No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / pci / if_ale.c
blob84841746a2432cae3076e646190dc3bf246ac6d0
1 /* $NetBSD: if_ale.c,v 1.8 2009/09/05 14:09:55 tsutsui Exp $ */
3 /*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.8 2009/09/05 14:09:55 tsutsui Exp $");
37 #include "bpfilter.h"
38 #include "vlan.h"
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/callout.h>
51 #include <sys/socket.h>
53 #include <sys/bus.h>
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
68 #include <net/if_types.h>
69 #include <net/if_vlanvar.h>
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
75 #include <sys/rnd.h>
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
84 #include <dev/pci/if_alereg.h>
86 static int ale_match(device_t, cfdata_t, void *);
87 static void ale_attach(device_t, device_t, void *);
88 static int ale_detach(device_t, int);
90 static int ale_miibus_readreg(device_t, int, int);
91 static void ale_miibus_writereg(device_t, int, int, int);
92 static void ale_miibus_statchg(device_t);
94 static int ale_init(struct ifnet *);
95 static void ale_start(struct ifnet *);
96 static int ale_ioctl(struct ifnet *, u_long, void *);
97 static void ale_watchdog(struct ifnet *);
98 static int ale_mediachange(struct ifnet *);
99 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
101 static int ale_intr(void *);
102 static int ale_rxeof(struct ale_softc *sc);
103 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
104 uint32_t, uint32_t *);
105 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
106 static void ale_txeof(struct ale_softc *);
108 static int ale_dma_alloc(struct ale_softc *);
109 static void ale_dma_free(struct ale_softc *);
110 static int ale_encap(struct ale_softc *, struct mbuf **);
111 static void ale_init_rx_pages(struct ale_softc *);
112 static void ale_init_tx_ring(struct ale_softc *);
114 static void ale_stop(struct ifnet *, int);
115 static void ale_tick(void *);
116 static void ale_get_macaddr(struct ale_softc *);
117 static void ale_mac_config(struct ale_softc *);
118 static void ale_phy_reset(struct ale_softc *);
119 static void ale_reset(struct ale_softc *);
120 static void ale_rxfilter(struct ale_softc *);
121 static void ale_rxvlan(struct ale_softc *);
122 static void ale_stats_clear(struct ale_softc *);
123 static void ale_stats_update(struct ale_softc *);
124 static void ale_stop_mac(struct ale_softc *);
126 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
127 ale_match, ale_attach, ale_detach, NULL);
129 int aledebug = 0;
130 #define DPRINTF(x) do { if (aledebug) printf x; } while (0)
132 #define ETHER_ALIGN 2
133 #define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
135 static int
136 ale_miibus_readreg(device_t dev, int phy, int reg)
138 struct ale_softc *sc = device_private(dev);
139 uint32_t v;
140 int i;
142 if (phy != sc->ale_phyaddr)
143 return 0;
145 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
146 switch (reg) {
147 case MII_100T2CR:
148 case MII_100T2SR:
149 case MII_EXTSR:
150 return 0;
151 default:
152 break;
156 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
157 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
158 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
159 DELAY(5);
160 v = CSR_READ_4(sc, ALE_MDIO);
161 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
162 break;
165 if (i == 0) {
166 printf("%s: phy read timeout: phy %d, reg %d\n",
167 device_xname(sc->sc_dev), phy, reg);
168 return 0;
171 return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
174 static void
175 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
177 struct ale_softc *sc = device_private(dev);
178 uint32_t v;
179 int i;
181 if (phy != sc->ale_phyaddr)
182 return;
184 if (sc->ale_flags & ALE_FLAG_FASTETHER) {
185 switch (reg) {
186 case MII_100T2CR:
187 case MII_100T2SR:
188 case MII_EXTSR:
189 return;
190 default:
191 break;
195 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
196 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
197 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
198 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
199 DELAY(5);
200 v = CSR_READ_4(sc, ALE_MDIO);
201 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
202 break;
205 if (i == 0)
206 printf("%s: phy write timeout: phy %d, reg %d\n",
207 device_xname(sc->sc_dev), phy, reg);
210 static void
211 ale_miibus_statchg(device_t dev)
213 struct ale_softc *sc = device_private(dev);
214 struct ifnet *ifp = &sc->sc_ec.ec_if;
215 struct mii_data *mii;
216 uint32_t reg;
218 if ((ifp->if_flags & IFF_RUNNING) == 0)
219 return;
221 mii = &sc->sc_miibus;
223 sc->ale_flags &= ~ALE_FLAG_LINK;
224 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
225 (IFM_ACTIVE | IFM_AVALID)) {
226 switch (IFM_SUBTYPE(mii->mii_media_active)) {
227 case IFM_10_T:
228 case IFM_100_TX:
229 sc->ale_flags |= ALE_FLAG_LINK;
230 break;
232 case IFM_1000_T:
233 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
234 sc->ale_flags |= ALE_FLAG_LINK;
235 break;
237 default:
238 break;
242 /* Stop Rx/Tx MACs. */
243 ale_stop_mac(sc);
245 /* Program MACs with resolved speed/duplex/flow-control. */
246 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
247 ale_mac_config(sc);
248 /* Reenable Tx/Rx MACs. */
249 reg = CSR_READ_4(sc, ALE_MAC_CFG);
250 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
251 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
255 void
256 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
258 struct ale_softc *sc = ifp->if_softc;
259 struct mii_data *mii = &sc->sc_miibus;
261 mii_pollstat(mii);
262 ifmr->ifm_status = mii->mii_media_status;
263 ifmr->ifm_active = mii->mii_media_active;
267 ale_mediachange(struct ifnet *ifp)
269 struct ale_softc *sc = ifp->if_softc;
270 struct mii_data *mii = &sc->sc_miibus;
271 int error;
273 if (mii->mii_instance != 0) {
274 struct mii_softc *miisc;
276 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
277 mii_phy_reset(miisc);
279 error = mii_mediachg(mii);
281 return error;
285 ale_match(device_t dev, cfdata_t match, void *aux)
287 struct pci_attach_args *pa = aux;
289 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
290 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
293 void
294 ale_get_macaddr(struct ale_softc *sc)
296 uint32_t ea[2], reg;
297 int i, vpdc;
299 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
300 if ((reg & SPI_VPD_ENB) != 0) {
301 reg &= ~SPI_VPD_ENB;
302 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
305 if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
306 &vpdc, NULL)) {
308 * PCI VPD capability found, let TWSI reload EEPROM.
309 * This will set ethernet address of controller.
