No empty .Rs/.Re
[netbsd-mini2440.git] / sys / arch / sparc / fpu / fpu_implode.c
blobc7b5cfae66f0029ba790dc5797a18a2a32554496
1 /* $NetBSD: fpu_implode.c,v 1.12 2003/08/07 16:29:37 agc Exp $ */
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
44 * FPU subroutines: `implode' internal format numbers into the machine's
45 * `packed binary' format.
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.12 2003/08/07 16:29:37 agc Exp $");
51 #if defined(_KERNEL_OPT)
52 #include "opt_sparc_arch.h"
53 #endif
55 #include <sys/types.h>
56 #include <sys/systm.h>
58 #include <machine/ieee.h>
59 #include <machine/instr.h>
60 #include <machine/reg.h>
62 #include <sparc/fpu/fpu_arith.h>
63 #include <sparc/fpu/fpu_emu.h>
64 #include <sparc/fpu/fpu_extern.h>
66 static int round(struct fpemu *, struct fpn *);
67 static int toinf(struct fpemu *, int);
70 * Round a number (algorithm from Motorola MC68882 manual, modified for
71 * our internal format). Set inexact exception if rounding is required.
72 * Return true iff we rounded up.
74 * After rounding, we discard the guard and round bits by shifting right
75 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
76 * This saves effort later.
78 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
79 * responsibility to fix this if necessary.
81 static int
82 round(struct fpemu *fe, struct fpn *fp)
84 register u_int m0, m1, m2, m3;
85 register int gr, s;
87 m0 = fp->fp_mant[0];
88 m1 = fp->fp_mant[1];
89 m2 = fp->fp_mant[2];
90 m3 = fp->fp_mant[3];
91 gr = m3 & 3;
92 s = fp->fp_sticky;
94 /* mant >>= FP_NG */
95 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
96 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
97 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
98 m0 >>= FP_NG;
100 if ((gr | s) == 0) /* result is exact: no rounding needed */
101 goto rounddown;
103 fe->fe_cx |= FSR_NX; /* inexact */
105 /* Go to rounddown to round down; break to round up. */
106 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
108 case FSR_RD_RN:
109 default:
111 * Round only if guard is set (gr & 2). If guard is set,
112 * but round & sticky both clear, then we want to round
113 * but have a tie, so round to even, i.e., add 1 iff odd.
115 if ((gr & 2) == 0)
116 goto rounddown;
117 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
118 break;
119 goto rounddown;
121 case FSR_RD_RZ:
122 /* Round towards zero, i.e., down. */
123 goto rounddown;
125 case FSR_RD_RM:
126 /* Round towards -Inf: up if negative, down if positive. */
127 if (fp->fp_sign)
128 break;
129 goto rounddown;
131 case FSR_RD_RP:
132 /* Round towards +Inf: up if positive, down otherwise. */
133 if (!fp->fp_sign)
134 break;
135 goto rounddown;
138 /* Bump low bit of mantissa, with carry. */
139 FPU_ADDS(m3, m3, 1);
140 FPU_ADDCS(m2, m2, 0);
141 FPU_ADDCS(m1, m1, 0);
142 FPU_ADDC(m0, m0, 0);
143 fp->fp_mant[0] = m0;
144 fp->fp_mant[1] = m1;
145 fp->fp_mant[2] = m2;
146 fp->fp_mant[3] = m3;
147 return (1);
149 rounddown:
150 fp->fp_mant[0] = m0;
151 fp->fp_mant[1] = m1;
152 fp->fp_mant[2] = m2;
153 fp->fp_mant[3] = m3;
154 return (0);
158 * For overflow: return true if overflow is to go to +/-Inf, according
159 * to the sign of the overflowing result. If false, overflow is to go
160 * to the largest magnitude value instead.
162 static int
163 toinf(struct fpemu *fe, int sign)
165 int inf;
167 /* look at rounding direction */
168 switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
170 default:
171 case FSR_RD_RN: /* the nearest value is always Inf */
172 inf = 1;
173 break;
175 case FSR_RD_RZ: /* toward 0 => never towards Inf */
176 inf = 0;
177 break;
179 case FSR_RD_RP: /* toward +Inf iff positive */
180 inf = sign == 0;
181 break;
183 case FSR_RD_RM: /* toward -Inf iff negative */
184 inf = sign;
185 break;
187 return (inf);
191 * fpn -> int (int value returned as return value).
193 * N.B.: this conversion always rounds towards zero (this is a peculiarity
194 * of the SPARC instruction set).
