1 /* $NetBSD: fpu_implode.c,v 1.1.24.4 2005/11/10 13:58:15 skrll Exp $ */
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
44 * FPU subroutines: `implode' internal format numbers into the machine's
45 * `packed binary' format.
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.1.24.4 2005/11/10 13:58:15 skrll Exp $");
51 #include <sys/types.h>
52 #include <sys/systm.h>
54 #include <machine/ieee.h>
55 #include <powerpc/instr.h>
56 #include <machine/reg.h>
57 #include <machine/fpu.h>
59 #include <powerpc/fpu/fpu_arith.h>
60 #include <powerpc/fpu/fpu_emu.h>
61 #include <powerpc/fpu/fpu_extern.h>
63 static int round(struct fpemu
*, struct fpn
*);
64 static int toinf(struct fpemu
*, int);
67 * Round a number (algorithm from Motorola MC68882 manual, modified for
68 * our internal format). Set inexact exception if rounding is required.
69 * Return true iff we rounded up.
71 * After rounding, we discard the guard and round bits by shifting right
72 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
73 * This saves effort later.
75 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
76 * responsibility to fix this if necessary.
79 round(struct fpemu
*fe
, struct fpn
*fp
)
93 m3
= (m3
>> FP_NG
) | (m2
<< (32 - FP_NG
));
94 m2
= (m2
>> FP_NG
) | (m1
<< (32 - FP_NG
));
95 m1
= (m1
>> FP_NG
) | (m0
<< (32 - FP_NG
));
98 if ((gr
| s
) == 0) /* result is exact: no rounding needed */
101 fe
->fe_cx
|= FPSCR_XX
|FPSCR_FI
; /* inexact */
103 /* Go to rounddown to round down; break to round up. */
104 switch ((fe
->fe_fpscr
) & FPSCR_RN
) {
109 * Round only if guard is set (gr & 2). If guard is set,
110 * but round & sticky both clear, then we want to round
111 * but have a tie, so round to even, i.e., add 1 iff odd.
115 if ((gr
& 1) || fp
->fp_sticky
|| (m3
& 1))
120 /* Round towards zero, i.e., down. */
124 /* Round towards -Inf: up if negative, down if positive. */
130 /* Round towards +Inf: up if positive, down otherwise. */
136 /* Bump low bit of mantissa, with carry. */
137 fe
->fe_cx
|= FPSCR_FR
;
140 FPU_ADDCS(m2
, m2
, 0);
141 FPU_ADDCS(m1
, m1
, 0);
158 * For overflow: return true if overflow is to go to +/-Inf, according
159 * to the sign of the overflowing result. If false, overflow is to go
160 * to the largest magnitude value instead.
163 toinf(struct fpemu
*fe
, int sign
)
167 /* look at rounding direction */
168 switch ((fe
->fe_fpscr
) & FPSCR_RN
) {
171 case FSR_RD_RN
: /* the nearest value is always Inf */
175 case FSR_RD_RZ
: /* toward 0 => never towards Inf */
179 case FSR_RD_RP
: /* toward +Inf iff positive */
183 case FSR_RD_RM
: /* toward -Inf iff negative */
188 fe
->fe_cx
|= FPSCR_OX
;
193 * fpn -> int (int value returned as return value).
195 * N.B.: this conversion always rounds towards zero (this is a peculiarity
196 * of the SPARC instruction set).
199 fpu_ftoi(struct fpemu
*fe
, struct fpn
*fp
)
205 switch (fp
->fp_class
) {
212 * If exp >= 2^32, overflow. Otherwise shift value right
213 * into last mantissa word (this will not exceed 0xffffffff),
214 * shifting any guard and round bits out into the sticky
215 * bit. Then ``round'' towards zero, i.e., just set an
216 * inexact exception if sticky is set (see round()).