311 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
312 TWSI_CTRL_SW_LD_START);
313 for (i = 100; i > 0; i--) {
314 DELAY(1000);
315 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
316 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
317 break;
319 if (i == 0)
320 printf("%s: reloading EEPROM timeout!\n",
321 device_xname(sc->sc_dev));
322 } else {
323 if (aledebug)
324 printf("%s: PCI VPD capability not found!\n",
325 device_xname(sc->sc_dev));
328 ea[0] = CSR_READ_4(sc, ALE_PAR0);
329 ea[1] = CSR_READ_4(sc, ALE_PAR1);
330 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
331 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
332 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
333 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
334 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
335 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
338 void
339 ale_phy_reset(struct ale_softc *sc)
341 /* Reset magic from Linux. */
342 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
343 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
344 GPHY_CTRL_PHY_PLL_ON);
345 DELAY(1000);
346 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
347 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
348 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
349 DELAY(1000);
351 #define ATPHY_DBG_ADDR 0x1D
352 #define ATPHY_DBG_DATA 0x1E
354 /* Enable hibernation mode. */
355 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 ATPHY_DBG_ADDR, 0x0B);
357 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 ATPHY_DBG_DATA, 0xBC00);
359 /* Set Class A/B for all modes. */
360 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
361 ATPHY_DBG_ADDR, 0x00);
362 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 ATPHY_DBG_DATA, 0x02EF);
364 /* Enable 10BT power saving. */
365 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
366 ATPHY_DBG_ADDR, 0x12);
367 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 ATPHY_DBG_DATA, 0x4C04);
369 /* Adjust 1000T power. */
370 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
371 ATPHY_DBG_ADDR, 0x04);
372 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
373 ATPHY_DBG_ADDR, 0x8BBB);
374 /* 10BT center tap voltage. */
375 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
376 ATPHY_DBG_ADDR, 0x05);
377 ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
378 ATPHY_DBG_ADDR, 0x2C46);
380 #undef ATPHY_DBG_ADDR
381 #undef ATPHY_DBG_DATA
382 DELAY(1000);
385 void
386 ale_attach(device_t parent, device_t self, void *aux)
388 struct ale_softc *sc = device_private(self);
389 struct pci_attach_args *pa = aux;
390 pci_chipset_tag_t pc = pa->pa_pc;
391 pci_intr_handle_t ih;
392 const char *intrstr;
393 struct ifnet *ifp;
394 pcireg_t memtype;
395 int mii_flags, error = 0;
396 uint32_t rxf_len, txf_len;
397 const char *chipname;
399 aprint_naive("\n");
400 aprint_normal(": Attansic/Atheros L1E Ethernet\n");
402 sc->sc_dev = self;
403 sc->sc_dmat = pa->pa_dmat;
404 sc->sc_pct = pa->pa_pc;
405 sc->sc_pcitag = pa->pa_tag;
408 * Allocate IO memory
410 memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
411 switch (memtype) {
412 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
413 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
414 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
415 break;
416 default:
417 aprint_error_dev(self, "invalid base address register\n");
418 break;
421 if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
422 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
423 aprint_error_dev(self, "could not map mem space\n");
424 return;
427 if (pci_intr_map(pa, &ih) != 0) {
428 aprint_error_dev(self, "could not map interrupt\n");
429 goto fail;
433 * Allocate IRQ
435 intrstr = pci_intr_string(sc->sc_pct, ih);
436 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
437 if (sc->sc_irq_handle == NULL) {
438 aprint_error_dev(self, "could not establish interrupt");
439 if (intrstr != NULL)
440 aprint_error(" at %s", intrstr);
441 aprint_error("\n");
442 goto fail;
445 /* Set PHY address. */
446 sc->ale_phyaddr = ALE_PHY_ADDR;
448 /* Reset PHY. */
449 ale_phy_reset(sc);
451 /* Reset the ethernet controller. */
452 ale_reset(sc);
454 /* Get PCI and chip id/revision. */
455 sc->ale_rev = PCI_REVISION(pa->pa_class);
456 if (sc->ale_rev >= 0xF0) {
457 /* L2E Rev. B. AR8114 */
458 sc->ale_flags |= ALE_FLAG_FASTETHER;
459 chipname = "AR8114 (L2E RevB)";
460 } else {
461 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
462 /* L1E AR8121 */
463 sc->ale_flags |= ALE_FLAG_JUMBO;
464 chipname = "AR8121 (L1E)";
465 } else {
466 /* L2E Rev. A. AR8113 */
467 sc->ale_flags |= ALE_FLAG_FASTETHER;
468 chipname = "AR8113 (L2E RevA)";
471 aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
474 * All known controllers seems to require 4 bytes alignment
475 * of Tx buffers to make Tx checksum offload with custom
476 * checksum generation method work.
478 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
481 * All known controllers seems to have issues on Rx checksum
482 * offload for fragmented IP datagrams.
484 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
487 * Don't use Tx CMB. It is known to cause RRS update failure
488 * under certain circumstances. Typical phenomenon of the
489 * issue would be unexpected sequence number encountered in
490 * Rx handler.
