No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / pci / if_nfe.c
blob7d73058873da4b67dc79e9319c47869a7cc5d14b
1 /* $NetBSD: if_nfe.c,v 1.47 2009/11/26 15:17:09 njoly Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
4 /*-
5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.47 2009/11/26 15:17:09 njoly Exp $");
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/mutex.h>
37 #include <sys/queue.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/callout.h>
41 #include <sys/socket.h>
43 #include <sys/bus.h>
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 #include <net/if_arp.h>
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 #include <netinet/if_inarp.h>
57 #endif
59 #if NVLAN > 0
60 #include <net/if_types.h>
61 #endif
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
74 #include <dev/pci/if_nfereg.h>
75 #include <dev/pci/if_nfevar.h>
77 static int nfe_ifflags_cb(struct ethercom *);
79 int nfe_match(device_t, cfdata_t, void *);
80 void nfe_attach(device_t, device_t, void *);
81 void nfe_power(int, void *);
82 void nfe_miibus_statchg(device_t);
83 int nfe_miibus_readreg(device_t, int, int);
84 void nfe_miibus_writereg(device_t, int, int, int);
85 int nfe_intr(void *);
86 int nfe_ioctl(struct ifnet *, u_long, void *);
87 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
88 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
89 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
90 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
91 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
92 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
93 void nfe_rxeof(struct nfe_softc *);
94 void nfe_txeof(struct nfe_softc *);
95 int nfe_encap(struct nfe_softc *, struct mbuf *);
96 void nfe_start(struct ifnet *);
97 void nfe_watchdog(struct ifnet *);
98 int nfe_init(struct ifnet *);
99 void nfe_stop(struct ifnet *, int);
100 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
101 void nfe_jfree(struct mbuf *, void *, size_t, void *);
102 int nfe_jpool_alloc(struct nfe_softc *);
103 void nfe_jpool_free(struct nfe_softc *);
104 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
106 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
107 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
109 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
110 void nfe_setmulti(struct nfe_softc *);
111 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
112 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
113 void nfe_tick(void *);
114 void nfe_poweron(device_t);
115 bool nfe_resume(device_t, pmf_qual_t);
117 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
118 NULL, NULL);
120 /* #define NFE_NO_JUMBO */
122 #ifdef NFE_DEBUG
123 int nfedebug = 0;
124 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
125 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
126 #else
127 #define DPRINTF(x)
128 #define DPRINTFN(n,x)
129 #endif
131 /* deal with naming differences */
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
134 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
135 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
136 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
137 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
138 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
140 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
141 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
142 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
143 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
145 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
146 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
147 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
148 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
150 #ifdef _LP64
151 #define __LP64__ 1
152 #endif
154 const struct nfe_product {
155 pci_vendor_id_t vendor;
156 pci_product_id_t product;
157 } nfe_devices[] = {
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
194 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
195 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
196 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
200 nfe_match(device_t dev, cfdata_t match, void *aux)
202 struct pci_attach_args *pa = aux;
203 const struct nfe_product *np;
204 int i;
206 for (i = 0; i < __arraycount(nfe_devices); i++) {
207 np = &nfe_devices[i];
208 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
209 PCI_PRODUCT(pa->pa_id) == np->product)
210 return 1;
212 return 0;
215 void
216 nfe_attach(device_t parent, device_t self, void *aux)
218 struct nfe_softc *sc = device_private(self);
219 struct pci_attach_args *pa = aux;
220 pci_chipset_tag_t pc = pa->pa_pc;
221 pci_intr_handle_t ih;
222 const char *intrstr;
223 struct ifnet *ifp;
224 bus_size_t memsize;
225 pcireg_t memtype;
226 char devinfo[256];
227 int mii_flags = 0;
229 sc->sc_dev = self;
230 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
231 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
233 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
234 switch (memtype) {
235 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
236 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
237 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
238 &sc->sc_memh, NULL, &memsize) == 0)
239 break;
240 /* FALLTHROUGH */
241 default:
242 aprint_error_dev(self, "could not map mem space\n");
243 return;
246 if (pci_intr_map(pa, &ih) != 0) {
247 aprint_error_dev(self, "could not map interrupt\n");
248 goto fail;
251 intrstr = pci_intr_string(pc, ih);
252 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
253 if (sc->sc_ih == NULL) {
254 aprint_error_dev(self, "could not establish interrupt");
255 if (intrstr != NULL)
256 aprint_error(" at %s", intrstr);
257 aprint_error("\n");
258 goto fail;
260 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
262 sc->sc_dmat = pa->pa_dmat;
264 sc->sc_flags = 0;
266 switch (PCI_PRODUCT(pa->pa_id)) {
267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
268 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
269 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
270 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
271 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
272 break;
273 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
275 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
276 break;
277 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
278 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
279 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
280 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
281 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
282 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
283 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
284 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
285 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
286 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
287 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
288 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
289 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
290 NFE_PWR_MGMT;
291 break;
292 case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
293 case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
294 case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
295 case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
296 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
297 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
298 break;
299 case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
300 case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
301 case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
302 case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
303 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
304 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
305 break;
306 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
307 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
308 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
309 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
310 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
311 break;
312 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
313 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
314 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
315 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
316 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
317 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
318 mii_flags = MIIF_DOPAUSE;
319 break;
320 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
321 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
322 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
323 NFE_HW_VLAN | NFE_PWR_MGMT;
324 break;
327 nfe_poweron(self);
329 #ifndef NFE_NO_JUMBO
330 /* enable jumbo frames for adapters that support it */
331 if (sc->sc_flags & NFE_JUMBO_SUP)
332 sc->sc_flags |= NFE_USE_JUMBO;
333 #endif
335 /* Check for reversed ethernet address */
336 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
337 sc->sc_flags |= NFE_CORRECT_MACADDR;
339 nfe_get_macaddr(sc, sc->sc_enaddr);
340 aprint_normal_dev(self, "Ethernet address %s\n",
341 ether_sprintf(sc->sc_enaddr));
344 * Allocate Tx and Rx rings.
