1 /* $NetBSD: fpu_explode.c,v 1.11 2003/08/07 16:29:37 agc Exp $ */
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
44 * FPU subroutines: `explode' the machine's `packed binary' format numbers
45 * into our internal format.
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.11 2003/08/07 16:29:37 agc Exp $");
51 #if defined(_KERNEL_OPT)
52 #include "opt_sparc_arch.h"
55 #include <sys/types.h>
56 #include <sys/systm.h>
58 #include <machine/ieee.h>
59 #include <machine/instr.h>
60 #include <machine/reg.h>
62 #include <sparc/fpu/fpu_arith.h>
63 #include <sparc/fpu/fpu_emu.h>
64 #include <sparc/fpu/fpu_extern.h>
67 * N.B.: in all of the following, we assume the FP format is
69 * ---------------------------
70 * | s | exponent | fraction |
71 * ---------------------------
73 * (which represents -1**s * 1.fraction * 2**exponent), so that the
74 * sign bit is way at the top (bit 31), the exponent is next, and
75 * then the remaining bits mark the fraction. A zero exponent means
76 * zero or denormalized (0.fraction rather than 1.fraction), and the
77 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
79 * Since the sign bit is always the topmost bit---this holds even for
80 * integers---we set that outside all the *tof functions. Each function
81 * returns the class code for the new number (but note that we use
82 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
89 fpu_itof(struct fpn
*fp
, u_int i
)
95 * The value FP_1 represents 2^FP_LG, so set the exponent
96 * there and let normalization fix it up. Convert negative
97 * numbers to sign-and-magnitude. Note that this relies on
98 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
101 fp
->fp_mant
[0] = (int)i
< 0 ? -i
: i
;
114 fpu_xtof(struct fpn
*fp
, uint64_t i
)
120 * The value FP_1 represents 2^FP_LG, so set the exponent
121 * there and let normalization fix it up. Convert negative
122 * numbers to sign-and-magnitude. Note that this relies on
123 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
126 *((int64_t*)fp
->fp_mant
) = (int64_t)i
< 0 ? -i
: i
;
134 #define mask(nbits) ((1L << (nbits)) - 1)
137 * All external floating formats convert to internal in the same manner,
138 * as defined here. Note that only normals get an implied 1.0 inserted.
140 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
144 fp->fp_exp = 1 - expbias; \
145 fp->fp_mant[0] = f0; \
146 fp->fp_mant[1] = f1; \
147 fp->fp_mant[2] = f2; \
148 fp->fp_mant[3] = f3; \
152 if (exp == (2 * expbias + 1)) { \
155 fp->fp_mant[0] = f0; \
156 fp->fp_mant[1] = f1; \
157 fp->fp_mant[2] = f2; \
158 fp->fp_mant[3] = f3; \
161 fp->fp_exp = exp - expbias; \
162 fp->fp_mant[0] = FP_1 | f0; \
163 fp->fp_mant[1] = f1; \
164 fp->fp_mant[2] = f2; \
165 fp->fp_mant[3] = f3; \
169 * 32-bit single precision -> fpn.
170 * We assume a single occupies at most (64-FP_LG) bits in the internal
171 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
174 fpu_stof(struct fpn
*fp
, u_int i
)
177 register u_int frac
, f0
, f1
;
178 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
180 exp
= (i
>> (32 - 1 - SNG_EXPBITS
)) & mask(SNG_EXPBITS
);
181 frac
= i
& mask(SNG_FRACBITS
);
182 f0
= frac
>> SNG_SHIFT
;
183 f1
= frac
<< (32 - SNG_SHIFT
);
184 FP_TOF(exp
, SNG_EXP_BIAS
, frac
, f0
, f1
, 0, 0);
188 * 64-bit double -> fpn.
189 * We assume this uses at most (96-FP_LG) bits.
192 fpu_dtof(struct fpn
*fp
, u_int i
, u_int j
)
195 register u_int frac
, f0
, f1
, f2
;
196 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
198 exp
= (i
>> (32 - 1 - DBL_EXPBITS
)) & mask(DBL_EXPBITS
);
199 frac
= i
& mask(DBL_FRACBITS
- 32);
200 f0
= frac
>> DBL_SHIFT
;
201 f1
= (frac
<< (32 - DBL_SHIFT
)) | (j
>> DBL_SHIFT
);
202 f2
= j
<< (32 - DBL_SHIFT
);
204 FP_TOF(exp
, DBL_EXP_BIAS
, frac
, f0
, f1
, f2
, 0);
208 * 128-bit extended -> fpn.
211 fpu_qtof(register struct fpn
*fp
, u_int i
, u_int j
, u_int k
, u_int l
)
214 register u_int frac
, f0
, f1
, f2
, f3
;
215 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */
218 * Note that ext and fpn `line up', hence no shifting needed.
220 exp
= (i
>> (32 - 1 - EXT_EXPBITS
)) & mask(EXT_EXPBITS
);
221 frac
= i
& mask(EXT_FRACBITS
- 3 * 32);
222 f0
= (frac
<< EXT_SHIFT
) | (j
>> (32 - EXT_SHIFT
));
223 f1
= (j
<< EXT_SHIFT
) | (k
>> (32 - EXT_SHIFT
));
224 f2
= (k
<< EXT_SHIFT
) | (l
>> (32 - EXT_SHIFT
));
227 FP_TOF(exp
, EXT_EXP_BIAS
, frac
, f0
, f1
, f2
, f3
);
231 * Explode the contents of a register / regpair / regquad.
232 * If the input is a signalling NaN, an NV (invalid) exception
233 * will be set. (Note that nothing but NV can occur until ALU
234 * operations are performed.)
237 fpu_explode(struct fpemu
*fe
, struct fpn
*fp
, int type
, int reg
)
239 register u_int s
, *space
;
243 xspace
= (uint64_t *)&fe
->fe_fpstate
->fs_regs
[reg
& ~1];
246 space
= &fe
->fe_fpstate
->fs_regs
[reg
];
248 fp
->fp_sign
= s
>> 31;
266 s
= fpu_dtof(fp
, s
, space
[1]);
270 s
= fpu_qtof(fp
, s
, space
[1], space
[2], space
[3]);
274 panic("fpu_explode");
277 if (s
== FPC_QNAN
&& (fp
->fp_mant
[0] & FP_QUIETBIT
) == 0) {
279 * Input is a signalling NaN. All operations that return
280 * an input NaN operand put it through a ``NaN conversion'',
281 * which basically just means ``turn on the quiet bit''.
282 * We do this here so that all NaNs internally look quiet
283 * (we can tell signalling ones by their class).
285 fp
->fp_mant
[0] |= FP_QUIETBIT
;
286 fe
->fe_cx
= FSR_NV
; /* assert invalid operand */
290 DPRINTF(FPE_REG
, ("fpu_explode: %%%c%d => ", (type
== FTYPE_LNG
) ? 'x' :
291 ((type
== FTYPE_INT
) ? 'i' :
292 ((type
== FTYPE_SNG
) ? 's' :
293 ((type
== FTYPE_DBL
) ? 'd' :
294 ((type
== FTYPE_EXT
) ? 'q' : '?')))),
297 if (fpe_debug
& FPE_REG
) {
298 if (type
== FTYPE_INT
) printf("%d ", s
);
301 if (type
== FTYPE_LNG
) printf("%ld ", l
);
303 if (type
== FTYPE_LNG
) printf("%lld ", l
);
308 DUMPFPN(FPE_REG
, fp
);
309 DPRINTF(FPE_REG
, ("\n"));