196 u_int
197 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
199 register u_int i;
200 register int sign, exp;
202 sign = fp->fp_sign;
203 switch (fp->fp_class) {
205 case FPC_ZERO:
206 return (0);
208 case FPC_NUM:
210 * If exp >= 2^32, overflow. Otherwise shift value right
211 * into last mantissa word (this will not exceed 0xffffffff),
212 * shifting any guard and round bits out into the sticky
213 * bit. Then ``round'' towards zero, i.e., just set an
214 * inexact exception if sticky is set (see round()).
215 * If the result is > 0x80000000, or is positive and equals
216 * 0x80000000, overflow; otherwise the last fraction word
217 * is the result.
219 if ((exp = fp->fp_exp) >= 32)
220 break;
221 /* NB: the following includes exp < 0 cases */
222 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
223 fe->fe_cx |= FSR_NX;
224 i = fp->fp_mant[3];
225 if (i >= ((u_int)0x80000000 + sign))
226 break;
227 return (sign ? -i : i);
229 default: /* Inf, qNaN, sNaN */
230 break;
232 /* overflow: replace any inexact exception with invalid */
233 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
234 return (0x7fffffff + sign);
237 #ifdef SUN4U
239 * fpn -> extended int (high bits of int value returned as return value).
241 * N.B.: this conversion always rounds towards zero (this is a peculiarity
242 * of the SPARC instruction set).
244 u_int
245 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
247 register uint64_t i;
248 register int sign, exp;
250 sign = fp->fp_sign;
251 switch (fp->fp_class) {
253 case FPC_ZERO:
254 res[1] = 0;
255 return (0);
257 case FPC_NUM:
259 * If exp >= 2^64, overflow. Otherwise shift value right
260 * into last mantissa word (this will not exceed 0xffffffffffffffff),
261 * shifting any guard and round bits out into the sticky
262 * bit. Then ``round'' towards zero, i.e., just set an
263 * inexact exception if sticky is set (see round()).
264 * If the result is > 0x8000000000000000, or is positive and equals
265 * 0x8000000000000000, overflow; otherwise the last fraction word
266 * is the result.
268 if ((exp = fp->fp_exp) >= 64)
269 break;
270 /* NB: the following includes exp < 0 cases */
271 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
272 fe->fe_cx |= FSR_NX;
273 i = ((uint64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
274 if (i >= ((uint64_t)0x8000000000000000LL + sign))
275 break;
276 if (sign) i = -i;
277 res[1] = (int)i;
278 return (i>>32);
280 default: /* Inf, qNaN, sNaN */
281 break;
283 /* overflow: replace any inexact exception with invalid */
284 fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
285 return (0x7fffffffffffffffLL + sign);
287 #endif /* SUN4U */
290 * fpn -> single (32 bit single returned as return value).
291 * We assume <= 29 bits in a single-precision fraction (1.f part).
293 u_int
294 fpu_ftos(struct fpemu *fe, struct fpn *fp)
296 register u_int sign = fp->fp_sign << 31;
297 register int exp;
299 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
300 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
302 /* Take care of non-numbers first. */
303 if (ISNAN(fp)) {
305 * Preserve upper bits of NaN, per SPARC V8 appendix N.
306 * Note that fp->fp_mant[0] has the quiet bit set,
307 * even if it is classified as a signalling NaN.
309 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
310 exp = SNG_EXP_INFNAN;
311 goto done;
313 if (ISINF(fp))
314 return (sign | SNG_EXP(SNG_EXP_INFNAN));
315 if (ISZERO(fp))
316 return (sign);
319 * Normals (including subnormals). Drop all the fraction bits
320 * (including the explicit ``implied'' 1 bit) down into the
321 * single-precision range. If the number is subnormal, move
322 * the ``implied'' 1 into the explicit range as well, and shift
323 * right to introduce leading zeroes. Rounding then acts
324 * differently for normals and subnormals: the largest subnormal
325 * may round to the smallest normal (1.0 x 2^minexp), or may
326 * remain subnormal. In the latter case, signal an underflow
327 * if the result was inexact or if underflow traps are enabled.
329 * Rounding a normal, on the other hand, always produces another
330 * normal (although either way the result might be too big for
331 * single precision, and cause an overflow). If rounding a
332 * normal produces 2.0 in the fraction, we need not adjust that
333 * fraction at all, since both 1.0 and 2.0 are zero under the
334 * fraction mask.
336 * Note that the guard and round bits vanish from the number after
337 * rounding.
