1 /* $NetBSD: fpu_implode.c,v 1.12 2003/08/07 16:29:37 agc Exp $ */
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
44 * FPU subroutines: `implode' internal format numbers into the machine's
45 * `packed binary' format.
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.12 2003/08/07 16:29:37 agc Exp $");
51 #if defined(_KERNEL_OPT)
52 #include "opt_sparc_arch.h"
55 #include <sys/types.h>
56 #include <sys/systm.h>
58 #include <machine/ieee.h>
59 #include <machine/instr.h>
60 #include <machine/reg.h>
62 #include <sparc/fpu/fpu_arith.h>
63 #include <sparc/fpu/fpu_emu.h>
64 #include <sparc/fpu/fpu_extern.h>
66 static int round(struct fpemu
*, struct fpn
*);
67 static int toinf(struct fpemu
*, int);
70 * Round a number (algorithm from Motorola MC68882 manual, modified for
71 * our internal format). Set inexact exception if rounding is required.
72 * Return true iff we rounded up.
74 * After rounding, we discard the guard and round bits by shifting right
75 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
76 * This saves effort later.
78 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
79 * responsibility to fix this if necessary.
82 round(struct fpemu
*fe
, struct fpn
*fp
)
84 register u_int m0
, m1
, m2
, m3
;
95 m3
= (m3
>> FP_NG
) | (m2
<< (32 - FP_NG
));
96 m2
= (m2
>> FP_NG
) | (m1
<< (32 - FP_NG
));
97 m1
= (m1
>> FP_NG
) | (m0
<< (32 - FP_NG
));
100 if ((gr
| s
) == 0) /* result is exact: no rounding needed */
103 fe
->fe_cx
|= FSR_NX
; /* inexact */
105 /* Go to rounddown to round down; break to round up. */
106 switch ((fe
->fe_fsr
>> FSR_RD_SHIFT
) & FSR_RD_MASK
) {
111 * Round only if guard is set (gr & 2). If guard is set,
112 * but round & sticky both clear, then we want to round
113 * but have a tie, so round to even, i.e., add 1 iff odd.
117 if ((gr
& 1) || fp
->fp_sticky
|| (m3
& 1))
122 /* Round towards zero, i.e., down. */
126 /* Round towards -Inf: up if negative, down if positive. */
132 /* Round towards +Inf: up if positive, down otherwise. */
138 /* Bump low bit of mantissa, with carry. */
140 FPU_ADDCS(m2
, m2
, 0);
141 FPU_ADDCS(m1
, m1
, 0);
158 * For overflow: return true if overflow is to go to +/-Inf, according
159 * to the sign of the overflowing result. If false, overflow is to go
160 * to the largest magnitude value instead.
163 toinf(struct fpemu
*fe
, int sign
)
167 /* look at rounding direction */
168 switch ((fe
->fe_fsr
>> FSR_RD_SHIFT
) & FSR_RD_MASK
) {
171 case FSR_RD_RN
: /* the nearest value is always Inf */
175 case FSR_RD_RZ
: /* toward 0 => never towards Inf */
179 case FSR_RD_RP
: /* toward +Inf iff positive */
183 case FSR_RD_RM
: /* toward -Inf iff negative */
191 * fpn -> int (int value returned as return value).
193 * N.B.: this conversion always rounds towards zero (this is a peculiarity
194 * of the SPARC instruction set).
197 fpu_ftoi(struct fpemu
*fe
, struct fpn
*fp
)
200 register int sign
, exp
;
203 switch (fp
->fp_class
) {
210 * If exp >= 2^32, overflow. Otherwise shift value right
211 * into last mantissa word (this will not exceed 0xffffffff),
212 * shifting any guard and round bits out into the sticky
213 * bit. Then ``round'' towards zero, i.e., just set an
214 * inexact exception if sticky is set (see round()).
215 * If the result is > 0x80000000, or is positive and equals
216 * 0x80000000, overflow; otherwise the last fraction word
219 if ((exp
= fp
->fp_exp
) >= 32)
221 /* NB: the following includes exp < 0 cases */
222 if (fpu_shr(fp
, FP_NMANT
- 1 - exp
) != 0)
225 if (i
>= ((u_int
)0x80000000 + sign
))
227 return (sign
? -i
: i
);
229 default: /* Inf, qNaN, sNaN */
232 /* overflow: replace any inexact exception with invalid */
233 fe
->fe_cx
= (fe
->fe_cx
& ~FSR_NX
) | FSR_NV
;
234 return (0x7fffffff + sign
);
239 * fpn -> extended int (high bits of int value returned as return value).
241 * N.B.: this conversion always rounds towards zero (this is a peculiarity
242 * of the SPARC instruction set).
