No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / pci / if_vge.c
blob00223cfeb4ca1d80077ea7458ccdd8ce9967edcb
1 /* $NetBSD: if_vge.c,v 1.48 2009/05/16 07:34:05 tsutsui Exp $ */
3 /*-
4 * Copyright (c) 2004
5 * Bill Paul <wpaul@windriver.com>. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
34 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.48 2009/05/16 07:34:05 tsutsui Exp $");
41 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
43 * Written by Bill Paul <wpaul@windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
49 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
50 * combines a tri-speed ethernet MAC and PHY, with the following
51 * features:
53 * o Jumbo frame support up to 16K
54 * o Transmit and receive flow control
55 * o IPv4 checksum offload
56 * o VLAN tag insertion and stripping
57 * o TCP large send
58 * o 64-bit multicast hash table filter
59 * o 64 entry CAM filter
60 * o 16K RX FIFO and 48K TX FIFO memory
61 * o Interrupt moderation
63 * The VT6122 supports up to four transmit DMA queues. The descriptors
64 * in the transmit ring can address up to 7 data fragments; frames which
65 * span more than 7 data buffers must be coalesced, but in general the
66 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
67 * long. The receive descriptors address only a single buffer.
69 * There are two peculiar design issues with the VT6122. One is that
70 * receive data buffers must be aligned on a 32-bit boundary. This is
71 * not a problem where the VT6122 is used as a LOM device in x86-based
72 * systems, but on architectures that generate unaligned access traps, we
73 * have to do some copying.
75 * The other issue has to do with the way 64-bit addresses are handled.
76 * The DMA descriptors only allow you to specify 48 bits of addressing
77 * information. The remaining 16 bits are specified using one of the
78 * I/O registers. If you only have a 32-bit system, then this isn't
79 * an issue, but if you have a 64-bit system and more than 4GB of
80 * memory, you must have to make sure your network data buffers reside
81 * in the same 48-bit 'segment.'
83 * Special thanks to Ryan Fu at VIA Networking for providing documentation
84 * and sample NICs for testing.
87 #include "bpfilter.h"
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/device.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
105 #include <net/bpf.h>
107 #include <sys/bus.h>
109 #include <dev/mii/mii.h>
110 #include <dev/mii/miivar.h>
112 #include <dev/pci/pcireg.h>
113 #include <dev/pci/pcivar.h>
114 #include <dev/pci/pcidevs.h>
116 #include <dev/pci/if_vgereg.h>
118 #define VGE_IFQ_MAXLEN 64
120 #define VGE_RING_ALIGN 256
122 #define VGE_NTXDESC 256
123 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1)
124 #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK)
125 #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK)
127 #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */
128 #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1)
129 #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK)
130 #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK)
132 #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF)
133 #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32)
134 #define VGE_BUFLEN(y) ((y) & 0x7FFF)
135 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
137 #define VGE_POWER_MANAGEMENT 0 /* disabled for now */
140 * Mbuf adjust factor to force 32-bit alignment of IP header.
141 * Drivers should pad ETHER_ALIGN bytes when setting up a
142 * RX mbuf so the upper layers get the IP header properly aligned
143 * past the 14-byte Ethernet header.
145 * See also comment in vge_encap().
147 #define ETHER_ALIGN 2
149 #ifdef __NO_STRICT_ALIGNMENT
150 #define VGE_RX_BUFSIZE MCLBYTES
151 #else
152 #define VGE_RX_PAD sizeof(uint32_t)
153 #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD)
154 #endif
157 * Control structures are DMA'd to the vge chip. We allocate them in
158 * a single clump that maps to a single DMA segment to make several things
159 * easier.
161 struct vge_control_data {
162 /* TX descriptors */
163 struct vge_txdesc vcd_txdescs[VGE_NTXDESC];
164 /* RX descriptors */
165 struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC];
166 /* dummy data for TX padding */
167 uint8_t vcd_pad[ETHER_PAD_LEN];
170 #define VGE_CDOFF(x) offsetof(struct vge_control_data, x)
171 #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)])
172 #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)])
173 #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0])
176 * Software state for TX jobs.
178 struct vge_txsoft {
179 struct mbuf *txs_mbuf; /* head of our mbuf chain */
180 bus_dmamap_t txs_dmamap; /* our DMA map */
184 * Software state for RX jobs.
