denormalized number. slognp1 computes log(1+X), and slognp1d
39 * computes log(1+X) for denormalized X.
41 * Input: Double-extended value in memory location pointed to by address
44 * Output: log(X) or log(1+X) returned in floating-point register Fp0.
46 * Accuracy and Monotonicity: The returned result is within 2 ulps in
47 * 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
48 * result is subsequently rounded to double precision. The
49 * result is provably monotonic in double precision.
51 * Speed: The program slogn takes approximately 190 cycles for input
52 * argument X such that |X-1| >= 1/16, which is the usual
53 * situation. For those arguments, slognp1 takes approximately
54 * 210 cycles. For the less common arguments, the program will
55 * run no worse than 10% slower.
59 * Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in
60 * u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2.
62 * Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven
63 * significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base
64 * 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7).
66 * Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,
69 * Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)
70 * by k*log(2) + (log(F) + poly). The values of log(F) are calculated
71 * beforehand and stored in the program.
74 * Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
75 * u where u = 2X/(2+X). Otherwise, move on to Step 2.
77 * Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2
78 * of the algorithm for LOGN and compute log(1+X) as
79 * k*log(2) + log(F) + poly where poly approximates log(1+u),
82 * Implementation Notes:
83 * Note 1. There are 64 different possible values for F, thus 64 log(F)'s
84 * need to be tabulated. Moreover, the values of 1/F are also
85 * tabulated so that the division in (Y-F)/F can be performed by a
88 * Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value
89 * Y-F has to be calculated carefully when 1/2 <= X < 3/2.
91 * Note 3. To fully exploit the pipeline, polynomials are usually separated
92 * into two parts evaluated independently before being added up.
95 slogn IDNT 2,1 Motorola 040 Floating Point Software Package
101 BOUNDS1 DC.L $3FFEF07D,$3FFF8841
102 BOUNDS2 DC.L $3FFE8000,$3FFFC000
104 LOGOF2 DC.L $3FFE0000,$B17217F7,$D1CF79AC,$00000000
109 negone DC.L $BF800000
111 LOGA6 DC.L $3FC2499A,$B5E4040B
112 LOGA5 DC.L $BFC555B5,$848CB7DB
114 LOGA4 DC.L $3FC99999,$987D8730
115 LOGA3 DC.L $BFCFFFFF,$FF6F7E97
117 LOGA2 DC.L $3FD55555,$555555A4
118 LOGA1 DC.L $BFE00000,$00000008
120 LOGB5 DC.L $3F175496,$ADD7DAD6
121 LOGB4 DC.L $3F3C71C2,$FE80C7E0
123 LOGB3 DC.L $3F624924,$928BCCFF
124 LOGB2 DC.L $3F899999,$999995EC