346 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
347 aprint_error_dev(self, "could not allocate Tx ring\n");
348 goto fail;
351 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
353 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
354 aprint_error_dev(self, "could not allocate Rx ring\n");
355 nfe_free_tx_ring(sc, &sc->txq);
356 goto fail;
359 ifp = &sc->sc_ethercom.ec_if;
360 ifp->if_softc = sc;
361 ifp->if_mtu = ETHERMTU;
362 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 ifp->if_ioctl = nfe_ioctl;
364 ifp->if_start = nfe_start;
365 ifp->if_stop = nfe_stop;
366 ifp->if_watchdog = nfe_watchdog;
367 ifp->if_init = nfe_init;
368 ifp->if_baudrate = IF_Gbps(1);
369 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
370 IFQ_SET_READY(&ifp->if_snd);
371 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
373 if (sc->sc_flags & NFE_USE_JUMBO)
374 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
376 #if NVLAN > 0
377 if (sc->sc_flags & NFE_HW_VLAN)
378 sc->sc_ethercom.ec_capabilities |=
379 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
380 #endif
381 if (sc->sc_flags & NFE_HW_CSUM) {
382 ifp->if_capabilities |=
383 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
384 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
385 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
388 sc->sc_mii.mii_ifp = ifp;
389 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
390 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
391 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
393 sc->sc_ethercom.ec_mii = &sc->sc_mii;
394 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
395 ether_mediastatus);
397 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
398 MII_OFFSET_ANY, mii_flags);
400 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
401 aprint_error_dev(self, "no PHY found!\n");
402 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
403 0, NULL);
404 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
405 } else
406 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
408 if_attach(ifp);
409 ether_ifattach(ifp, sc->sc_enaddr);
410 ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
412 callout_init(&sc->sc_tick_ch, 0);
413 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
415 if (pmf_device_register(self, NULL, nfe_resume))
416 pmf_class_network_register(self, ifp);
417 else
418 aprint_error_dev(self, "couldn't establish power handler\n");
420 return;
422 fail:
423 if (sc->sc_ih != NULL) {
424 pci_intr_disestablish(pc, sc->sc_ih);
425 sc->sc_ih = NULL;
427 if (memsize)
428 bus_space_unmap(sc->sc_memt, sc->sc_memh, memsize);
431 void
432 nfe_miibus_statchg(device_t dev)
434 struct nfe_softc *sc = device_private(dev);
435 struct mii_data *mii = &sc->sc_mii;
436 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
438 phy = NFE_READ(sc, NFE_PHY_IFACE);
439 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
441 seed = NFE_READ(sc, NFE_RNDSEED);
442 seed &= ~NFE_SEED_MASK;
444 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
445 phy |= NFE_PHY_HDX; /* half-duplex */
446 misc |= NFE_MISC1_HDX;
449 switch (IFM_SUBTYPE(mii->mii_media_active)) {
450 case IFM_1000_T: /* full-duplex only */
451 link |= NFE_MEDIA_1000T;
452 seed |= NFE_SEED_1000T;
453 phy |= NFE_PHY_1000T;
454 break;
455 case IFM_100_TX:
456 link |= NFE_MEDIA_100TX;
457 seed |= NFE_SEED_100TX;
458 phy |= NFE_PHY_100TX;
459 break;
460 case IFM_10_T:
461 link |= NFE_MEDIA_10T;
462 seed |= NFE_SEED_10T;
463 break;
466 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
468 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
469 NFE_WRITE(sc, NFE_MISC1, misc);
470 NFE_WRITE(sc, NFE_LINKSPEED, link);
474 nfe_miibus_readreg(device_t dev, int phy, int reg)
476 struct nfe_softc *sc = device_private(dev);
477 uint32_t val;
478 int ntries;
480 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
482 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
483 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
484 DELAY(100);
487 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
489 for (ntries = 0; ntries < 1000; ntries++) {
490 DELAY(100);
491 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
492 break;
494 if (ntries == 1000) {
495 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
496 device_xname(sc->sc_dev)));
497 return 0;
500 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
501 DPRINTFN(2, ("%s: could not read PHY\n",
502 device_xname(sc->sc_dev)));
503 return 0;
506 val = NFE_READ(sc, NFE_PHY_DATA);
507 if (val != 0xffffffff && val != 0)
508 sc->mii_phyaddr = phy;
510 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
511 device_xname(sc->sc_dev), phy, reg, val));
513 return val;
516 void
517 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
519 struct nfe_softc *sc = device_private(dev);
520 uint32_t ctl;
521 int ntries;
523 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
525 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
526 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
527 DELAY(100);
530 NFE_WRITE(sc, NFE_PHY_DATA, val);
531 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
532 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
534 for (ntries = 0; ntries < 1000; ntries++) {
535 DELAY(100);
536 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
537 break;
539 #ifdef NFE_DEBUG
540 if (nfedebug >= 2 && ntries == 1000)
541 printf("could not write to PHY\n");
542 #endif
546 nfe_intr(void *arg)
548 struct nfe_softc *sc = arg;
549 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
550 uint32_t r;
551 int handled;
553 if ((ifp->if_flags & IFF_UP) == 0)
554 return 0;
556 handled = 0;
558 for (;;) {
559 r = NFE_READ(sc, NFE_IRQ_STATUS);
560 if ((r & NFE_IRQ_WANTED) == 0)
561 break;
563 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
564 handled = 1;
565 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
567 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
568 /* check Rx ring */
569 nfe_rxeof(sc);
571 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
572 /* check Tx ring */
573 nfe_txeof(sc);
575 if ((r & NFE_IRQ_LINK) != 0) {
576 NFE_READ(sc, NFE_PHY_STATUS);
577 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
578 DPRINTF(("%s: link state changed\n",
579 device_xname(sc->sc_dev)));
583 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
584 nfe_start(ifp);
586 return handled;
589 static int
590 nfe_ifflags_cb(struct ethercom *ec)
592 struct ifnet *ifp = &ec->ec_if;
593 struct nfe_softc *sc = ifp->if_softc;
594 int change = ifp->if_flags ^ sc->sc_if_flags;
597 * If only the PROMISC flag changes, then
598 * don't do a full re-init of the chip, just update
599 * the Rx filter.