339 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
340 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
341 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
342 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
343 return (sign | SNG_EXP(1) | 0);
344 if ((fe->fe_cx & FSR_NX) ||
345 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
346 fe->fe_cx |= FSR_UF;
347 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
349 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
350 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
351 #ifdef DIAGNOSTIC
352 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
353 panic("fpu_ftos");
354 #endif
355 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
356 exp++;
357 if (exp >= SNG_EXP_INFNAN) {
358 /* overflow to inf or to max single */
359 fe->fe_cx |= FSR_OF | FSR_NX;
360 if (toinf(fe, sign))
361 return (sign | SNG_EXP(SNG_EXP_INFNAN));
362 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
364 done:
365 /* phew, made it */
366 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
370 * fpn -> double (32 bit high-order result returned; 32-bit low order result
371 * left in res[1]). Assumes <= 61 bits in double precision fraction.
373 * This code mimics fpu_ftos; see it for comments.
375 u_int
376 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
378 register u_int sign = fp->fp_sign << 31;
379 register int exp;
381 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
382 #define DBL_MASK (DBL_EXP(1) - 1)
384 if (ISNAN(fp)) {
385 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
386 exp = DBL_EXP_INFNAN;
387 goto done;
389 if (ISINF(fp)) {
390 sign |= DBL_EXP(DBL_EXP_INFNAN);
391 goto zero;
393 if (ISZERO(fp)) {
394 zero: res[1] = 0;
395 return (sign);
398 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
399 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
400 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
401 res[1] = 0;
402 return (sign | DBL_EXP(1) | 0);
404 if ((fe->fe_cx & FSR_NX) ||
405 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
406 fe->fe_cx |= FSR_UF;
407 exp = 0;
408 goto done;
410 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
411 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
412 exp++;
413 if (exp >= DBL_EXP_INFNAN) {
414 fe->fe_cx |= FSR_OF | FSR_NX;
415 if (toinf(fe, sign)) {
416 res[1] = 0;
417 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
419 res[1] = ~0;
420 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
422 done:
423 res[1] = fp->fp_mant[3];
424 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
428 * fpn -> extended (32 bit high-order result returned; low-order fraction
429 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
430 * our internal format *is* extended precision, plus 2 bits for guard/round,
431 * so we can avoid a small bit of work.
433 u_int
434 fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
436 register u_int sign = fp->fp_sign << 31;
437 register int exp;
439 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
440 #define EXT_MASK (EXT_EXP(1) - 1)
442 if (ISNAN(fp)) {
443 (void) fpu_shr(fp, 2); /* since we are not rounding */
444 exp = EXT_EXP_INFNAN;
445 goto done;
447 if (ISINF(fp)) {
448 sign |= EXT_EXP(EXT_EXP_INFNAN);
449 goto zero;
451 if (ISZERO(fp)) {
452 zero: res[1] = res[2] = res[3] = 0;
453 return (sign);
456 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
457 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
458 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
459 res[1] = res[2] = res[3] = 0;
460 return (sign | EXT_EXP(1) | 0);
462 if ((fe->fe_cx & FSR_NX) ||
463 (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
464 fe->fe_cx |= FSR_UF;
465 exp = 0;
466 goto done;
468 /* Since internal == extended, no need to shift here. */
469 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
470 exp++;
471 if (exp >= EXT_EXP_INFNAN) {
472 fe->fe_cx |= FSR_OF | FSR_NX;
473 if (toinf(fe, sign)) {
474 res[1] = res[2] = res[3] = 0;
475 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
477 res[1] = res[2] = res[3] = ~0;
478 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
480 done:
481 res[1] = fp->fp_mant[1];
482 res[2] = fp->fp_mant[2];
483 res[3] = fp->fp_mant[3];
484 return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
488 * Implode an fpn, writing the result into the given space.
490 void
491 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
494 DPRINTF(FPE_REG, ("\n imploding: "));
495 DUMPFPN(FPE_REG, fp);
496 DPRINTF(FPE_REG, ("\n"));
498 switch (type) {
500 #ifdef SUN4U
501 case FTYPE_LNG:
502 space[0] = fpu_ftox(fe, fp, space);
503 break;
504 #endif /* SUN4U */
506 case FTYPE_INT:
507 space[0] = fpu_ftoi(fe, fp);
508 break;
510 case FTYPE_SNG:
511 space[0] = fpu_ftos(fe, fp);
512 break;
514 case FTYPE_DBL:
515 space[0] = fpu_ftod(fe, fp, space);
516 break;
518 case FTYPE_EXT:
519 /* funky rounding precision options ?? */
520 space[0] = fpu_ftoq(fe, fp, space);
521 break;
523 default:
524 panic("fpu_implode");
526 #ifdef SUN4U
527 DPRINTF(FPE_REG, ("fpu_implode: %x %x %x %x\n",
528 space[0], space[1], space[2], space[3]));
529 #else
530 DPRINTF(FPE_REG, ("fpu_implode: %x %x\n",
531 space[0], space[1]));
532 #endif