217 * If the result is > 0x80000000, or is positive and equals
218 * 0x80000000, overflow; otherwise the last fraction word
221 if ((exp
= fp
->fp_exp
) >= 32)
223 /* NB: the following includes exp < 0 cases */
224 if (fpu_shr(fp
, FP_NMANT
- 1 - exp
) != 0)
225 fe
->fe_cx
|= FPSCR_UX
;
227 if (i
>= ((u_int
)0x80000000 + sign
))
229 return (sign
? -i
: i
);
231 default: /* Inf, qNaN, sNaN */
234 /* overflow: replace any inexact exception with invalid */
235 fe
->fe_cx
|= FPSCR_VXCVI
;
236 return (0x7fffffff + sign
);
240 * fpn -> extended int (high bits of int value returned as return value).
242 * N.B.: this conversion always rounds towards zero (this is a peculiarity
243 * of the SPARC instruction set).
246 fpu_ftox(struct fpemu
*fe
, struct fpn
*fp
, u_int
*res
)
252 switch (fp
->fp_class
) {
260 * If exp >= 2^64, overflow. Otherwise shift value right
261 * into last mantissa word (this will not exceed 0xffffffffffffffff),
262 * shifting any guard and round bits out into the sticky
263 * bit. Then ``round'' towards zero, i.e., just set an
264 * inexact exception if sticky is set (see round()).
265 * If the result is > 0x8000000000000000, or is positive and equals
266 * 0x8000000000000000, overflow; otherwise the last fraction word
269 if ((exp
= fp
->fp_exp
) >= 64)
271 /* NB: the following includes exp < 0 cases */
272 if (fpu_shr(fp
, FP_NMANT
- 1 - exp
) != 0)
273 fe
->fe_cx
|= FPSCR_UX
;
274 i
= ((u_int64_t
)fp
->fp_mant
[2]<<32)|fp
->fp_mant
[3];
275 if (i
>= ((u_int64_t
)0x8000000000000000LL
+ sign
))
277 return (sign
? -i
: i
);
279 default: /* Inf, qNaN, sNaN */
282 /* overflow: replace any inexact exception with invalid */
283 fe
->fe_cx
|= FPSCR_VXCVI
;
284 return (0x7fffffffffffffffLL
+ sign
);
288 * fpn -> single (32 bit single returned as return value).
289 * We assume <= 29 bits in a single-precision fraction (1.f part).
292 fpu_ftos(struct fpemu
*fe
, struct fpn
*fp
)
294 u_int sign
= fp
->fp_sign
<< 31;
297 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
298 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
300 /* Take care of non-numbers first. */
303 * Preserve upper bits of NaN, per SPARC V8 appendix N.
304 * Note that fp->fp_mant[0] has the quiet bit set,
305 * even if it is classified as a signalling NaN.
307 (void) fpu_shr(fp
, FP_NMANT
- 1 - SNG_FRACBITS
);
308 exp
= SNG_EXP_INFNAN
;
312 return (sign
| SNG_EXP(SNG_EXP_INFNAN
));
317 * Normals (including subnormals). Drop all the fraction bits
318 * (including the explicit ``implied'' 1 bit) down into the
319 * single-precision range. If the number is subnormal, move
320 * the ``implied'' 1 into the explicit range as well, and shift
321 * right to introduce leading zeroes. Rounding then acts
322 * differently for normals and subnormals: the largest subnormal
323 * may round to the smallest normal (1.0 x 2^minexp), or may
324 * remain subnormal. In the latter case, signal an underflow
325 * if the result was inexact or if underflow traps are enabled.