601 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
602 return ENETRESET;
603 else if ((change & IFF_PROMISC) != 0)
604 nfe_setmulti(sc);
606 return 0;
610 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
612 struct nfe_softc *sc = ifp->if_softc;
613 struct ifaddr *ifa = (struct ifaddr *)data;
614 int s, error = 0;
616 s = splnet();
618 switch (cmd) {
619 case SIOCINITIFADDR:
620 ifp->if_flags |= IFF_UP;
621 nfe_init(ifp);
622 switch (ifa->ifa_addr->sa_family) {
623 #ifdef INET
624 case AF_INET:
625 arp_ifinit(ifp, ifa);
626 break;
627 #endif
628 default:
629 break;
631 break;
632 default:
633 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
634 break;
636 error = 0;
638 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
640 else if (ifp->if_flags & IFF_RUNNING)
641 nfe_setmulti(sc);
642 break;
644 sc->sc_if_flags = ifp->if_flags;
646 splx(s);
648 return error;
651 void
652 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
654 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
655 (char *)desc32 - (char *)sc->txq.desc32,
656 sizeof (struct nfe_desc32), ops);
659 void
660 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
662 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
663 (char *)desc64 - (char *)sc->txq.desc64,
664 sizeof (struct nfe_desc64), ops);
667 void
668 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
670 if (end > start) {
671 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
672 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
673 (char *)&sc->txq.desc32[end] -
674 (char *)&sc->txq.desc32[start], ops);
675 return;
677 /* sync from 'start' to end of ring */
678 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
679 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
680 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
681 (char *)&sc->txq.desc32[start], ops);
683 /* sync from start of ring to 'end' */
684 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
685 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
688 void
689 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
691 if (end > start) {
692 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
693 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
694 (char *)&sc->txq.desc64[end] -
695 (char *)&sc->txq.desc64[start], ops);
696 return;
698 /* sync from 'start' to end of ring */
699 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
700 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
701 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
702 (char *)&sc->txq.desc64[start], ops);
704 /* sync from start of ring to 'end' */
705 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
706 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
709 void
710 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
712 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
713 (char *)desc32 - (char *)sc->rxq.desc32,
714 sizeof (struct nfe_desc32), ops);
717 void
718 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
720 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
721 (char *)desc64 - (char *)sc->rxq.desc64,
722 sizeof (struct nfe_desc64), ops);
725 void
726 nfe_rxeof(struct nfe_softc *sc)
728 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
729 struct nfe_desc32 *desc32;
730 struct nfe_desc64 *desc64;
731 struct nfe_rx_data *data;
732 struct nfe_jbuf *jbuf;
733 struct mbuf *m, *mnew;
734 bus_addr_t physaddr;
735 uint16_t flags;
736 int error, len, i;
738 desc32 = NULL;
739 desc64 = NULL;
740 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
741 data = &sc->rxq.data[i];
743 if (sc->sc_flags & NFE_40BIT_ADDR) {
744 desc64 = &sc->rxq.desc64[i];
745 nfe_rxdesc64_sync(sc, desc64,
746 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
748 flags = le16toh(desc64->flags);
749 len = le16toh(desc64->length) & 0x3fff;
750 } else {
751 desc32 = &sc->rxq.desc32[i];
752 nfe_rxdesc32_sync(sc, desc32,
753 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
755 flags = le16toh(desc32->flags);
756 len = le16toh(desc32->length) & 0x3fff;
759 if ((flags & NFE_RX_READY) != 0)
760 break;
762 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
763 if ((flags & NFE_RX_VALID_V1) == 0)
764 goto skip;
766 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
767 flags &= ~NFE_RX_ERROR;
768 len--; /* fix buffer length */
770 } else {
771 if ((flags & NFE_RX_VALID_V2) == 0)
772 goto skip;
774 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
775 flags &= ~NFE_RX_ERROR;
776 len--; /* fix buffer length */
780 if (flags & NFE_RX_ERROR) {
781 ifp->if_ierrors++;
782 goto skip;
786 * Try to allocate a new mbuf for this ring element and load
787 * it before processing the current mbuf. If the ring element
788 * cannot be loaded, drop the received packet and reuse the
789 * old mbuf. In the unlikely case that the old mbuf can't be
790 * reloaded either, explicitly panic.