492 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494 MASTER_CHIP_REV_SHIFT;
495 aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
496 aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
499 * Uninitialized hardware returns an invalid chip id/revision
500 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
502 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
503 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
504 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
505 rxf_len == 0xFFFFFFF) {
506 aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
507 "%u Rx FIFO -- not initialized?\n",
508 sc->ale_chip_rev, txf_len, rxf_len);
509 goto fail;
512 if (aledebug) {
513 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
514 txf_len, rxf_len);
517 /* Set max allowable DMA size. */
518 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
519 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
521 callout_init(&sc->sc_tick_ch, 0);
522 callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
524 error = ale_dma_alloc(sc);
525 if (error)
526 goto fail;
528 /* Load station address. */
529 ale_get_macaddr(sc);
531 aprint_normal_dev(self, "Ethernet address %s\n",
532 ether_sprintf(sc->ale_eaddr));
534 ifp = &sc->sc_ec.ec_if;
535 ifp->if_softc = sc;
536 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 ifp->if_init = ale_init;
538 ifp->if_ioctl = ale_ioctl;
539 ifp->if_start = ale_start;
540 ifp->if_stop = ale_stop;
541 ifp->if_watchdog = ale_watchdog;
542 IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
543 IFQ_SET_READY(&ifp->if_snd);
544 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
546 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
548 #ifdef ALE_CHECKSUM
549 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
550 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
551 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
552 #endif
554 #if NVLAN > 0
555 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
556 #endif
558 /* Set up MII bus. */
559 sc->sc_miibus.mii_ifp = ifp;
560 sc->sc_miibus.mii_readreg = ale_miibus_readreg;
561 sc->sc_miibus.mii_writereg = ale_miibus_writereg;
562 sc->sc_miibus.mii_statchg = ale_miibus_statchg;
564 sc->sc_ec.ec_mii = &sc->sc_miibus;
565 ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
566 ale_mediastatus);
567 mii_flags = 0;
568 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
569 mii_flags |= MIIF_DOPAUSE;
570 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
571 MII_OFFSET_ANY, mii_flags);
573 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
574 aprint_error_dev(self, "no PHY found!\n");
575 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
576 0, NULL);
577 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
578 } else
579 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
581 if_attach(ifp);
582 ether_ifattach(ifp, sc->ale_eaddr);
584 if (pmf_device_register(self, NULL, NULL))
585 pmf_class_network_register(self, ifp);
586 else
587 aprint_error_dev(self, "couldn't establish power handler\n");
589 return;
590 fail:
591 ale_dma_free(sc);
592 if (sc->sc_irq_handle != NULL) {
593 pci_intr_disestablish(pc, sc->sc_irq_handle);
594 sc->sc_irq_handle = NULL;
596 if (sc->sc_mem_size) {
597 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
598 sc->sc_mem_size = 0;
602 static int
603 ale_detach(device_t self, int flags)
605 struct ale_softc *sc = device_private(self);
606 struct ifnet *ifp = &sc->sc_ec.ec_if;
607 int s;
609 pmf_device_deregister(self);
610 s = splnet();
611 ale_stop(ifp, 0);
612 splx(s);
614 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
616 /* Delete all remaining media. */
617 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
619 ether_ifdetach(ifp);
620 if_detach(ifp);
621 ale_dma_free(sc);
623 if (sc->sc_irq_handle != NULL) {
624 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
625 sc->sc_irq_handle = NULL;
627 if (sc->sc_mem_size) {
628 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
629 sc->sc_mem_size = 0;
632 return 0;
636 static int
637 ale_dma_alloc(struct ale_softc *sc)
639 struct ale_txdesc *txd;
640 int nsegs, error, guard_size, i;
642 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
643 guard_size = ALE_JUMBO_FRAMELEN;
644 else
645 guard_size = ALE_MAX_FRAMELEN;
646 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
647 ALE_RX_PAGE_ALIGN);
650 * Create DMA stuffs for TX ring
652 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
653 ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
654 if (error) {
655 sc->ale_cdata.ale_tx_ring_map = NULL;
656 return ENOBUFS;
659 /* Allocate DMA'able memory for TX ring */
660 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
661 0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
662 &nsegs, BUS_DMA_WAITOK);
663 if (error) {
664 printf("%s: could not allocate DMA'able memory for Tx ring, "
665 "error = %i\n", device_xname(sc->sc_dev), error);
666 return error;
669 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
670 nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
671 BUS_DMA_NOWAIT);
672 if (error)
673 return ENOBUFS;
675 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
677 /* Load the DMA map for Tx ring. */
678 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
679 sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
680 if (error) {
681 printf("%s: could not load DMA'able memory for Tx ring.\n",
682 device_xname(sc->sc_dev));
683 bus_dmamem_free(sc->sc_dmat,
684 &sc->ale_cdata.ale_tx_ring_seg, 1);
685 return error;
687 sc->ale_cdata.ale_tx_ring_paddr =
688 sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
690 for (i = 0; i < ALE_RX_PAGES; i++) {
692 * Create DMA stuffs for RX pages
694 error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
695 sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
696 &sc->ale_cdata.ale_rx_page[i].page_map);
697 if (error) {
698 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
699 return ENOBUFS;
702 /* Allocate DMA'able memory for RX pages */
703 error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
704 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
705 1, &nsegs, BUS_DMA_WAITOK);
706 if (error) {
707 printf("%s: could not allocate DMA'able memory for "
708 "Rx ring.\n", device_xname(sc->sc_dev));
709 return error;
711 error = bus_dmamem_map(sc->sc_dmat,
712 &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
713 sc->ale_pagesize,
714 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
715 BUS_DMA_NOWAIT);
716 if (error)
717 return ENOBUFS;
719 memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
720 sc->ale_pagesize);
722 /* Load the DMA map for Rx pages. */
723 error = bus_dmamap_load(sc->sc_dmat,
724 sc->ale_cdata.ale_rx_page[i].page_map,
725 sc->ale_cdata.ale_rx_page[i].page_addr,
726 sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
727 if (error) {
728 printf("%s: could not load DMA'able memory for "
729 "Rx pages.\n", device_xname(sc->sc_dev));
730 bus_dmamem_free(sc->sc_dmat,
731 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
732 return error;
734 sc->ale_cdata.ale_rx_page[i].page_paddr =
735 sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
739 * Create DMA stuffs for Tx CMB.
741 error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
742 ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
743 if (error) {
744 sc->ale_cdata.ale_tx_cmb_map = NULL;
745 return ENOBUFS;
748 /* Allocate DMA'able memory for Tx CMB. */
749 error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
750 &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
752 if (error) {
753 printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
754 device_xname(sc->sc_dev));
755 return error;
758 error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
759 nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
760 BUS_DMA_NOWAIT);
761 if (error)
762 return ENOBUFS;
764 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
766 /* Load the DMA map for Tx CMB. */
767 error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
768 sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
769 if (error) {
770 printf("%s: could not load DMA'able memory for Tx CMB.\n",
771 device_xname(sc->sc_dev));
772 bus_dmamem_free(sc->sc_dmat,
773 &sc->ale_cdata.ale_tx_cmb_seg, 1);
774 return error;
777 sc->ale_cdata.ale_tx_cmb_paddr =
778 sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
780 for (i = 0; i < ALE_RX_PAGES; i++) {
782 * Create DMA stuffs for Rx CMB.