126 LOGB1 DC.L $3FB55555,$55555555
127 TWO DC.L $40000000,$00000000
129 LTHOLD DC.L $3f990000,$80000000,$00000000,$00000000
132 DC.L $3FFE0000,$FE03F80F,$E03F80FE,$00000000
133 DC.L $3FF70000,$FF015358,$833C47E2,$00000000
134 DC.L $3FFE0000,$FA232CF2,$52138AC0,$00000000
135 DC.L $3FF90000,$BDC8D83E,$AD88D549,$00000000
136 DC.L $3FFE0000,$F6603D98,$0F6603DA,$00000000
137 DC.L $3FFA0000,$9CF43DCF,$F5EAFD48,$00000000
138 DC.L $3FFE0000,$F2B9D648,$0F2B9D65,$00000000
139 DC.L $3FFA0000,$DA16EB88,$CB8DF614,$00000000
140 DC.L $3FFE0000,$EF2EB71F,$C4345238,$00000000
141 DC.L $3FFB0000,$8B29B775,$1BD70743,$00000000
142 DC.L $3FFE0000,$EBBDB2A5,$C1619C8C,$00000000
143 DC.L $3FFB0000,$A8D839F8,$30C1FB49,$00000000
144 DC.L $3FFE0000,$E865AC7B,$7603A197,$00000000
145 DC.L $3FFB0000,$C61A2EB1,$8CD907AD,$00000000
146 DC.L $3FFE0000,$E525982A,$F70C880E,$00000000
147 DC.L $3FFB0000,$E2F2A47A,$DE3A18AF,$00000000
148 DC.L $3FFE0000,$E1FC780E,$1FC780E2,$00000000
149 DC.L $3FFB0000,$FF64898E,$DF55D551,$00000000
150 DC.L $3FFE0000,$DEE95C4C,$A037BA57,$00000000
151 DC.L $3FFC0000,$8DB956A9,$7B3D0148,$00000000
152 DC.L $3FFE0000,$DBEB61EE,$D19C5958,$00000000
153 DC.L $3FFC0000,$9B8FE100,$F47BA1DE,$00000000
154 DC.L $3FFE0000,$D901B203,$6406C80E,$00000000
155 DC.L $3FFC0000,$A9372F1D,$0DA1BD17,$00000000
156 DC.L $3FFE0000,$D62B80D6,$2B80D62C,$00000000
157 DC.L $3FFC0000,$B6B07F38,$CE90E46B,$00000000
158 DC.L $3FFE0000,$D3680D36,$80D3680D,$00000000
159 DC.L $3FFC0000,$C3FD0329,$06488481,$00000000
160 DC.L $3FFE0000,$D0B69FCB,$D2580D0B,$00000000
161 DC.L $3FFC0000,$D11DE0FF,$15AB18CA,$00000000
162 DC.L $3FFE0000,$CE168A77,$25080CE1,$00000000
163 DC.L $3FFC0000,$DE1433A1,$6C66B150,$00000000
164 DC.L $3FFE0000,$CB8727C0,$65C393E0,$00000000
165 DC.L $3FFC0000,$EAE10B5A,$7DDC8ADD,$00000000
166 DC.L $3FFE0000,$C907DA4E,$871146AD,$00000000
167 DC.L $3FFC0000,$F7856E5E,$E2C9B291,$00000000
168 DC.L $3FFE0000,$C6980C69,$80C6980C,$00000000
169 DC.L $3FFD0000,$82012CA5,$A68206D7,$00000000
170 DC.L $3FFE0000,$C4372F85,$5D824CA6,$00000000
171 DC.L $3FFD0000,$882C5FCD,$7256A8C5,$00000000
172 DC.L $3FFE0000,$C1E4BBD5,$95F6E947,$00000000
173 DC.L $3FFD0000,$8E44C60B,$4CCFD7DE,$00000000
174 DC.L $3FFE0000,$BFA02FE8,$0BFA02FF,$00000000
175 DC.L $3FFD0000,$944AD09E,$F4351AF6,$00000000
176 DC.L $3FFE0000,$BD691047,$07661AA3,$00000000
177 DC.L $3FFD0000,$9A3EECD4,$C3EAA6B2,$00000000
178 DC.L $3FFE0000,$BB3EE721,$A54D880C,$00000000
179 DC.L $3FFD0000,$A0218434,$353F1DE8,$00000000
180 DC.L $3FFE0000,$B92143FA,$36F5E02E,$00000000
181 DC.L $3FFD0000,$A5F2FCAB,$BBC506DA,$00000000
182 DC.L $3FFE0000,$B70FBB5A,$19BE3659,$00000000
183 DC.L $3FFD0000,$ABB3B8BA,$2AD362A5,$00000000
184 DC.L $3FFE0000,$B509E68A,$9B94821F,$00000000