186 struct vge_rxsoft {
187 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
188 bus_dmamap_t rxs_dmamap; /* our DMA map */
192 struct vge_softc {
193 device_t sc_dev;
195 bus_space_tag_t sc_bst; /* bus space tag */
196 bus_space_handle_t sc_bsh; /* bus space handle */
197 bus_dma_tag_t sc_dmat;
199 struct ethercom sc_ethercom; /* interface info */
200 uint8_t sc_eaddr[ETHER_ADDR_LEN];
202 void *sc_intrhand;
203 struct mii_data sc_mii;
204 uint8_t sc_type;
205 int sc_if_flags;
206 int sc_link;
207 int sc_camidx;
208 callout_t sc_timeout;
210 bus_dmamap_t sc_cddmamap;
211 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
213 struct vge_txsoft sc_txsoft[VGE_NTXDESC];
214 struct vge_rxsoft sc_rxsoft[VGE_NRXDESC];
215 struct vge_control_data *sc_control_data;
216 #define sc_txdescs sc_control_data->vcd_txdescs
217 #define sc_rxdescs sc_control_data->vcd_rxdescs
219 int sc_tx_prodidx;
220 int sc_tx_considx;
221 int sc_tx_free;
223 struct mbuf *sc_rx_mhead;
224 struct mbuf *sc_rx_mtail;
225 int sc_rx_prodidx;
226 int sc_rx_consumed;
228 int sc_suspended; /* 0 = normal 1 = suspended */
229 uint32_t sc_saved_maps[5]; /* pci data */
230 uint32_t sc_saved_biosaddr;
231 uint8_t sc_saved_intline;
232 uint8_t sc_saved_cachelnsz;
233 uint8_t sc_saved_lattimer;
236 #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x))
237 #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x))
238 #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF())
240 #define VGE_TXDESCSYNC(sc, idx, ops) \
241 bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \
242 VGE_CDTXOFF(idx), \
243 offsetof(struct vge_txdesc, td_frag[0]), \
244 (ops))
245 #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \
246 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
247 VGE_CDTXOFF(idx) + \
248 offsetof(struct vge_txdesc, td_frag[0]), \
249 sizeof(struct vge_txfrag) * (nsegs), \
250 (ops))
251 #define VGE_RXDESCSYNC(sc, idx, ops) \
252 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
253 VGE_CDRXOFF(idx), \
254 sizeof(struct vge_rxdesc), \
255 (ops))
258 * register space access macros
260 #define CSR_WRITE_4(sc, reg, val) \
261 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
262 #define CSR_WRITE_2(sc, reg, val) \
263 bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
264 #define CSR_WRITE_1(sc, reg, val) \
265 bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
267 #define CSR_READ_4(sc, reg) \
268 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
269 #define CSR_READ_2(sc, reg) \
270 bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
271 #define CSR_READ_1(sc, reg) \
272 bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))
274 #define CSR_SETBIT_1(sc, reg, x) \
275 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
276 #define CSR_SETBIT_2(sc, reg, x) \
277 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
278 #define CSR_SETBIT_4(sc, reg, x) \
279 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))
281 #define CSR_CLRBIT_1(sc, reg, x) \
282 CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
283 #define CSR_CLRBIT_2(sc, reg, x) \
284 CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
285 #define CSR_CLRBIT_4(sc, reg, x) \
286 CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))
288 #define VGE_TIMEOUT 10000
290 #define VGE_PCI_LOIO 0x10
291 #define VGE_PCI_LOMEM 0x14
293 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
294 static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);
296 static int vge_ifflags_cb(struct ethercom *);
298 static int vge_match(device_t, cfdata_t, void *);
299 static void vge_attach(device_t, device_t, void *);
301 static int vge_encap(struct vge_softc *, struct mbuf *, int);
303 static int vge_allocmem(struct vge_softc *);
304 static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
305 #ifndef __NO_STRICT_ALIGNMENT
306 static inline void vge_fixup_rx(struct mbuf *);
307 #endif
308 static void vge_rxeof(struct vge_softc *);
309 static void vge_txeof(struct vge_softc *);
310 static int vge_intr(void *);
311 static void vge_tick(void *);
312 static void vge_start(struct ifnet *);
313 static int vge_ioctl(struct ifnet *, u_long, void *);
314 static int vge_init(struct ifnet *);
315 static void vge_stop(struct ifnet *, int);
316 static void vge_watchdog(struct ifnet *);
317 #if VGE_POWER_MANAGEMENT
318 static int vge_suspend(device_t);
319 static int vge_resume(device_t);
320 #endif
321 static bool vge_shutdown(device_t, int);
323 static uint16_t vge_read_eeprom(struct vge_softc *, int);
325 static void vge_miipoll_start(struct vge_softc *);
326 static void vge_miipoll_stop(struct vge_softc *);
327 static int vge_miibus_readreg(device_t, int, int);
328 static void vge_miibus_writereg(device_t, int, int, int);
329 static void vge_miibus_statchg(device_t);
331 static void vge_cam_clear(struct vge_softc *);
332 static int vge_cam_set(struct vge_softc *, uint8_t *);
333 static void vge_setmulti(struct vge_softc *);
334 static void vge_reset(struct vge_softc *);
336 CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
337 vge_match, vge_attach, NULL, NULL);
339 static inline void
340 vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
343 f->tf_addrlo = htole32((uint32_t)daddr);
344 if (sizeof(bus_addr_t) == sizeof(uint64_t))
345 f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
346 else
347 f->tf_addrhi = 0;
350 static inline void
351 vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
354 rxd->rd_addrlo = htole32((uint32_t)daddr);
355 if (sizeof(bus_addr_t) == sizeof(uint64_t))
356 rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
357 else
358 rxd->rd_addrhi = 0;
362 * Defragment mbuf chain contents to be as linear as possible.