327 * Rounding a normal, on the other hand, always produces another
328 * normal (although either way the result might be too big for
329 * single precision, and cause an overflow). If rounding a
330 * normal produces 2.0 in the fraction, we need not adjust that
331 * fraction at all, since both 1.0 and 2.0 are zero under the
334 * Note that the guard and round bits vanish from the number after
337 if ((exp
= fp
->fp_exp
+ SNG_EXP_BIAS
) <= 0) { /* subnormal */
338 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
339 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- SNG_FRACBITS
- exp
);
340 if (round(fe
, fp
) && fp
->fp_mant
[3] == SNG_EXP(1))
341 return (sign
| SNG_EXP(1) | 0);
342 if ((fe
->fe_cx
& FPSCR_FI
) ||
343 (fe
->fe_fpscr
& FPSCR_UX
))
344 fe
->fe_cx
|= FPSCR_UX
;
345 return (sign
| SNG_EXP(0) | fp
->fp_mant
[3]);
347 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
348 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- 1 - SNG_FRACBITS
);
350 if ((fp
->fp_mant
[3] & SNG_EXP(1 << FP_NG
)) == 0)
353 if (round(fe
, fp
) && fp
->fp_mant
[3] == SNG_EXP(2))
355 if (exp
>= SNG_EXP_INFNAN
) {
356 /* overflow to inf or to max single */
358 return (sign
| SNG_EXP(SNG_EXP_INFNAN
));
359 return (sign
| SNG_EXP(SNG_EXP_INFNAN
- 1) | SNG_MASK
);
363 return (sign
| SNG_EXP(exp
) | (fp
->fp_mant
[3] & SNG_MASK
));
367 * fpn -> double (32 bit high-order result returned; 32-bit low order result
368 * left in res[1]). Assumes <= 61 bits in double precision fraction.
370 * This code mimics fpu_ftos; see it for comments.
373 fpu_ftod(struct fpemu
*fe
, struct fpn
*fp
, u_int
*res
)
375 u_int sign
= fp
->fp_sign
<< 31;
378 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
379 #define DBL_MASK (DBL_EXP(1) - 1)
382 (void) fpu_shr(fp
, FP_NMANT
- 1 - DBL_FRACBITS
);
383 exp
= DBL_EXP_INFNAN
;
387 sign
|= DBL_EXP(DBL_EXP_INFNAN
);
395 if ((exp
= fp
->fp_exp
+ DBL_EXP_BIAS
) <= 0) {
396 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- DBL_FRACBITS
- exp
);
397 if (round(fe
, fp
) && fp
->fp_mant
[2] == DBL_EXP(1)) {
399 return (sign
| DBL_EXP(1) | 0);
401 if ((fe
->fe_cx
& FPSCR_FI
) ||
402 (fe
->fe_fpscr
& FPSCR_UX
))
403 fe
->fe_cx
|= FPSCR_UX
;
407 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- 1 - DBL_FRACBITS
);
408 if (round(fe
, fp
) && fp
->fp_mant
[2] == DBL_EXP(2))
410 if (exp
>= DBL_EXP_INFNAN
) {
411 fe
->fe_cx
|= FPSCR_OX
| FPSCR_UX
;
412 if (toinf(fe
, sign
)) {
414 return (sign
| DBL_EXP(DBL_EXP_INFNAN
) | 0);
417 return (sign
| DBL_EXP(DBL_EXP_INFNAN
) | DBL_MASK
);
420 res
[1] = fp
->fp_mant
[3];
421 return (sign
| DBL_EXP(exp
) | (fp
->fp_mant
[2] & DBL_MASK
));
425 * Implode an fpn, writing the result into the given space.
428 fpu_implode(struct fpemu
*fe
, struct fpn
*fp
, int type
, u_int
*space
)
434 space
[0] = fpu_ftox(fe
, fp
, space
);
435 DPRINTF(FPE_REG
, ("fpu_implode: long %x %x\n",
436 space
[0], space
[1]));
441 space
[1] = fpu_ftoi(fe
, fp
);
442 DPRINTF(FPE_REG
, ("fpu_implode: int %x\n",
447 space
[0] = fpu_ftos(fe
, fp
);
448 DPRINTF(FPE_REG
, ("fpu_implode: single %x\n",
453 space
[0] = fpu_ftod(fe
, fp
, space
);
454 DPRINTF(FPE_REG
, ("fpu_implode: double %x %x\n",
455 space
[0], space
[1]));
459 panic("fpu_implode: invalid type %d", type
);