185 DC.L $3FFD0000,$B1641795,$CE3CA97B,$00000000
186 DC.L $3FFE0000,$B30F6352,$8917C80B,$00000000
187 DC.L $3FFD0000,$B7047551,$5D0F1C61,$00000000
188 DC.L $3FFE0000,$B11FD3B8,$0B11FD3C,$00000000
189 DC.L $3FFD0000,$BC952AFE,$EA3D13E1,$00000000
190 DC.L $3FFE0000,$AF3ADDC6,$80AF3ADE,$00000000
191 DC.L $3FFD0000,$C2168ED0,$F458BA4A,$00000000
192 DC.L $3FFE0000,$AD602B58,$0AD602B6,$00000000
193 DC.L $3FFD0000,$C788F439,$B3163BF1,$00000000
194 DC.L $3FFE0000,$AB8F69E2,$8359CD11,$00000000
195 DC.L $3FFD0000,$CCECAC08,$BF04565D,$00000000
196 DC.L $3FFE0000,$A9C84A47,$A07F5638,$00000000
197 DC.L $3FFD0000,$D2420487,$2DD85160,$00000000
198 DC.L $3FFE0000,$A80A80A8,$0A80A80B,$00000000
199 DC.L $3FFD0000,$D7894992,$3BC3588A,$00000000
200 DC.L $3FFE0000,$A655C439,$2D7B73A8,$00000000
201 DC.L $3FFD0000,$DCC2C4B4,$9887DACC,$00000000
202 DC.L $3FFE0000,$A4A9CF1D,$96833751,$00000000
203 DC.L $3FFD0000,$E1EEBD3E,$6D6A6B9E,$00000000
204 DC.L $3FFE0000,$A3065E3F,$AE7CD0E0,$00000000
205 DC.L $3FFD0000,$E70D785C,$2F9F5BDC,$00000000
206 DC.L $3FFE0000,$A16B312E,$A8FC377D,$00000000
207 DC.L $3FFD0000,$EC1F392C,$5179F283,$00000000
208 DC.L $3FFE0000,$9FD809FD,$809FD80A,$00000000
209 DC.L $3FFD0000,$F12440D3,$E36130E6,$00000000
210 DC.L $3FFE0000,$9E4CAD23,$DD5F3A20,$00000000
211 DC.L $3FFD0000,$F61CCE92,$346600BB,$00000000
212 DC.L $3FFE0000,$9CC8E160,$C3FB19B9,$00000000
213 DC.L $3FFD0000,$FB091FD3,$8145630A,$00000000
214 DC.L $3FFE0000,$9B4C6F9E,$F03A3CAA,$00000000
215 DC.L $3FFD0000,$FFE97042,$BFA4C2AD,$00000000
216 DC.L $3FFE0000,$99D722DA,$BDE58F06,$00000000
217 DC.L $3FFE0000,$825EFCED,$49369330,$00000000
218 DC.L $3FFE0000,$9868C809,$868C8098,$00000000
219 DC.L $3FFE0000,$84C37A7A,$B9A905C9,$00000000
220 DC.L $3FFE0000,$97012E02,$5C04B809,$00000000
221 DC.L $3FFE0000,$87224C2E,$8E645FB7,$00000000
222 DC.L $3FFE0000,$95A02568,$095A0257,$00000000
223 DC.L $3FFE0000,$897B8CAC,$9F7DE298,$00000000
224 DC.L $3FFE0000,$94458094,$45809446,$00000000
225 DC.L $3FFE0000,$8BCF55DE,$C4CD05FE,$00000000
226 DC.L $3FFE0000,$92F11384,$0497889C,$00000000
227 DC.L $3FFE0000,$8E1DC0FB,$89E125E5,$00000000
228 DC.L $3FFE0000,$91A2B3C4,$D5E6F809,$00000000
229 DC.L $3FFE0000,$9066E68C,$955B6C9B,$00000000
230 DC.L $3FFE0000,$905A3863,$3E06C43B,$00000000
231 DC.L $3FFE0000,$92AADE74,$C7BE59E0,$00000000
232 DC.L $3FFE0000,$8F1779D9,$FDC3A219,$00000000
233 DC.L $3FFE0000,$94E9BFF6,$15845643,$00000000
234 DC.L $3FFE0000,$8DDA5202,$37694809,$00000000
235 DC.L $3FFE0000,$9723A1B7,$20134203,$00000000
236 DC.L $3FFE0000,$8CA29C04,$6514E023,$00000000
237 DC.L $3FFE0000,$995899C8,$90EB8990,$00000000
238 DC.L $3FFE0000,$8B70344A,$139BC75A,$00000000
239 DC.L $3FFE0000,$9B88BDAA,$3A3DAE2F,$00000000
240 DC.L $3FFE0000,$8A42F870,$5669DB46,$00000000