792 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
793 if (mnew == NULL) {
794 ifp->if_ierrors++;
795 goto skip;
798 if (sc->sc_flags & NFE_USE_JUMBO) {
799 physaddr =
800 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
801 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
802 if (len > MCLBYTES) {
803 m_freem(mnew);
804 ifp->if_ierrors++;
805 goto skip1;
807 MCLGET(mnew, M_DONTWAIT);
808 if ((mnew->m_flags & M_EXT) == 0) {
809 m_freem(mnew);
810 ifp->if_ierrors++;
811 goto skip1;
814 (void)memcpy(mtod(mnew, void *),
815 mtod(data->m, const void *), len);
816 m = mnew;
817 goto mbufcopied;
818 } else {
819 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
820 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
821 mtod(data->m, char *) - (char *)sc->rxq.jpool,
822 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
824 physaddr = jbuf->physaddr;
826 } else {
827 MCLGET(mnew, M_DONTWAIT);
828 if ((mnew->m_flags & M_EXT) == 0) {
829 m_freem(mnew);
830 ifp->if_ierrors++;
831 goto skip;
834 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
835 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
836 bus_dmamap_unload(sc->sc_dmat, data->map);
838 error = bus_dmamap_load(sc->sc_dmat, data->map,
839 mtod(mnew, void *), MCLBYTES, NULL,
840 BUS_DMA_READ | BUS_DMA_NOWAIT);
841 if (error != 0) {
842 m_freem(mnew);
844 /* try to reload the old mbuf */
845 error = bus_dmamap_load(sc->sc_dmat, data->map,
846 mtod(data->m, void *), MCLBYTES, NULL,
847 BUS_DMA_READ | BUS_DMA_NOWAIT);
848 if (error != 0) {
849 /* very unlikely that it will fail.. */
850 panic("%s: could not load old rx mbuf",
851 device_xname(sc->sc_dev));
853 ifp->if_ierrors++;
854 goto skip;
856 physaddr = data->map->dm_segs[0].ds_addr;
860 * New mbuf successfully loaded, update Rx ring and continue
861 * processing.
863 m = data->m;
864 data->m = mnew;
866 mbufcopied:
867 /* finalize mbuf */
868 m->m_pkthdr.len = m->m_len = len;
869 m->m_pkthdr.rcvif = ifp;
871 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
873 * XXX
874 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
876 if (flags & NFE_RX_IP_CSUMOK) {
877 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
878 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
879 device_xname(sc->sc_dev)));
882 * XXX
883 * no way to check M_CSUM_TCP_UDP_BAD or
884 * other protocols?
886 if (flags & NFE_RX_UDP_CSUMOK) {
887 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
888 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
889 device_xname(sc->sc_dev)));
890 } else if (flags & NFE_RX_TCP_CSUMOK) {
891 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
892 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
893 device_xname(sc->sc_dev)));
896 #if NBPFILTER > 0
897 if (ifp->if_bpf)
898 bpf_mtap(ifp->if_bpf, m);
899 #endif
900 ifp->if_ipackets++;
901 (*ifp->if_input)(ifp, m);
903 skip1:
904 /* update mapping address in h/w descriptor */
905 if (sc->sc_flags & NFE_40BIT_ADDR) {
906 #if defined(__LP64__)
907 desc64->physaddr[0] = htole32(physaddr >> 32);
908 #endif
909 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
910 } else {
911 desc32->physaddr = htole32(physaddr);
914 skip:
915 if (sc->sc_flags & NFE_40BIT_ADDR) {
916 desc64->length = htole16(sc->rxq.bufsz);
917 desc64->flags = htole16(NFE_RX_READY);
919 nfe_rxdesc64_sync(sc, desc64,
920 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
921 } else {
922 desc32->length = htole16(sc->rxq.bufsz);
923 desc32->flags = htole16(NFE_RX_READY);
925 nfe_rxdesc32_sync(sc, desc32,
926 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
929 /* update current RX pointer */
930 sc->rxq.cur = i;
933 void
934 nfe_txeof(struct nfe_softc *sc)
936 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
937 struct nfe_desc32 *desc32;
938 struct nfe_desc64 *desc64;
939 struct nfe_tx_data *data = NULL;
940 int i;
941 uint16_t flags;
942 char buf[128];
944 for (i = sc->txq.next;
945 sc->txq.queued > 0;
946 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
947 if (sc->sc_flags & NFE_40BIT_ADDR) {
948 desc64 = &sc->txq.desc64[i];
949 nfe_txdesc64_sync(sc, desc64,
950 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
952 flags = le16toh(desc64->flags);
953 } else {
954 desc32 = &sc->txq.desc32[i];
955 nfe_txdesc32_sync(sc, desc32,
956 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
958 flags = le16toh(desc32->flags);
961 if ((flags & NFE_TX_VALID) != 0)
962 break;
964 data = &sc->txq.data[i];
966 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
967 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
968 data->m == NULL)
969 continue;
971 if ((flags & NFE_TX_ERROR_V1) != 0) {
972 snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
973 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
974 buf);
975 ifp->if_oerrors++;
976 } else
977 ifp->if_opackets++;
978 } else {
979 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
980 data->m == NULL)
981 continue;
983 if ((flags & NFE_TX_ERROR_V2) != 0) {
984 snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
985 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
986 buf);
987 ifp->if_oerrors++;
988 } else
989 ifp->if_opackets++;
992 if (data->m == NULL) { /* should not get there */
993 aprint_error_dev(sc->sc_dev,
994 "last fragment bit w/o associated mbuf!\n");
995 continue;
998 /* last fragment of the mbuf chain transmitted */
999 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1000 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1001 bus_dmamap_unload(sc->sc_dmat, data->active);
1002 m_freem(data->m);
1003 data->m = NULL;
1006 sc->txq.next = i;
1008 if (sc->txq.queued < NFE_TX_RING_COUNT) {
1009 /* at least one slot freed */
1010 ifp->if_flags &= ~IFF_OACTIVE;
1013 if (sc->txq.queued == 0) {
1014 /* all queued packets are sent */
1015 ifp->if_timer = 0;
1020 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1022 struct nfe_desc32 *desc32;
1023 struct nfe_desc64 *desc64;
1024 struct nfe_tx_data *data;
1025 bus_dmamap_t map;
1026 uint16_t flags, csumflags;
1027 #if NVLAN > 0
1028 struct m_tag *mtag;
1029 uint32_t vtag = 0;
1030 #endif
1031 int error, i, first;
1033 desc32 = NULL;
1034 desc64 = NULL;
1035 data = NULL;
1037 flags = 0;
1038 csumflags = 0;
1039 first = sc->txq.cur;
1041 map = sc->txq.data[first].map;
1043 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1044 if (error != 0) {
1045 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1046 error);
1047 return error;
1050 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1051 bus_dmamap_unload(sc->sc_dmat, map);
1052 return ENOBUFS;
1055 #if NVLAN > 0
1056 /* setup h/w VLAN tagging */
1057 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1058 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1059 #endif
1060 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1061 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1062 csumflags |= NFE_TX_IP_CSUM;
1063 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1064 csumflags |= NFE_TX_TCP_UDP_CSUM;
1067 for (i = 0; i < map->dm_nsegs; i++) {
1068 data = &sc->txq.data[sc->txq.cur];
1070 if (sc->sc_flags & NFE_40BIT_ADDR) {
1071 desc64 = &sc->txq.desc64[sc->txq.cur];
1072 #if defined(__LP64__)
1073 desc64->physaddr[0] =
1074 htole32(map->dm_segs[i].ds_addr >> 32);
1075 #endif
1076 desc64->physaddr[1] =
1077 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1078 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1079 desc64->flags = htole16(flags);
1080 desc64->vtag = 0;
1081 } else {
1082 desc32 = &sc->txq.desc32[sc->txq.cur];
1084 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1085 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1086 desc32->flags = htole16(flags);
1090 * Setting of the valid bit in the first descriptor is
1091 * deferred until the whole chain is fully setup.