784 error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
785 ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
786 &sc->ale_cdata.ale_rx_page[i].cmb_map);
787 if (error) {
788 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
789 return ENOBUFS;
792 /* Allocate DMA'able memory for Rx CMB */
793 error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
794 ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
795 &nsegs, BUS_DMA_WAITOK);
796 if (error) {
797 printf("%s: could not allocate DMA'able memory for "
798 "Rx CMB\n", device_xname(sc->sc_dev));
799 return error;
801 error = bus_dmamem_map(sc->sc_dmat,
802 &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
803 ALE_RX_CMB_SZ,
804 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
805 BUS_DMA_NOWAIT);
806 if (error)
807 return ENOBUFS;
809 memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
811 /* Load the DMA map for Rx CMB */
812 error = bus_dmamap_load(sc->sc_dmat,
813 sc->ale_cdata.ale_rx_page[i].cmb_map,
814 sc->ale_cdata.ale_rx_page[i].cmb_addr,
815 ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
816 if (error) {
817 printf("%s: could not load DMA'able memory for Rx CMB"
818 "\n", device_xname(sc->sc_dev));
819 bus_dmamem_free(sc->sc_dmat,
820 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
821 return error;
823 sc->ale_cdata.ale_rx_page[i].cmb_paddr =
824 sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
828 /* Create DMA maps for Tx buffers. */
829 for (i = 0; i < ALE_TX_RING_CNT; i++) {
830 txd = &sc->ale_cdata.ale_txdesc[i];
831 txd->tx_m = NULL;
832 txd->tx_dmamap = NULL;
833 error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
834 ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
835 &txd->tx_dmamap);
836 if (error) {
837 txd->tx_dmamap = NULL;
838 printf("%s: could not create Tx dmamap.\n",
839 device_xname(sc->sc_dev));
840 return error;
844 return 0;
847 static void
848 ale_dma_free(struct ale_softc *sc)
850 struct ale_txdesc *txd;
851 int i;
853 /* Tx buffers. */
854 for (i = 0; i < ALE_TX_RING_CNT; i++) {
855 txd = &sc->ale_cdata.ale_txdesc[i];
856 if (txd->tx_dmamap != NULL) {
857 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
858 txd->tx_dmamap = NULL;
862 /* Tx descriptor ring. */
863 if (sc->ale_cdata.ale_tx_ring_map != NULL)
864 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
865 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
866 sc->ale_cdata.ale_tx_ring != NULL)
867 bus_dmamem_free(sc->sc_dmat,
868 &sc->ale_cdata.ale_tx_ring_seg, 1);
869 sc->ale_cdata.ale_tx_ring = NULL;
870 sc->ale_cdata.ale_tx_ring_map = NULL;
872 /* Rx page block. */
873 for (i = 0; i < ALE_RX_PAGES; i++) {
874 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
875 bus_dmamap_unload(sc->sc_dmat,
876 sc->ale_cdata.ale_rx_page[i].page_map);
877 if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
878 sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
879 bus_dmamem_free(sc->sc_dmat,
880 &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
881 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
882 sc->ale_cdata.ale_rx_page[i].page_map = NULL;
885 /* Rx CMB. */
886 for (i = 0; i < ALE_RX_PAGES; i++) {
887 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
888 bus_dmamap_unload(sc->sc_dmat,
889 sc->ale_cdata.ale_rx_page[i].cmb_map);
890 if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
891 sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
892 bus_dmamem_free(sc->sc_dmat,
893 &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
894 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
895 sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
898 /* Tx CMB. */
899 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
900 bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
901 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
902 sc->ale_cdata.ale_tx_cmb != NULL)
903 bus_dmamem_free(sc->sc_dmat,
904 &sc->ale_cdata.ale_tx_cmb_seg, 1);
905 sc->ale_cdata.ale_tx_cmb = NULL;
906 sc->ale_cdata.ale_tx_cmb_map = NULL;
910 static int
911 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
913 struct ale_txdesc *txd, *txd_last;
914 struct tx_desc *desc;
915 struct mbuf *m;
916 bus_dmamap_t map;
917 uint32_t cflags, poff, vtag;
918 int error, i, nsegs, prod;
919 #if NVLAN > 0
920 struct m_tag *mtag;
921 #endif
923 m = *m_head;
924 cflags = vtag = 0;
925 poff = 0;
927 prod = sc->ale_cdata.ale_tx_prod;
928 txd = &sc->ale_cdata.ale_txdesc[prod];
929 txd_last = txd;
930 map = txd->tx_dmamap;
932 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
933 if (error == EFBIG) {
934 error = 0;
936 *m_head = m_pullup(*m_head, MHLEN);
937 if (*m_head == NULL) {
938 printf("%s: can't defrag TX mbuf\n",
939 device_xname(sc->sc_dev));
940 return ENOBUFS;
943 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
944 BUS_DMA_NOWAIT);
946 if (error != 0) {
947 printf("%s: could not load defragged TX mbuf\n",
948 device_xname(sc->sc_dev));
949 m_freem(*m_head);
950 *m_head = NULL;
951 return error;
953 } else if (error) {
954 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
955 return error;
958 nsegs = map->dm_nsegs;
960 if (nsegs == 0) {
961 m_freem(*m_head);
962 *m_head = NULL;
963 return EIO;
966 /* Check descriptor overrun. */
967 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
968 bus_dmamap_unload(sc->sc_dmat, map);
969 return ENOBUFS;
971 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
972 BUS_DMASYNC_PREWRITE);
974 m = *m_head;
975 /* Configure Tx checksum offload. */
976 if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
978 * AR81xx supports Tx custom checksum offload feature
979 * that offloads single 16bit checksum computation.
980 * So you can choose one among IP, TCP and UDP.
981 * Normally driver sets checksum start/insertion
982 * position from the information of TCP/UDP frame as
983 * TCP/UDP checksum takes more time than that of IP.
984 * However it seems that custom checksum offload
985 * requires 4 bytes aligned Tx buffers due to hardware
986 * bug.
987 * AR81xx also supports explicit Tx checksum computation
988 * if it is told that the size of IP header and TCP
989 * header(for UDP, the header size does not matter
990 * because it's fixed length). However with this scheme
991 * TSO does not work so you have to choose one either
992 * TSO or explicit Tx checksum offload. I chosen TSO
993 * plus custom checksum offload with work-around which
994 * will cover most common usage for this consumer
995 * ethernet controller. The work-around takes a lot of
996 * CPU cycles if Tx buffer is not aligned on 4 bytes
997 * boundary, though.
999 cflags |= ALE_TD_CXSUM;
1000 /* Set checksum start offset. */
1001 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1004 #if NVLAN > 0
1005 /* Configure VLAN hardware tag insertion. */
1006 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1007 vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1008 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1009 cflags |= ALE_TD_INSERT_VLAN_TAG;
1011 #endif
1013 desc = NULL;
1014 for (i = 0; i < nsegs; i++) {
1015 desc = &sc->ale_cdata.ale_tx_ring[prod];
1016 desc->addr = htole64(map->dm_segs[i].ds_addr);
1017 desc->len =
1018 htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1019 desc->flags = htole32(cflags);
1020 sc->ale_cdata.ale_tx_cnt++;
1021 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1023 /* Update producer index. */
1024 sc->ale_cdata.ale_tx_prod = prod;
1026 /* Finally set EOP on the last descriptor. */
1027 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1028 desc = &sc->ale_cdata.ale_tx_ring[prod];
1029 desc->flags |= htole32(ALE_TD_EOP);
1031 /* Swap dmamap of the first and the last. */
1032 txd = &sc->ale_cdata.ale_txdesc[prod];
1033 map = txd_last->tx_dmamap;
1034 txd_last->tx_dmamap = txd->tx_dmamap;
1035 txd->tx_dmamap = map;
1036 txd->tx_m = m;
1038 /* Sync descriptors. */
1039 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1040 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1042 return 0;
1045 static void
1046 ale_start(struct ifnet *ifp)
1048 struct ale_softc *sc = ifp->if_softc;
1049 struct mbuf *m_head;
1050 int enq;
1052 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1053 return;
1055 /* Reclaim transmitted frames. */
1056 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1057 ale_txeof(sc);
1059 enq = 0;
1060 for (;;) {
1061 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1062 if (m_head == NULL)
1063 break;
1066 * Pack the data into the transmit ring. If we
1067 * don't have room, set the OACTIVE flag and wait
1068 * for the NIC to drain the ring.