241 DC.L $3FFE0000,$9DB4224F,$FFE1157C,$00000000
242 DC.L $3FFE0000,$891AC73A,$E9819B50,$00000000
243 DC.L $3FFE0000,$9FDADC26,$8B7A12DA,$00000000
244 DC.L $3FFE0000,$87F78087,$F78087F8,$00000000
245 DC.L $3FFE0000,$A1FCFF17,$CE733BD4,$00000000
246 DC.L $3FFE0000,$86D90544,$7A34ACC6,$00000000
247 DC.L $3FFE0000,$A41A9E8F,$5446FB9F,$00000000
248 DC.L $3FFE0000,$85BF3761,$2CEE3C9B,$00000000
249 DC.L $3FFE0000,$A633CD7E,$6771CD8B,$00000000
250 DC.L $3FFE0000,$84A9F9C8,$084A9F9D,$00000000
251 DC.L $3FFE0000,$A8489E60,$0B435A5E,$00000000
252 DC.L $3FFE0000,$83993052,$3FBE3368,$00000000
253 DC.L $3FFE0000,$AA59233C,$CCA4BD49,$00000000
254 DC.L $3FFE0000,$828CBFBE,$B9A020A3,$00000000
255 DC.L $3FFE0000,$AC656DAE,$6BCC4985,$00000000
256 DC.L $3FFE0000,$81848DA8,$FAF0D277,$00000000
257 DC.L $3FFE0000,$AE6D8EE3,$60BB2468,$00000000
258 DC.L $3FFE0000,$80808080,$80808081,$00000000
259 DC.L $3FFE0000,$B07197A2,$3C46C654,$00000000
281 *--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
283 MOVE.L #-100,ADJK(a6) ...INPUT = 2^(ADJK) * FP0
285 *----normalize the input value by left shifting k bits (k to be determined
286 *----below), adjusting exponent and storing -k to ADJK
287 *----the value TWOTO100 is no longer needed.
288 *----Note that this code assumes the denormalized input is NON-ZERO.
290 MoveM.L D2-D7,-(A7) ...save some registers
291 Clr.L D3 ...D3 is exponent of smallest norm. #
293 Move.L 8(A0),D5 ...(D4,D5) is (Hi_X,Lo_X)
294 Clr.L D2 ...D2 used for holding K
306 Add.L D6,D2 ...(D3,D4,D5) is normalized
310 Move.L D5,XFRAC+4(a6)
314 MoveM.L (A7)+,D2-D7 ...restore registers
316 Bra.B LOGBGN ...begin regular log(X)
321 BFFFO D4{0:32},D6 ...find first 1
322 Move.L D6,D2 ...get k
324 Move.L D5,D7 ...a copy of D5
329 Or.L D7,D4 ...(D3,D4,D5) normalized
333 Move.L D5,XFRAC+4(a6)
337 MoveM.L (A7)+,D2-D7 ...restore registers
339 Bra.B LOGBGN ...begin regular log(X)
344 *--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
346 FMOVE.X (A0),FP0 ...LOAD INPUT
350 *--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
351 *--A FINITE, NON-ZERO, NORMALIZED NUMBER.
360 TST.L D0 ...CHECK IF X IS NEGATIVE
361 BLT.W LOGNEG ...LOG OF NEGATIVE ARGUMENT IS INVALID
362 CMP2.L BOUNDS1,D0 ...X IS POSITIVE, CHECK IF X IS NEAR 1
363 BCC.W LOGNEAR1 ...BOUNDS IS ROUGHLY [15/16, 17/16]
366 *--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
368 *--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
369 *--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
370 *--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
371 *-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
372 *--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
373 *--LOG(1+U) CAN BE VERY EFFICIENT.