1093 flags |= NFE_TX_VALID;
1095 sc->txq.queued++;
1096 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1099 /* the whole mbuf chain has been setup */
1100 if (sc->sc_flags & NFE_40BIT_ADDR) {
1101 /* fix last descriptor */
1102 flags |= NFE_TX_LASTFRAG_V2;
1103 desc64->flags = htole16(flags);
1105 /* Checksum flags and vtag belong to the first fragment only. */
1106 #if NVLAN > 0
1107 sc->txq.desc64[first].vtag = htole32(vtag);
1108 #endif
1109 sc->txq.desc64[first].flags |= htole16(csumflags);
1111 /* finally, set the valid bit in the first descriptor */
1112 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1113 } else {
1114 /* fix last descriptor */
1115 if (sc->sc_flags & NFE_JUMBO_SUP)
1116 flags |= NFE_TX_LASTFRAG_V2;
1117 else
1118 flags |= NFE_TX_LASTFRAG_V1;
1119 desc32->flags = htole16(flags);
1121 /* Checksum flags belong to the first fragment only. */
1122 sc->txq.desc32[first].flags |= htole16(csumflags);
1124 /* finally, set the valid bit in the first descriptor */
1125 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1128 data->m = m0;
1129 data->active = map;
1131 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1132 BUS_DMASYNC_PREWRITE);
1134 return 0;
1137 void
1138 nfe_start(struct ifnet *ifp)
1140 struct nfe_softc *sc = ifp->if_softc;
1141 int old = sc->txq.queued;
1142 struct mbuf *m0;
1144 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1145 return;
1147 for (;;) {
1148 IFQ_POLL(&ifp->if_snd, m0);
1149 if (m0 == NULL)
1150 break;
1152 if (nfe_encap(sc, m0) != 0) {
1153 ifp->if_flags |= IFF_OACTIVE;
1154 break;
1157 /* packet put in h/w queue, remove from s/w queue */
1158 IFQ_DEQUEUE(&ifp->if_snd, m0);
1160 #if NBPFILTER > 0
1161 if (ifp->if_bpf != NULL)
1162 bpf_mtap(ifp->if_bpf, m0);
1163 #endif
1166 if (sc->txq.queued != old) {
1167 /* packets are queued */
1168 if (sc->sc_flags & NFE_40BIT_ADDR)
1169 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1170 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1171 else
1172 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1173 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1174 /* kick Tx */
1175 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1178 * Set a timeout in case the chip goes out to lunch.
1180 ifp->if_timer = 5;
1184 void
1185 nfe_watchdog(struct ifnet *ifp)
1187 struct nfe_softc *sc = ifp->if_softc;
1189 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1191 ifp->if_flags &= ~IFF_RUNNING;
1192 nfe_init(ifp);
1194 ifp->if_oerrors++;
1198 nfe_init(struct ifnet *ifp)
1200 struct nfe_softc *sc = ifp->if_softc;
1201 uint32_t tmp;
1202 int rc = 0, s;
1204 if (ifp->if_flags & IFF_RUNNING)
1205 return 0;
1207 nfe_stop(ifp, 0);
1209 NFE_WRITE(sc, NFE_TX_UNK, 0);
1210 NFE_WRITE(sc, NFE_STATUS, 0);
1212 sc->rxtxctl = NFE_RXTX_BIT2;
1213 if (sc->sc_flags & NFE_40BIT_ADDR)
1214 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1215 else if (sc->sc_flags & NFE_JUMBO_SUP)
1216 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1217 if (sc->sc_flags & NFE_HW_CSUM)
1218 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1219 #if NVLAN > 0
1221 * Although the adapter is capable of stripping VLAN tags from received
1222 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1223 * purpose. This will be done in software by our network stack.