1070 if (ale_encap(sc, &m_head)) {
1071 if (m_head == NULL)
1072 break;
1073 IF_PREPEND(&ifp->if_snd, m_head);
1074 ifp->if_flags |= IFF_OACTIVE;
1075 break;
1077 enq = 1;
1079 #if NBPFILTER > 0
1081 * If there's a BPF listener, bounce a copy of this frame
1082 * to him.
1084 if (ifp->if_bpf != NULL)
1085 bpf_mtap(ifp->if_bpf, m_head);
1086 #endif
1089 if (enq) {
1090 /* Kick. */
1091 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1092 sc->ale_cdata.ale_tx_prod);
1094 /* Set a timeout in case the chip goes out to lunch. */
1095 ifp->if_timer = ALE_TX_TIMEOUT;
1099 static void
1100 ale_watchdog(struct ifnet *ifp)
1102 struct ale_softc *sc = ifp->if_softc;
1104 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1105 printf("%s: watchdog timeout (missed link)\n",
1106 device_xname(sc->sc_dev));
1107 ifp->if_oerrors++;
1108 ale_init(ifp);
1109 return;
1112 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1113 ifp->if_oerrors++;
1114 ale_init(ifp);
1116 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1117 ale_start(ifp);
1120 static int
1121 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1123 struct ale_softc *sc = ifp->if_softc;
1124 int s, error;
1126 s = splnet();
1128 error = ether_ioctl(ifp, cmd, data);
1129 if (error == ENETRESET) {
1130 if (ifp->if_flags & IFF_RUNNING)
1131 ale_rxfilter(sc);
1132 error = 0;
1135 splx(s);
1136 return error;
1139 static void
1140 ale_mac_config(struct ale_softc *sc)
1142 struct mii_data *mii;
1143 uint32_t reg;
1145 mii = &sc->sc_miibus;
1146 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1147 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1148 MAC_CFG_SPEED_MASK);
1150 /* Reprogram MAC with resolved speed/duplex. */
1151 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1152 case IFM_10_T:
1153 case IFM_100_TX:
1154 reg |= MAC_CFG_SPEED_10_100;
1155 break;
1156 case IFM_1000_T:
1157 reg |= MAC_CFG_SPEED_1000;
1158 break;
1160 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1161 reg |= MAC_CFG_FULL_DUPLEX;
1162 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1163 reg |= MAC_CFG_TX_FC;
1164 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1165 reg |= MAC_CFG_RX_FC;
1167 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1170 static void
1171 ale_stats_clear(struct ale_softc *sc)
1173 struct smb sb;
1174 uint32_t *reg;
1175 int i;
1177 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1178 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1179 i += sizeof(uint32_t);
1181 /* Read Tx statistics. */
1182 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1183 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1184 i += sizeof(uint32_t);
1188 static void
1189 ale_stats_update(struct ale_softc *sc)
1191 struct ifnet *ifp = &sc->sc_ec.ec_if;
1192 struct ale_hw_stats *stat;
1193 struct smb sb, *smb;
1194 uint32_t *reg;
1195 int i;
1197 stat = &sc->ale_stats;
1198 smb = &sb;
1200 /* Read Rx statistics. */
1201 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1202 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1203 i += sizeof(uint32_t);
1205 /* Read Tx statistics. */
1206 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1207 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1208 i += sizeof(uint32_t);
1211 /* Rx stats. */
1212 stat->rx_frames += smb->rx_frames;
1213 stat->rx_bcast_frames += smb->rx_bcast_frames;
1214 stat->rx_mcast_frames += smb->rx_mcast_frames;
1215 stat->rx_pause_frames += smb->rx_pause_frames;
1216 stat->rx_control_frames += smb->rx_control_frames;
1217 stat->rx_crcerrs += smb->rx_crcerrs;
1218 stat->rx_lenerrs += smb->rx_lenerrs;
1219 stat->rx_bytes += smb->rx_bytes;
1220 stat->rx_runts += smb->rx_runts;
1221 stat->rx_fragments += smb->rx_fragments;
1222 stat->rx_pkts_64 += smb->rx_pkts_64;
1223 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1224 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1225 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1226 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1227 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1228 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1229 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1230 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1231 stat->rx_rrs_errs += smb->rx_rrs_errs;
1232 stat->rx_alignerrs += smb->rx_alignerrs;
1233 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1234 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1235 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1237 /* Tx stats. */
1238 stat->tx_frames += smb->tx_frames;
1239 stat->tx_bcast_frames += smb->tx_bcast_frames;
1240 stat->tx_mcast_frames += smb->tx_mcast_frames;
1241 stat->tx_pause_frames += smb->tx_pause_frames;
1242 stat->tx_excess_defer += smb->tx_excess_defer;
1243 stat->tx_control_frames += smb->tx_control_frames;
1244 stat->tx_deferred += smb->tx_deferred;
1245 stat->tx_bytes += smb->tx_bytes;
1246 stat->tx_pkts_64 += smb->tx_pkts_64;
1247 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1248 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1249 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1250 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1251 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1252 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1253 stat->tx_single_colls += smb->tx_single_colls;
1254 stat->tx_multi_colls += smb->tx_multi_colls;
1255 stat->tx_late_colls += smb->tx_late_colls;
1256 stat->tx_excess_colls += smb->tx_excess_colls;
1257 stat->tx_abort += smb->tx_abort;
1258 stat->tx_underrun += smb->tx_underrun;
1259 stat->tx_desc_underrun += smb->tx_desc_underrun;
1260 stat->tx_lenerrs += smb->tx_lenerrs;
1261 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1262 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1263 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1265 /* Update counters in ifnet. */
1266 ifp->if_opackets += smb->tx_frames;
1268 ifp->if_collisions += smb->tx_single_colls +
1269 smb->tx_multi_colls * 2 + smb->tx_late_colls +
1270 smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1273 * XXX
1274 * tx_pkts_truncated counter looks suspicious. It constantly
1275 * increments with no sign of Tx errors. This may indicate
1276 * the counter name is not correct one so I've removed the
1277 * counter in output errors.