374 *--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
375 *--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
377 *--GET K, Y, F, AND ADDRESS OF 1/F.
379 ASR.L #8,D0 ...SHIFTED 16 BITS, BIASED EXPO. OF X
380 SUBI.L #$3FFF,D0 ...THIS IS K
381 ADD.L ADJK(a6),D0 ...ADJUST K, ORIGINAL INPUT MAY BE DENORM.
382 LEA LOGTBL,A0 ...BASE ADDRESS OF 1/F AND LOG(F)
383 FMOVE.L D0,FP1 ...CONVERT K TO FLOATING-POINT FORMAT
385 *--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
386 MOVE.L #$3FFF0000,X(a6) ...X IS NOW Y, I.E. 2^(-K)*X
387 MOVE.L XFRAC(a6),FFRAC(a6)
388 ANDI.L #$FE000000,FFRAC(a6) ...FIRST 7 BITS OF Y
389 ORI.L #$01000000,FFRAC(a6) ...GET F: ATTACH A 1 AT THE EIGHTH BIT
390 MOVE.L FFRAC(a6),D0 ...READY TO GET ADDRESS OF 1/F
394 ASR.L #4,D0 ...SHIFTED 20, D0 IS THE DISPLACEMENT
395 ADDA.L D0,A0 ...A0 IS THE ADDRESS FOR 1/F
398 move.l #$3fff0000,F(a6)
400 FSUB.X F(a6),FP0 ...Y-F
401 FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2 WHILE FP0 IS NOT READY
402 *--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
403 *--REGISTERS SAVED: FPCR, FP1, FP2
406 *--AN RE-ENTRY POINT FOR LOGNP1
407 FMUL.X (A0),FP0 ...FP0 IS U = (Y-F)/F
408 FMUL.X LOGOF2,FP1 ...GET K*LOG2 WHILE FP0 IS NOT READY
410 FMUL.X FP2,FP2 ...FP2 IS V=U*U
411 FMOVE.X FP1,KLOG2(a6) ...PUT K*LOG2 IN MEMEORY, FREE FP1
413 *--LOG(1+U) IS APPROXIMATED BY
414 *--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
415 *--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]
420 FMUL.D LOGA6,FP1 ...V*A6
421 FMUL.D LOGA5,FP2 ...V*A5
423 FADD.D LOGA4,FP1 ...A4+V*A6
424 FADD.D LOGA3,FP2 ...A3+V*A5
426 FMUL.X FP3,FP1 ...V*(A4+V*A6)
427 FMUL.X FP3,FP2 ...V*(A3+V*A5)
429 FADD.D LOGA2,FP1 ...A2+V*(A4+V*A6)
430 FADD.D LOGA1,FP2 ...A1+V*(A3+V*A5)
432 FMUL.X FP3,FP1 ...V*(A2+V*(A4+V*A6))
433 ADDA.L #16,A0 ...ADDRESS OF LOG(F)
434 FMUL.X FP3,FP2 ...V*(A1+V*(A3+V*A5)), FP3 RELEASED
436 FMUL.X FP0,FP1 ...U*V*(A2+V*(A4+V*A6))
437 FADD.X FP2,FP0 ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED
439 FADD.X (A0),FP1 ...LOG(F)+U*V*(A2+V*(A4+V*A6))
440 FMOVEm.X (sp)+,FP2/fp3 ...RESTORE FP2
441 FADD.X FP1,FP0 ...FP0 IS LOG(F) + LOG(1+U)
444 FADD.X KLOG2(a6),FP0 ...FINAL ADD
449 *--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
451 FSUB.S one,FP1 ...FP1 IS X-1
452 FADD.S one,FP0 ...FP0 IS X+1
453 FADD.X FP1,FP1 ...FP1 IS 2(X-1)
454 *--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
455 *--IN U, U = 2(X-1)/(X+1) = FP1/FP0
458 *--THIS IS AN RE-ENTRY POINT FOR LOGNP1
459 FDIV.X FP0,FP1 ...FP1 IS U
460 FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2
461 *--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
462 *--LET V=U*U, W=V*V, CALCULATE
463 *--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
464 *--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] )
466 FMUL.X FP0,FP0 ...FP0 IS V