1225 if (sc->sc_flags & NFE_HW_VLAN)
1226 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1227 #endif
1228 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1229 DELAY(10);
1230 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1232 #if NVLAN
1233 if (sc->sc_flags & NFE_HW_VLAN)
1234 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1235 #endif
1237 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1239 /* set MAC address */
1240 nfe_set_macaddr(sc, sc->sc_enaddr);
1242 /* tell MAC where rings are in memory */
1243 #ifdef __LP64__
1244 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1245 #endif
1246 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1247 #ifdef __LP64__
1248 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1249 #endif
1250 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1252 NFE_WRITE(sc, NFE_RING_SIZE,
1253 (NFE_RX_RING_COUNT - 1) << 16 |
1254 (NFE_TX_RING_COUNT - 1));
1256 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1258 /* force MAC to wakeup */
1259 tmp = NFE_READ(sc, NFE_PWR_STATE);
1260 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1261 DELAY(10);
1262 tmp = NFE_READ(sc, NFE_PWR_STATE);
1263 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1265 s = splnet();
1266 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1267 nfe_intr(sc); /* XXX clear IRQ status registers */
1268 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1269 splx(s);
1271 #if 1
1272 /* configure interrupts coalescing/mitigation */
1273 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1274 #else
1275 /* no interrupt mitigation: one interrupt per packet */
1276 NFE_WRITE(sc, NFE_IMTIMER, 970);
1277 #endif
1279 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1280 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1281 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1283 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1284 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1286 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1287 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1289 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1290 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1291 DELAY(10);
1292 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1294 /* set Rx filter */
1295 nfe_setmulti(sc);
1297 if ((rc = ether_mediachange(ifp)) != 0)
1298 goto out;
1300 nfe_tick(sc);
1302 /* enable Rx */
1303 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1305 /* enable Tx */
1306 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1308 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1310 /* enable interrupts */
1311 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1313 callout_schedule(&sc->sc_tick_ch, hz);
1315 ifp->if_flags |= IFF_RUNNING;
1316 ifp->if_flags &= ~IFF_OACTIVE;
1318 out:
1319 return rc;
1322 void
1323 nfe_stop(struct ifnet *ifp, int disable)
1325 struct nfe_softc *sc = ifp->if_softc;
1327 callout_stop(&sc->sc_tick_ch);
1329 ifp->if_timer = 0;
1330 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1332 mii_down(&sc->sc_mii);
1334 /* abort Tx */
1335 NFE_WRITE(sc, NFE_TX_CTL, 0);
1337 /* disable Rx */
1338 NFE_WRITE(sc, NFE_RX_CTL, 0);
1340 /* disable interrupts */
1341 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1343 /* reset Tx and Rx rings */
1344 nfe_reset_tx_ring(sc, &sc->txq);
1345 nfe_reset_rx_ring(sc, &sc->rxq);
1349 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1351 struct nfe_desc32 *desc32;
1352 struct nfe_desc64 *desc64;
1353 struct nfe_rx_data *data;
1354 struct nfe_jbuf *jbuf;
1355 void **desc;
1356 bus_addr_t physaddr;
1357 int i, nsegs, error, descsize;
1359 if (sc->sc_flags & NFE_40BIT_ADDR) {
1360 desc = (void **)&ring->desc64;
1361 descsize = sizeof (struct nfe_desc64);
1362 } else {
1363 desc = (void **)&ring->desc32;
1364 descsize = sizeof (struct nfe_desc32);
1367 ring->cur = ring->next = 0;
1368 ring->bufsz = MCLBYTES;
1370 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1371 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1372 if (error != 0) {
1373 aprint_error_dev(sc->sc_dev,
1374 "could not create desc DMA map\n");
1375 ring->map = NULL;
1376 goto fail;
1379 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1380 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1381 if (error != 0) {
1382 aprint_error_dev(sc->sc_dev,
1383 "could not allocate DMA memory\n");
1384 goto fail;
1387 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1388 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1389 if (error != 0) {
1390 aprint_error_dev(sc->sc_dev,
1391 "could not map desc DMA memory\n");
1392 goto fail;
1395 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1396 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1397 if (error != 0) {
1398 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1399 goto fail;
1402 memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
1403 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1405 if (sc->sc_flags & NFE_USE_JUMBO) {
1406 ring->bufsz = NFE_JBYTES;
1407 if ((error = nfe_jpool_alloc(sc)) != 0) {
1408 aprint_error_dev(sc->sc_dev,
1409 "could not allocate jumbo frames\n");
1410 goto fail;
1415 * Pre-allocate Rx buffers and populate Rx ring.
1417 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1418 data = &sc->rxq.data[i];
1420 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1421 if (data->m == NULL) {
1422 aprint_error_dev(sc->sc_dev,
1423 "could not allocate rx mbuf\n");
1424 error = ENOMEM;
1425 goto fail;
1428 if (sc->sc_flags & NFE_USE_JUMBO) {
1429 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1430 aprint_error_dev(sc->sc_dev,
1431 "could not allocate jumbo buffer\n");
1432 goto fail;
1434 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1435 sc);
1437 physaddr = jbuf->physaddr;
1438 } else {
1439 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1440 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1441 if (error != 0) {
1442 aprint_error_dev(sc->sc_dev,
1443 "could not create DMA map\n");
1444 data->map = NULL;
1445 goto fail;
1447 MCLGET(data->m, M_DONTWAIT);
1448 if (!(data->m->m_flags & M_EXT)) {
1449 aprint_error_dev(sc->sc_dev,
1450 "could not allocate mbuf cluster\n");
1451 error = ENOMEM;
1452 goto fail;
1455 error = bus_dmamap_load(sc->sc_dmat, data->map,
1456 mtod(data->m, void *), MCLBYTES, NULL,
1457 BUS_DMA_READ | BUS_DMA_NOWAIT);
1458 if (error != 0) {
1459 aprint_error_dev(sc->sc_dev,