1279 ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1280 smb->tx_underrun;
1282 ifp->if_ipackets += smb->rx_frames;
1284 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1285 smb->rx_runts + smb->rx_pkts_truncated +
1286 smb->rx_fifo_oflows + smb->rx_rrs_errs +
1287 smb->rx_alignerrs;
1290 static int
1291 ale_intr(void *xsc)
1293 struct ale_softc *sc = xsc;
1294 struct ifnet *ifp = &sc->sc_ec.ec_if;
1295 uint32_t status;
1297 status = CSR_READ_4(sc, ALE_INTR_STATUS);
1298 if ((status & ALE_INTRS) == 0)
1299 return 0;
1301 /* Acknowledge and disable interrupts. */
1302 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1304 if (ifp->if_flags & IFF_RUNNING) {
1305 int error;
1307 error = ale_rxeof(sc);
1308 if (error) {
1309 sc->ale_stats.reset_brk_seq++;
1310 ale_init(ifp);
1311 return 0;
1314 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1315 if (status & INTR_DMA_RD_TO_RST)
1316 printf("%s: DMA read error! -- resetting\n",
1317 device_xname(sc->sc_dev));
1318 if (status & INTR_DMA_WR_TO_RST)
1319 printf("%s: DMA write error! -- resetting\n",
1320 device_xname(sc->sc_dev));
1321 ale_init(ifp);
1322 return 0;
1325 ale_txeof(sc);
1326 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1327 ale_start(ifp);
1330 /* Re-enable interrupts. */
1331 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1332 return 1;
1335 static void
1336 ale_txeof(struct ale_softc *sc)
1338 struct ifnet *ifp = &sc->sc_ec.ec_if;
1339 struct ale_txdesc *txd;
1340 uint32_t cons, prod;
1341 int prog;
1343 if (sc->ale_cdata.ale_tx_cnt == 0)
1344 return;
1346 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1347 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1348 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1349 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1350 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1351 BUS_DMASYNC_POSTREAD);
1352 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1353 } else
1354 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1355 cons = sc->ale_cdata.ale_tx_cons;
1357 * Go through our Tx list and free mbufs for those
1358 * frames which have been transmitted.
1360 for (prog = 0; cons != prod; prog++,
1361 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1362 if (sc->ale_cdata.ale_tx_cnt <= 0)
1363 break;
1364 prog++;
1365 ifp->if_flags &= ~IFF_OACTIVE;
1366 sc->ale_cdata.ale_tx_cnt--;
1367 txd = &sc->ale_cdata.ale_txdesc[cons];
1368 if (txd->tx_m != NULL) {
1369 /* Reclaim transmitted mbufs. */
1370 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1371 m_freem(txd->tx_m);
1372 txd->tx_m = NULL;
1376 if (prog > 0) {
1377 sc->ale_cdata.ale_tx_cons = cons;
1379 * Unarm watchdog timer only when there is no pending
1380 * Tx descriptors in queue.
1382 if (sc->ale_cdata.ale_tx_cnt == 0)
1383 ifp->if_timer = 0;
1387 static void
1388 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1389 uint32_t length, uint32_t *prod)
1391 struct ale_rx_page *rx_page;
1393 rx_page = *page;
1394 /* Update consumer position. */
1395 rx_page->cons += roundup(length + sizeof(struct rx_rs),
1396 ALE_RX_PAGE_ALIGN);
1397 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1399 * End of Rx page reached, let hardware reuse
1400 * this page.
1402 rx_page->cons = 0;
1403 *rx_page->cmb_addr = 0;
1404 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1405 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1406 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1407 RXF_VALID);
1408 /* Switch to alternate Rx page. */
1409 sc->ale_cdata.ale_rx_curp ^= 1;
1410 rx_page = *page =
1411 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1412 /* Page flipped, sync CMB and Rx page. */
1413 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1414 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1415 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1416 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1417 /* Sync completed, cache updated producer index. */
1418 *prod = *rx_page->cmb_addr;
1424 * It seems that AR81xx controller can compute partial checksum.
1425 * The partial checksum value can be used to accelerate checksum
1426 * computation for fragmented TCP/UDP packets. Upper network stack
1427 * already takes advantage of the partial checksum value in IP
1428 * reassembly stage. But I'm not sure the correctness of the
1429 * partial hardware checksum assistance due to lack of data sheet.
1430 * In addition, the Rx feature of controller that requires copying
1431 * for every frames effectively nullifies one of most nice offload
1432 * capability of controller.
1434 static void
1435 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1437 if (status & ALE_RD_IPCSUM_NOK)
1438 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1440 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1441 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1442 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1443 (status & ALE_RD_TCP_UDPCSUM_NOK))
1445 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1447 } else {
1448 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1449 if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1450 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1455 * Don't mark bad checksum for TCP/UDP frames
1456 * as fragmented frames may always have set
1457 * bad checksummed bit of frame status.
1461 /* Process received frames. */
1462 static int
1463 ale_rxeof(struct ale_softc *sc)
1465 struct ifnet *ifp = &sc->sc_ec.ec_if;
1466 struct ale_rx_page *rx_page;
1467 struct rx_rs *rs;
1468 struct mbuf *m;
1469 uint32_t length, prod, seqno, status;
1470 int prog;
1472 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1473 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1474 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1475 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1476 rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1478 * Don't directly access producer index as hardware may
1479 * update it while Rx handler is in progress. It would
1480 * be even better if there is a way to let hardware
1481 * know how far driver processed its received frames.
1482 * Alternatively, hardware could provide a way to disable
1483 * CMB updates until driver acknowledges the end of CMB
1484 * access.
1486 prod = *rx_page->cmb_addr;
1487 for (prog = 0; ; prog++) {
1488 if (rx_page->cons >= prod)
1489 break;
1490 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1491 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1492 if (sc->ale_cdata.ale_rx_seqno != seqno) {
1494 * Normally I believe this should not happen unless
1495 * severe driver bug or corrupted memory. However
1496 * it seems to happen under certain conditions which
1497 * is triggered by abrupt Rx events such as initiation
1498 * of bulk transfer of remote host. It's not easy to
1499 * reproduce this and I doubt it could be related
1500 * with FIFO overflow of hardware or activity of Tx
1501 * CMB updates. I also remember similar behaviour
1502 * seen on RealTek 8139 which uses resembling Rx
1503 * scheme.
1505 if (aledebug)
1506 printf("%s: garbled seq: %u, expected: %u -- "
1507 "resetting!\n", device_xname(sc->sc_dev),
1508 seqno, sc->ale_cdata.ale_rx_seqno);
1509 return EIO;
1511 /* Frame received. */
1512 sc->ale_cdata.ale_rx_seqno++;
1513 length = ALE_RX_BYTES(le32toh(rs->length));
1514 status = le32toh(rs->flags);
1515 if (status & ALE_RD_ERROR) {
1517 * We want to pass the following frames to upper
1518 * layer regardless of error status of Rx return
1519 * status.