245 fpu_ftox(struct fpemu
*fe
, struct fpn
*fp
, u_int
*res
)
248 register int sign
, exp
;
251 switch (fp
->fp_class
) {
259 * If exp >= 2^64, overflow. Otherwise shift value right
260 * into last mantissa word (this will not exceed 0xffffffffffffffff),
261 * shifting any guard and round bits out into the sticky
262 * bit. Then ``round'' towards zero, i.e., just set an
263 * inexact exception if sticky is set (see round()).
264 * If the result is > 0x8000000000000000, or is positive and equals
265 * 0x8000000000000000, overflow; otherwise the last fraction word
268 if ((exp
= fp
->fp_exp
) >= 64)
270 /* NB: the following includes exp < 0 cases */
271 if (fpu_shr(fp
, FP_NMANT
- 1 - exp
) != 0)
273 i
= ((uint64_t)fp
->fp_mant
[2]<<32)|fp
->fp_mant
[3];
274 if (i
>= ((uint64_t)0x8000000000000000LL
+ sign
))
280 default: /* Inf, qNaN, sNaN */
283 /* overflow: replace any inexact exception with invalid */
284 fe
->fe_cx
= (fe
->fe_cx
& ~FSR_NX
) | FSR_NV
;
285 return (0x7fffffffffffffffLL
+ sign
);
290 * fpn -> single (32 bit single returned as return value).
291 * We assume <= 29 bits in a single-precision fraction (1.f part).
294 fpu_ftos(struct fpemu
*fe
, struct fpn
*fp
)
296 register u_int sign
= fp
->fp_sign
<< 31;
299 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
300 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
302 /* Take care of non-numbers first. */
305 * Preserve upper bits of NaN, per SPARC V8 appendix N.
306 * Note that fp->fp_mant[0] has the quiet bit set,
307 * even if it is classified as a signalling NaN.
309 (void) fpu_shr(fp
, FP_NMANT
- 1 - SNG_FRACBITS
);
310 exp
= SNG_EXP_INFNAN
;
314 return (sign
| SNG_EXP(SNG_EXP_INFNAN
));
319 * Normals (including subnormals). Drop all the fraction bits
320 * (including the explicit ``implied'' 1 bit) down into the
321 * single-precision range. If the number is subnormal, move
322 * the ``implied'' 1 into the explicit range as well, and shift
323 * right to introduce leading zeroes. Rounding then acts
324 * differently for normals and subnormals: the largest subnormal
325 * may round to the smallest normal (1.0 x 2^minexp), or may
326 * remain subnormal. In the latter case, signal an underflow
327 * if the result was inexact or if underflow traps are enabled.
329 * Rounding a normal, on the other hand, always produces another
330 * normal (although either way the result might be too big for
331 * single precision, and cause an overflow). If rounding a
332 * normal produces 2.0 in the fraction, we need not adjust that
333 * fraction at all, since both 1.0 and 2.0 are zero under the
336 * Note that the guard and round bits vanish from the number after
339 if ((exp
= fp
->fp_exp
+ SNG_EXP_BIAS
) <= 0) { /* subnormal */
340 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
341 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- SNG_FRACBITS
- exp
);
342 if (round(fe
, fp
) && fp
->fp_mant
[3] == SNG_EXP(1))
343 return (sign
| SNG_EXP(1) | 0);
344 if ((fe
->fe_cx
& FSR_NX
) ||
345 (fe
->fe_fsr
& (FSR_UF
<< FSR_TEM_SHIFT
)))
347 return (sign
| SNG_EXP(0) | fp
->fp_mant
[3]);
349 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
350 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- 1 - SNG_FRACBITS
);
352 if ((fp
->fp_mant
[3] & SNG_EXP(1 << FP_NG
)) == 0)
355 if (round(fe
, fp
) && fp
->fp_mant
[3] == SNG_EXP(2))
357 if (exp
>= SNG_EXP_INFNAN
) {
358 /* overflow to inf or to max single */
359 fe
->fe_cx
|= FSR_OF
| FSR_NX
;
361 return (sign
| SNG_EXP(SNG_EXP_INFNAN
));
362 return (sign
| SNG_EXP(SNG_EXP_INFNAN
- 1) | SNG_MASK
);
366 return (sign
| SNG_EXP(exp
) | (fp
->fp_mant
[3] & SNG_MASK
));
370 * fpn -> double (32 bit high-order result returned; 32-bit low order result
371 * left in res[1]). Assumes <= 61 bits in double precision fraction.
373 * This code mimics fpu_ftos; see it for comments.