1460 "could not load rx buf DMA map");
1461 goto fail;
1463 physaddr = data->map->dm_segs[0].ds_addr;
1466 if (sc->sc_flags & NFE_40BIT_ADDR) {
1467 desc64 = &sc->rxq.desc64[i];
1468 #if defined(__LP64__)
1469 desc64->physaddr[0] = htole32(physaddr >> 32);
1470 #endif
1471 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1472 desc64->length = htole16(sc->rxq.bufsz);
1473 desc64->flags = htole16(NFE_RX_READY);
1474 } else {
1475 desc32 = &sc->rxq.desc32[i];
1476 desc32->physaddr = htole32(physaddr);
1477 desc32->length = htole16(sc->rxq.bufsz);
1478 desc32->flags = htole16(NFE_RX_READY);
1482 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1483 BUS_DMASYNC_PREWRITE);
1485 return 0;
1487 fail: nfe_free_rx_ring(sc, ring);
1488 return error;
1491 void
1492 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1494 int i;
1496 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1497 if (sc->sc_flags & NFE_40BIT_ADDR) {
1498 ring->desc64[i].length = htole16(ring->bufsz);
1499 ring->desc64[i].flags = htole16(NFE_RX_READY);
1500 } else {
1501 ring->desc32[i].length = htole16(ring->bufsz);
1502 ring->desc32[i].flags = htole16(NFE_RX_READY);
1506 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1507 BUS_DMASYNC_PREWRITE);
1509 ring->cur = ring->next = 0;
1512 void
1513 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1515 struct nfe_rx_data *data;
1516 void *desc;
1517 int i, descsize;
1519 if (sc->sc_flags & NFE_40BIT_ADDR) {
1520 desc = ring->desc64;
1521 descsize = sizeof (struct nfe_desc64);
1522 } else {
1523 desc = ring->desc32;
1524 descsize = sizeof (struct nfe_desc32);
1527 if (desc != NULL) {
1528 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1529 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1530 bus_dmamap_unload(sc->sc_dmat, ring->map);
1531 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1532 NFE_RX_RING_COUNT * descsize);
1533 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1536 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1537 data = &ring->data[i];
1539 if (data->map != NULL) {
1540 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1541 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1542 bus_dmamap_unload(sc->sc_dmat, data->map);
1543 bus_dmamap_destroy(sc->sc_dmat, data->map);
1545 if (data->m != NULL)
1546 m_freem(data->m);
1550 struct nfe_jbuf *
1551 nfe_jalloc(struct nfe_softc *sc, int i)
1553 struct nfe_jbuf *jbuf;
1555 mutex_enter(&sc->rxq.mtx);
1556 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1557 if (jbuf != NULL)
1558 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1559 mutex_exit(&sc->rxq.mtx);
1560 if (jbuf == NULL)
1561 return NULL;
1562 sc->rxq.jbufmap[i] =
1563 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1564 return jbuf;
1568 * This is called automatically by the network stack when the mbuf is freed.
1569 * Caution must be taken that the NIC might be reset by the time the mbuf is
1570 * freed.
1572 void
1573 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1575 struct nfe_softc *sc = arg;
1576 struct nfe_jbuf *jbuf;
1577 int i;
1579 /* find the jbuf from the base pointer */
1580 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1581 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1582 aprint_error_dev(sc->sc_dev,
1583 "request to free a buffer (%p) not managed by us\n", buf);
1584 return;
1586 jbuf = &sc->rxq.jbuf[i];
1588 /* ..and put it back in the free list */
1589 mutex_enter(&sc->rxq.mtx);
1590 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1591 mutex_exit(&sc->rxq.mtx);
1593 if (m != NULL)
1594 pool_cache_put(mb_cache, m);
1598 nfe_jpool_alloc(struct nfe_softc *sc)
1600 struct nfe_rx_ring *ring = &sc->rxq;
1601 struct nfe_jbuf *jbuf;
1602 bus_addr_t physaddr;
1603 char *buf;
1604 int i, nsegs, error;
1607 * Allocate a big chunk of DMA'able memory.
1609 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1610 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1611 if (error != 0) {
1612 aprint_error_dev(sc->sc_dev,
1613 "could not create jumbo DMA map\n");
1614 ring->jmap = NULL;
1615 goto fail;
1618 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1619 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1620 if (error != 0) {
1621 aprint_error_dev(sc->sc_dev,
1622 "could not allocate jumbo DMA memory\n");
1623 goto fail;
1626 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1627 &ring->jpool, BUS_DMA_NOWAIT);
1628 if (error != 0) {
1629 aprint_error_dev(sc->sc_dev,
1630 "could not map jumbo DMA memory\n");
1631 goto fail;
1634 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1635 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1636 if (error != 0) {
1637 aprint_error_dev(sc->sc_dev,
1638 "could not load jumbo DMA map\n");
1639 goto fail;
1642 /* ..and split it into 9KB chunks */
1643 SLIST_INIT(&ring->jfreelist);
1645 buf = ring->jpool;
1646 physaddr = ring->jmap->dm_segs[0].ds_addr;
1647 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1648 jbuf = &ring->jbuf[i];
1650 jbuf->buf = buf;
1651 jbuf->physaddr = physaddr;
1653 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1655 buf += NFE_JBYTES;
1656 physaddr += NFE_JBYTES;
1659 return 0;
1661 fail: nfe_jpool_free(sc);
1662 return error;
1665 void
1666 nfe_jpool_free(struct nfe_softc *sc)
1668 struct nfe_rx_ring *ring = &sc->rxq;
1670 if (ring->jmap != NULL) {
1671 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1672 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1673 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1674 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1676 if (ring->jpool != NULL) {
1677 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1678 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1683 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1685 int i, nsegs, error;
1686 void **desc;
1687 int descsize;
1689 if (sc->sc_flags & NFE_40BIT_ADDR) {
1690 desc = (void **)&ring->desc64;
1691 descsize = sizeof (struct nfe_desc64);
1692 } else {
1693 desc = (void **)&ring->desc32;
1694 descsize = sizeof (struct nfe_desc32);
1697 ring->queued = 0;
1698 ring->cur = ring->next = 0;
1700 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1701 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1703 if (error != 0) {
1704 aprint_error_dev(sc->sc_dev,
1705 "could not create desc DMA map\n");
1706 ring->map = NULL;
1707 goto fail;