1521 * o IP/TCP/UDP checksum is bad.
1522 * o frame length and protocol specific length
1523 * does not match.
1525 if (status & (ALE_RD_CRC | ALE_RD_CODE |
1526 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1527 ALE_RD_TRUNC)) {
1528 ale_rx_update_page(sc, &rx_page, length, &prod);
1529 continue;
1533 * m_devget(9) is major bottle-neck of ale(4)(It comes
1534 * from hardware limitation). For jumbo frames we could
1535 * get a slightly better performance if driver use
1536 * m_getjcl(9) with proper buffer size argument. However
1537 * that would make code more complicated and I don't
1538 * think users would expect good Rx performance numbers
1539 * on these low-end consumer ethernet controller.
1541 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1542 0, ifp, NULL);
1543 if (m == NULL) {
1544 ifp->if_iqdrops++;
1545 ale_rx_update_page(sc, &rx_page, length, &prod);
1546 continue;
1548 if (status & ALE_RD_IPV4)
1549 ale_rxcsum(sc, m, status);
1550 #if NVLAN > 0
1551 if (status & ALE_RD_VLAN) {
1552 uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1553 VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1555 #endif
1558 #if NBPFILTER > 0
1559 if (ifp->if_bpf)
1560 bpf_mtap(ifp->if_bpf, m);
1561 #endif
1563 /* Pass it to upper layer. */
1564 ether_input(ifp, m);
1566 ale_rx_update_page(sc, &rx_page, length, &prod);
1569 return 0;
1572 static void
1573 ale_tick(void *xsc)
1575 struct ale_softc *sc = xsc;
1576 struct mii_data *mii = &sc->sc_miibus;
1577 int s;
1579 s = splnet();
1580 mii_tick(mii);
1581 ale_stats_update(sc);
1582 splx(s);
1584 callout_schedule(&sc->sc_tick_ch, hz);
1587 static void
1588 ale_reset(struct ale_softc *sc)
1590 uint32_t reg;
1591 int i;
1593 /* Initialize PCIe module. From Linux. */
1594 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1596 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1597 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1598 DELAY(10);
1599 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1600 break;
1602 if (i == 0)
1603 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1605 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1606 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1607 break;
1608 DELAY(10);
1611 if (i == 0)
1612 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1613 reg);
1616 static int
1617 ale_init(struct ifnet *ifp)
1619 struct ale_softc *sc = ifp->if_softc;
1620 struct mii_data *mii;
1621 uint8_t eaddr[ETHER_ADDR_LEN];
1622 bus_addr_t paddr;
1623 uint32_t reg, rxf_hi, rxf_lo;
1626 * Cancel any pending I/O.
1628 ale_stop(ifp, 0);
1631 * Reset the chip to a known state.
1633 ale_reset(sc);
1635 /* Initialize Tx descriptors, DMA memory blocks. */
1636 ale_init_rx_pages(sc);
1637 ale_init_tx_ring(sc);
1639 /* Reprogram the station address. */
1640 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1641 CSR_WRITE_4(sc, ALE_PAR0,
1642 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1643 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1646 * Clear WOL status and disable all WOL feature as WOL
1647 * would interfere Rx operation under normal environments.
1649 CSR_READ_4(sc, ALE_WOL_CFG);
1650 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1653 * Set Tx descriptor/RXF0/CMB base addresses. They share
1654 * the same high address part of DMAable region.
1656 paddr = sc->ale_cdata.ale_tx_ring_paddr;
1657 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1658 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1659 CSR_WRITE_4(sc, ALE_TPD_CNT,
1660 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1662 /* Set Rx page base address, note we use single queue. */
1663 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1664 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1665 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1666 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1668 /* Set Tx/Rx CMB addresses. */
1669 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1670 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1671 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1672 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1673 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1674 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1676 /* Mark RXF0 is valid. */
1677 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1678 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1680 * No need to initialize RFX1/RXF2/RXF3. We don't use
1681 * multi-queue yet.
1684 /* Set Rx page size, excluding guard frame size. */
1685 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1687 /* Tell hardware that we're ready to load DMA blocks. */
1688 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1690 /* Set Rx/Tx interrupt trigger threshold. */
1691 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1692 (4 << INT_TRIG_TX_THRESH_SHIFT));
1694 * XXX
1695 * Set interrupt trigger timer, its purpose and relation
1696 * with interrupt moderation mechanism is not clear yet.
1698 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1699 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1700 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1702 /* Configure interrupt moderation timer. */
1703 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1704 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1705 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1706 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1707 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1708 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1709 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1710 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1711 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1712 reg |= MASTER_IM_RX_TIMER_ENB;
1713 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1714 reg |= MASTER_IM_TX_TIMER_ENB;
1715 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1716 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1718 /* Set Maximum frame size of controller. */
1719 if (ifp->if_mtu < ETHERMTU)
1720 sc->ale_max_frame_size = ETHERMTU;
1721 else
1722 sc->ale_max_frame_size = ifp->if_mtu;
1723 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1724 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1726 /* Configure IPG/IFG parameters. */
1727 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1728 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1729 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1730 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1731 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1733 /* Set parameters for half-duplex media. */
1734 CSR_WRITE_4(sc, ALE_HDPX_CFG,
1735 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1736 HDPX_CFG_LCOL_MASK) |
1737 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1738 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1739 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1740 HDPX_CFG_ABEBT_MASK) |
1741 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1742 HDPX_CFG_JAMIPG_MASK));
1744 /* Configure Tx jumbo frame parameters. */
1745 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1746 if (ifp->if_mtu < ETHERMTU)
1747 reg = sc->ale_max_frame_size;
1748 else if (ifp->if_mtu < 6 * 1024)
1749 reg = (sc->ale_max_frame_size * 2) / 3;
1750 else
1751 reg = sc->ale_max_frame_size / 2;
1752 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1753 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1754 TX_JUMBO_THRESH_UNIT_SHIFT);
1757 /* Configure TxQ. */
1758 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1759 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1760 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1761 TXQ_CFG_TPD_BURST_MASK;
1762 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1764 /* Configure Rx jumbo frame & flow control parameters. */
1765 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1766 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1767 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1768 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1769 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1770 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1771 RX_JUMBO_LKAH_MASK));
1772 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1773 rxf_hi = (reg * 7) / 10;
1774 rxf_lo = (reg * 3)/ 10;
1775 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1776 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1777 RX_FIFO_PAUSE_THRESH_LO_MASK) |
1778 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1779 RX_FIFO_PAUSE_THRESH_HI_MASK));
1782 /* Disable RSS. */
1783 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1784 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1786 /* Configure RxQ. */
1787 CSR_WRITE_4(sc, ALE_RXQ_CFG,
1788 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1790 /* Configure DMA parameters. */
1791 reg = 0;
1792 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1793 reg |= DMA_CFG_TXCMB_ENB;
1794 CSR_WRITE_4(sc, ALE_DMA_CFG,
1795 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1796 sc->ale_dma_rd_burst | reg |
1797 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1798 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1799 DMA_CFG_RD_DELAY_CNT_MASK) |
1800 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1801 DMA_CFG_WR_DELAY_CNT_MASK));
1804 * Hardware can be configured to issue SMB interrupt based
1805 * on programmed interval. Since there is a callout that is
1806 * invoked for every hz in driver we use that instead of
1807 * relying on periodic SMB interrupt.