376 fpu_ftod(struct fpemu
*fe
, struct fpn
*fp
, u_int
*res
)
378 register u_int sign
= fp
->fp_sign
<< 31;
381 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
382 #define DBL_MASK (DBL_EXP(1) - 1)
385 (void) fpu_shr(fp
, FP_NMANT
- 1 - DBL_FRACBITS
);
386 exp
= DBL_EXP_INFNAN
;
390 sign
|= DBL_EXP(DBL_EXP_INFNAN
);
398 if ((exp
= fp
->fp_exp
+ DBL_EXP_BIAS
) <= 0) {
399 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- DBL_FRACBITS
- exp
);
400 if (round(fe
, fp
) && fp
->fp_mant
[2] == DBL_EXP(1)) {
402 return (sign
| DBL_EXP(1) | 0);
404 if ((fe
->fe_cx
& FSR_NX
) ||
405 (fe
->fe_fsr
& (FSR_UF
<< FSR_TEM_SHIFT
)))
410 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- 1 - DBL_FRACBITS
);
411 if (round(fe
, fp
) && fp
->fp_mant
[2] == DBL_EXP(2))
413 if (exp
>= DBL_EXP_INFNAN
) {
414 fe
->fe_cx
|= FSR_OF
| FSR_NX
;
415 if (toinf(fe
, sign
)) {
417 return (sign
| DBL_EXP(DBL_EXP_INFNAN
) | 0);
420 return (sign
| DBL_EXP(DBL_EXP_INFNAN
) | DBL_MASK
);
423 res
[1] = fp
->fp_mant
[3];
424 return (sign
| DBL_EXP(exp
) | (fp
->fp_mant
[2] & DBL_MASK
));
428 * fpn -> extended (32 bit high-order result returned; low-order fraction
429 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
430 * our internal format *is* extended precision, plus 2 bits for guard/round,
431 * so we can avoid a small bit of work.
434 fpu_ftoq(struct fpemu
*fe
, struct fpn
*fp
, u_int
*res
)
436 register u_int sign
= fp
->fp_sign
<< 31;
439 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
440 #define EXT_MASK (EXT_EXP(1) - 1)
443 (void) fpu_shr(fp
, 2); /* since we are not rounding */
444 exp
= EXT_EXP_INFNAN
;
448 sign
|= EXT_EXP(EXT_EXP_INFNAN
);
452 zero
: res
[1] = res
[2] = res
[3] = 0;
456 if ((exp
= fp
->fp_exp
+ EXT_EXP_BIAS
) <= 0) {
457 (void) fpu_shr(fp
, FP_NMANT
- FP_NG
- EXT_FRACBITS
- exp
);
458 if (round(fe
, fp
) && fp
->fp_mant
[0] == EXT_EXP(1)) {
459 res
[1] = res
[2] = res
[3] = 0;
460 return (sign
| EXT_EXP(1) | 0);
462 if ((fe
->fe_cx
& FSR_NX
) ||
463 (fe
->fe_fsr
& (FSR_UF
<< FSR_TEM_SHIFT
)))
468 /* Since internal == extended, no need to shift here. */
469 if (round(fe
, fp
) && fp
->fp_mant
[0] == EXT_EXP(2))
471 if (exp
>= EXT_EXP_INFNAN
) {
472 fe
->fe_cx
|= FSR_OF
| FSR_NX
;
473 if (toinf(fe
, sign
)) {
474 res
[1] = res
[2] = res
[3] = 0;
475 return (sign
| EXT_EXP(EXT_EXP_INFNAN
) | 0);
477 res
[1] = res
[2] = res
[3] = ~0;
478 return (sign
| EXT_EXP(EXT_EXP_INFNAN
) | EXT_MASK
);
481 res
[1] = fp
->fp_mant
[1];
482 res
[2] = fp
->fp_mant
[2];
483 res
[3] = fp
->fp_mant
[3];
484 return (sign
| EXT_EXP(exp
) | (fp
->fp_mant
[0] & EXT_MASK
));
488 * Implode an fpn, writing the result into the given space.
491 fpu_implode(struct fpemu
*fe
, struct fpn
*fp
, int type
, u_int
*space
)
494 DPRINTF(FPE_REG
, ("\n imploding: "));
495 DUMPFPN(FPE_REG
, fp
);
496 DPRINTF(FPE_REG
, ("\n"));
502 space
[0] = fpu_ftox(fe
, fp
, space
);
507 space
[0] = fpu_ftoi(fe
, fp
);
511 space
[0] = fpu_ftos(fe
, fp
);
515 space
[0] = fpu_ftod(fe
, fp
, space
);
519 /* funky rounding precision options ?? */
520 space
[0] = fpu_ftoq(fe
, fp
, space
);
524 panic("fpu_implode");
527 DPRINTF(FPE_REG
, ("fpu_implode: %x %x %x %x\n",
528 space
[0], space
[1], space
[2], space
[3]));
530 DPRINTF(FPE_REG
, ("fpu_implode: %x %x\n",
531 space
[0], space
[1]));