467 FMOVE.X FP1,SAVEU(a6) ...STORE U IN MEMORY, FREE FP1
469 FMUL.X FP1,FP1 ...FP1 IS W
474 FMUL.X FP1,FP3 ...W*B5
475 FMUL.X FP1,FP2 ...W*B4
477 FADD.D LOGB3,FP3 ...B3+W*B5
478 FADD.D LOGB2,FP2 ...B2+W*B4
480 FMUL.X FP3,FP1 ...W*(B3+W*B5), FP3 RELEASED
482 FMUL.X FP0,FP2 ...V*(B2+W*B4)
484 FADD.D LOGB1,FP1 ...B1+W*(B3+W*B5)
485 FMUL.X SAVEU(a6),FP0 ...FP0 IS U*V
487 FADD.X FP2,FP1 ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
488 FMOVEm.X (sp)+,FP2/fp3 ...FP2 RESTORED
490 FMUL.X FP1,FP0 ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )
498 *--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
503 *--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
504 * Simply return the denorm
510 *--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
512 FMOVE.X (A0),FP0 ...LOAD INPUT
513 fabs.x fp0 ;test magnitude
514 fcmp.x LTHOLD,fp0 ;compare with min threshold
515 fbgt.w LP1REAL ;if greater, continue
516 fmove.l #0,fpsr ;clr N flag from compare
518 fmove.x (a0),fp0 ;return signed argument
522 FMOVE.X (A0),FP0 ...LOAD INPUT
524 FMOVE.X FP0,FP1 ...FP1 IS INPUT Z
525 FADD.S one,FP0 ...X := ROUND(1+Z)
527 MOVE.W XFRAC(a6),XDCARE(a6)
530 BLE.W LP1NEG0 ...LOG OF ZERO OR -VE
532 BCS.W LOGMAIN ...BOUNDS2 IS [1/2,3/2]
533 *--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
534 *--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
535 *--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).
538 *--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
543 *--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
544 *--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
545 FADD.X FP1,FP1 ...FP1 IS 2Z
546 FADD.S one,FP0 ...FP0 IS 1+X
551 *--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
552 *--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
553 *--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
554 *--THERE ARE ONLY TWO CASES.
555 *--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
556 *--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z
557 *--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
558 *--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.
560 MOVE.L XFRAC(a6),FFRAC(a6)
561 ANDI.L #$FE000000,FFRAC(a6)
562 ORI.L #$01000000,FFRAC(a6) ...F OBTAINED
563 CMPI.L #$3FFF8000,D0 ...SEE IF 1+Z > 1
568 move.l #$3fff0000,F(a6)
570 FSUB.X F(a6),FP0 ...2-F
575 ASR.L #4,D0 ...D0 CONTAINS DISPLACEMENT FOR 1/F
576 FADD.X FP1,FP1 ...GET 2Z
577 FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2
578 FADD.X FP1,FP0 ...FP0 IS Y-F = (2-F)+2Z
579 LEA LOGTBL,A0 ...A0 IS ADDRESS OF 1/F
581 FMOVE.S negone,FP1 ...FP1 IS K = -1
586 move.l #$3fff0000,F(a6)
588 FSUB.X F(a6),FP0 ...1-F
594 FADD.X FP1,FP0 ...FP0 IS Y-F
595 FMOVEm.X FP2/fp3,-(sp) ...FP2 SAVED
597 ADDA.L D0,A0 ...A0 IS ADDRESS OF 1/F
598 FMOVE.S zero,FP1 ...FP1 IS K = 0
602 *--FPCR SAVED. D0 IS X IN COMPACT FORM.