363 * Returns new mbuf chain on success, NULL on failure. Old mbuf
364 * chain is always freed.
365 * XXX temporary until there would be generic function doing this.
367 #define m_defrag vge_m_defrag
368 struct mbuf * vge_m_defrag(struct mbuf *, int);
370 struct mbuf *
371 vge_m_defrag(struct mbuf *mold, int flags)
373 struct mbuf *m0, *mn, *n;
374 size_t sz = mold->m_pkthdr.len;
376 #ifdef DIAGNOSTIC
377 if ((mold->m_flags & M_PKTHDR) == 0)
378 panic("m_defrag: not a mbuf chain header");
379 #endif
381 MGETHDR(m0, flags, MT_DATA);
382 if (m0 == NULL)
383 return NULL;
384 m0->m_pkthdr.len = mold->m_pkthdr.len;
385 mn = m0;
387 do {
388 if (sz > MHLEN) {
389 MCLGET(mn, M_DONTWAIT);
390 if ((mn->m_flags & M_EXT) == 0) {
391 m_freem(m0);
392 return NULL;
396 mn->m_len = MIN(sz, MCLBYTES);
398 m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len,
399 mtod(mn, void *));
401 sz -= mn->m_len;
403 if (sz > 0) {
404 /* need more mbufs */
405 MGET(n, M_NOWAIT, MT_DATA);
406 if (n == NULL) {
407 m_freem(m0);
408 return NULL;
411 mn->m_next = n;
412 mn = n;
414 } while (sz > 0);
416 return m0;
420 * Read a word of data stored in the EEPROM at address 'addr.'
422 static uint16_t
423 vge_read_eeprom(struct vge_softc *sc, int addr)
425 int i;
426 uint16_t word = 0;
429 * Enter EEPROM embedded programming mode. In order to
430 * access the EEPROM at all, we first have to set the
431 * EELOAD bit in the CHIPCFG2 register.
433 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
434 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
436 /* Select the address of the word we want to read */
437 CSR_WRITE_1(sc, VGE_EEADDR, addr);
439 /* Issue read command */
440 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
442 /* Wait for the done bit to be set. */
443 for (i = 0; i < VGE_TIMEOUT; i++) {
444 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
445 break;
448 if (i == VGE_TIMEOUT) {
449 printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
450 return 0;
453 /* Read the result */
454 word = CSR_READ_2(sc, VGE_EERDDAT);
456 /* Turn off EEPROM access mode. */
457 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
458 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
460 return word;
463 static void
464 vge_miipoll_stop(struct vge_softc *sc)
466 int i;
468 CSR_WRITE_1(sc, VGE_MIICMD, 0);
470 for (i = 0; i < VGE_TIMEOUT; i++) {
471 DELAY(1);
472 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
473 break;
476 if (i == VGE_TIMEOUT) {
477 printf("%s: failed to idle MII autopoll\n",
478 device_xname(sc->sc_dev));
482 static void
483 vge_miipoll_start(struct vge_softc *sc)
485 int i;
487 /* First, make sure we're idle. */
489 CSR_WRITE_1(sc, VGE_MIICMD, 0);
490 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
492 for (i = 0; i < VGE_TIMEOUT; i++) {
493 DELAY(1);
494 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
495 break;
498 if (i == VGE_TIMEOUT) {
499 printf("%s: failed to idle MII autopoll\n",
500 device_xname(sc->sc_dev));
501 return;
504 /* Now enable auto poll mode. */
506 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
508 /* And make sure it started. */
510 for (i = 0; i < VGE_TIMEOUT; i++) {
511 DELAY(1);
512 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
513 break;
516 if (i == VGE_TIMEOUT) {
517 printf("%s: failed to start MII autopoll\n",
518 device_xname(sc->sc_dev));
522 static int
523 vge_miibus_readreg(device_t dev, int phy, int reg)
525 struct vge_softc *sc;
526 int i, s;
527 uint16_t rval;
529 sc = device_private(dev);
530 rval = 0;
531 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
532 return 0;
534 s = splnet();
535 vge_miipoll_stop(sc);
537 /* Specify the register we want to read. */
538 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
540 /* Issue read command. */
541 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
543 /* Wait for the read command bit to self-clear. */
544 for (i = 0; i < VGE_TIMEOUT; i++) {
545 DELAY(1);
546 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
547 break;
550 if (i == VGE_TIMEOUT)
551 printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
552 else
553 rval = CSR_READ_2(sc, VGE_MIIDATA);
555 vge_miipoll_start(sc);