1809 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1811 /* Clear MAC statistics. */
1812 ale_stats_clear(sc);
1815 * Configure Tx/Rx MACs.
1816 * - Auto-padding for short frames.
1817 * - Enable CRC generation.
1818 * Actual reconfiguration of MAC for resolved speed/duplex
1819 * is followed after detection of link establishment.
1820 * AR81xx always does checksum computation regardless of
1821 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1822 * cause Rx handling issue for fragmented IP datagrams due
1823 * to silicon bug.
1825 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1826 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1827 MAC_CFG_PREAMBLE_MASK);
1828 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1829 reg |= MAC_CFG_SPEED_10_100;
1830 else
1831 reg |= MAC_CFG_SPEED_1000;
1832 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1834 /* Set up the receive filter. */
1835 ale_rxfilter(sc);
1836 ale_rxvlan(sc);
1838 /* Acknowledge all pending interrupts and clear it. */
1839 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1840 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1841 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1843 sc->ale_flags &= ~ALE_FLAG_LINK;
1845 /* Switch to the current media. */
1846 mii = &sc->sc_miibus;
1847 mii_mediachg(mii);
1849 callout_schedule(&sc->sc_tick_ch, hz);
1851 ifp->if_flags |= IFF_RUNNING;
1852 ifp->if_flags &= ~IFF_OACTIVE;
1854 return 0;
1857 static void
1858 ale_stop(struct ifnet *ifp, int disable)
1860 struct ale_softc *sc = ifp->if_softc;
1861 struct ale_txdesc *txd;
1862 uint32_t reg;
1863 int i;
1865 callout_stop(&sc->sc_tick_ch);
1868 * Mark the interface down and cancel the watchdog timer.
1870 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1871 ifp->if_timer = 0;
1873 sc->ale_flags &= ~ALE_FLAG_LINK;
1875 ale_stats_update(sc);
1877 mii_down(&sc->sc_miibus);
1879 /* Disable interrupts. */
1880 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1881 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1883 /* Disable queue processing and DMA. */
1884 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1885 reg &= ~TXQ_CFG_ENB;
1886 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1887 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1888 reg &= ~RXQ_CFG_ENB;
1889 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1890 reg = CSR_READ_4(sc, ALE_DMA_CFG);
1891 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1892 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1893 DELAY(1000);
1895 /* Stop Rx/Tx MACs. */
1896 ale_stop_mac(sc);
1898 /* Disable interrupts again? XXX */
1899 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1902 * Free TX mbufs still in the queues.
1904 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1905 txd = &sc->ale_cdata.ale_txdesc[i];
1906 if (txd->tx_m != NULL) {
1907 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1908 m_freem(txd->tx_m);
1909 txd->tx_m = NULL;
1914 static void
1915 ale_stop_mac(struct ale_softc *sc)
1917 uint32_t reg;
1918 int i;
1920 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1921 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1922 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1923 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1926 for (i = ALE_TIMEOUT; i > 0; i--) {
1927 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1928 if (reg == 0)
1929 break;
1930 DELAY(10);
1932 if (i == 0)
1933 printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1934 device_xname(sc->sc_dev), reg);
1937 static void
1938 ale_init_tx_ring(struct ale_softc *sc)
1940 struct ale_txdesc *txd;
1941 int i;
1943 sc->ale_cdata.ale_tx_prod = 0;
1944 sc->ale_cdata.ale_tx_cons = 0;
1945 sc->ale_cdata.ale_tx_cnt = 0;
1947 memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1948 memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1949 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1950 txd = &sc->ale_cdata.ale_txdesc[i];
1951 txd->tx_m = NULL;
1953 *sc->ale_cdata.ale_tx_cmb = 0;
1954 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1955 sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1956 bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1957 sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1960 static void
1961 ale_init_rx_pages(struct ale_softc *sc)
1963 struct ale_rx_page *rx_page;
1964 int i;
1966 sc->ale_cdata.ale_rx_seqno = 0;
1967 sc->ale_cdata.ale_rx_curp = 0;
1969 for (i = 0; i < ALE_RX_PAGES; i++) {
1970 rx_page = &sc->ale_cdata.ale_rx_page[i];
1971 memset(rx_page->page_addr, 0, sc->ale_pagesize);
1972 memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1973 rx_page->cons = 0;
1974 *rx_page->cmb_addr = 0;
1975 bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1976 rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1977 bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1978 rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1982 static void
1983 ale_rxvlan(struct ale_softc *sc)
1985 struct ifnet *ifp = &sc->sc_ec.ec_if;
1986 uint32_t reg;
1988 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1989 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1990 if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1991 reg |= MAC_CFG_VLAN_TAG_STRIP;
1992 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1995 static void
1996 ale_rxfilter(struct ale_softc *sc)
1998 struct ethercom *ec = &sc->sc_ec;
1999 struct ifnet *ifp = &ec->ec_if;
2000 struct ether_multi *enm;
2001 struct ether_multistep step;
2002 uint32_t crc;
2003 uint32_t mchash[2];
2004 uint32_t rxcfg;
2006 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2007 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2008 ifp->if_flags &= ~IFF_ALLMULTI;
2011 * Always accept broadcast frames.
2013 rxcfg |= MAC_CFG_BCAST;
2015 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2016 ifp->if_flags |= IFF_ALLMULTI;
2017 if (ifp->if_flags & IFF_PROMISC)
2018 rxcfg |= MAC_CFG_PROMISC;
2019 else
2020 rxcfg |= MAC_CFG_ALLMULTI;
2021 mchash[0] = mchash[1] = 0xFFFFFFFF;
2022 } else {
2023 /* Program new filter. */
2024 memset(mchash, 0, sizeof(mchash));
2026 ETHER_FIRST_MULTI(step, ec, enm);
2027 while (enm != NULL) {
2028 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2029 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2030 ETHER_NEXT_MULTI(step, enm);
2034 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2035 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2036 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);