1710 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1711 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1712 if (error != 0) {
1713 aprint_error_dev(sc->sc_dev,
1714 "could not allocate DMA memory\n");
1715 goto fail;
1718 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1719 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1720 if (error != 0) {
1721 aprint_error_dev(sc->sc_dev,
1722 "could not map desc DMA memory\n");
1723 goto fail;
1726 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1727 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1728 if (error != 0) {
1729 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1730 goto fail;
1733 memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
1734 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1736 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1737 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1738 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1739 &ring->data[i].map);
1740 if (error != 0) {
1741 aprint_error_dev(sc->sc_dev,
1742 "could not create DMA map\n");
1743 ring->data[i].map = NULL;
1744 goto fail;
1748 return 0;
1750 fail: nfe_free_tx_ring(sc, ring);
1751 return error;
1754 void
1755 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1757 struct nfe_tx_data *data;
1758 int i;
1760 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1761 if (sc->sc_flags & NFE_40BIT_ADDR)
1762 ring->desc64[i].flags = 0;
1763 else
1764 ring->desc32[i].flags = 0;
1766 data = &ring->data[i];
1768 if (data->m != NULL) {
1769 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1770 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1771 bus_dmamap_unload(sc->sc_dmat, data->active);
1772 m_freem(data->m);
1773 data->m = NULL;
1777 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1778 BUS_DMASYNC_PREWRITE);
1780 ring->queued = 0;
1781 ring->cur = ring->next = 0;
1784 void
1785 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1787 struct nfe_tx_data *data;
1788 void *desc;
1789 int i, descsize;
1791 if (sc->sc_flags & NFE_40BIT_ADDR) {
1792 desc = ring->desc64;
1793 descsize = sizeof (struct nfe_desc64);
1794 } else {
1795 desc = ring->desc32;
1796 descsize = sizeof (struct nfe_desc32);
1799 if (desc != NULL) {
1800 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1801 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1802 bus_dmamap_unload(sc->sc_dmat, ring->map);
1803 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1804 NFE_TX_RING_COUNT * descsize);
1805 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1808 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1809 data = &ring->data[i];
1811 if (data->m != NULL) {
1812 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1813 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1814 bus_dmamap_unload(sc->sc_dmat, data->active);
1815 m_freem(data->m);
1819 /* ..and now actually destroy the DMA mappings */
1820 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1821 data = &ring->data[i];
1822 if (data->map == NULL)
1823 continue;
1824 bus_dmamap_destroy(sc->sc_dmat, data->map);
1828 void
1829 nfe_setmulti(struct nfe_softc *sc)
1831 struct ethercom *ec = &sc->sc_ethercom;
1832 struct ifnet *ifp = &ec->ec_if;
1833 struct ether_multi *enm;
1834 struct ether_multistep step;
1835 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1836 uint32_t filter = NFE_RXFILTER_MAGIC;
1837 int i;
1839 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1840 memset(addr, 0, ETHER_ADDR_LEN);
1841 memset(mask, 0, ETHER_ADDR_LEN);
1842 goto done;
1845 memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
1846 memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
1848 ETHER_FIRST_MULTI(step, ec, enm);
1849 while (enm != NULL) {
1850 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1851 ifp->if_flags |= IFF_ALLMULTI;
1852 memset(addr, 0, ETHER_ADDR_LEN);
1853 memset(mask, 0, ETHER_ADDR_LEN);
1854 goto done;
1856 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1857 addr[i] &= enm->enm_addrlo[i];
1858 mask[i] &= ~enm->enm_addrlo[i];
1860 ETHER_NEXT_MULTI(step, enm);
1862 for (i = 0; i < ETHER_ADDR_LEN; i++)
1863 mask[i] |= addr[i];
1865 done:
1866 addr[0] |= 0x01; /* make sure multicast bit is set */
1868 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1869 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1870 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1871 addr[5] << 8 | addr[4]);
1872 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1873 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1874 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1875 mask[5] << 8 | mask[4]);
1877 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1878 NFE_WRITE(sc, NFE_RXFILTER, filter);
1881 void
1882 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1884 uint32_t tmp;
1886 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1887 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1888 addr[0] = (tmp & 0xff);
1889 addr[1] = (tmp >> 8) & 0xff;
1890 addr[2] = (tmp >> 16) & 0xff;
1891 addr[3] = (tmp >> 24) & 0xff;
1893 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1894 addr[4] = (tmp & 0xff);
1895 addr[5] = (tmp >> 8) & 0xff;
1897 } else {
1898 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1899 addr[0] = (tmp >> 8) & 0xff;
1900 addr[1] = (tmp & 0xff);
1902 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1903 addr[2] = (tmp >> 24) & 0xff;
1904 addr[3] = (tmp >> 16) & 0xff;
1905 addr[4] = (tmp >> 8) & 0xff;
1906 addr[5] = (tmp & 0xff);
1910 void
1911 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1913 NFE_WRITE(sc, NFE_MACADDR_LO,
1914 addr[5] << 8 | addr[4]);
1915 NFE_WRITE(sc, NFE_MACADDR_HI,
1916 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1919 void
1920 nfe_tick(void *arg)
1922 struct nfe_softc *sc = arg;
1923 int s;
1925 s = splnet();
1926 mii_tick(&sc->sc_mii);
1927 splx(s);
1929 callout_schedule(&sc->sc_tick_ch, hz);
1932 void
1933 nfe_poweron(device_t self)
1935 struct nfe_softc *sc = device_private(self);
1937 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1938 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1939 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1940 DELAY(100);
1941 NFE_WRITE(sc, NFE_MAC_RESET, 0);
1942 DELAY(100);
1943 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1944 NFE_WRITE(sc, NFE_PWR2_CTL,
1945 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1949 bool
1950 nfe_resume(device_t dv, pmf_qual_t qual)
1952 nfe_poweron(dv);
1954 return true;