556 splx(s);
558 return rval;
561 static void
562 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
564 struct vge_softc *sc;
565 int i, s;
567 sc = device_private(dev);
568 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
569 return;
571 s = splnet();
572 vge_miipoll_stop(sc);
574 /* Specify the register we want to write. */
575 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
577 /* Specify the data we want to write. */
578 CSR_WRITE_2(sc, VGE_MIIDATA, data);
580 /* Issue write command. */
581 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
583 /* Wait for the write command bit to self-clear. */
584 for (i = 0; i < VGE_TIMEOUT; i++) {
585 DELAY(1);
586 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
587 break;
590 if (i == VGE_TIMEOUT) {
591 printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
594 vge_miipoll_start(sc);
595 splx(s);
598 static void
599 vge_cam_clear(struct vge_softc *sc)
601 int i;
604 * Turn off all the mask bits. This tells the chip
605 * that none of the entries in the CAM filter are valid.
606 * desired entries will be enabled as we fill the filter in.
609 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
610 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
611 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
612 for (i = 0; i < 8; i++)
613 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
615 /* Clear the VLAN filter too. */
617 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
618 for (i = 0; i < 8; i++)
619 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
621 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
622 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
623 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
625 sc->sc_camidx = 0;
628 static int
629 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
631 int i, error;
633 error = 0;
635 if (sc->sc_camidx == VGE_CAM_MAXADDRS)
636 return ENOSPC;
638 /* Select the CAM data page. */
639 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
640 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
642 /* Set the filter entry we want to update and enable writing. */
643 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);
645 /* Write the address to the CAM registers */
646 for (i = 0; i < ETHER_ADDR_LEN; i++)
647 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
649 /* Issue a write command. */
650 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
652 /* Wake for it to clear. */
653 for (i = 0; i < VGE_TIMEOUT; i++) {
654 DELAY(1);
655 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
656 break;
659 if (i == VGE_TIMEOUT) {
660 printf("%s: setting CAM filter failed\n",
661 device_xname(sc->sc_dev));
662 error = EIO;
663 goto fail;
666 /* Select the CAM mask page. */
667 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
668 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
670 /* Set the mask bit that enables this filter. */
671 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
672 1 << (sc->sc_camidx & 7));
674 sc->sc_camidx++;
676 fail:
677 /* Turn off access to CAM. */
678 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
679 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
680 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
682 return error;
686 * Program the multicast filter. We use the 64-entry CAM filter
687 * for perfect filtering. If there's more than 64 multicast addresses,
688 * we use the hash filter instead.
690 static void
691 vge_setmulti(struct vge_softc *sc)
693 struct ifnet *ifp;
694 int error;
695 uint32_t h, hashes[2] = { 0, 0 };
696 struct ether_multi *enm;
697 struct ether_multistep step;
699 error = 0;
700 ifp = &sc->sc_ethercom.ec_if;
702 /* First, zot all the multicast entries. */
703 vge_cam_clear(sc);
704 CSR_WRITE_4(sc, VGE_MAR0, 0);
705 CSR_WRITE_4(sc, VGE_MAR1, 0);
706 ifp->if_flags &= ~IFF_ALLMULTI;
709 * If the user wants allmulti or promisc mode, enable reception
710 * of all multicast frames.
712 if (ifp->if_flags & IFF_PROMISC) {
713 allmulti:
714 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
715 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
716 ifp->if_flags |= IFF_ALLMULTI;
717 return;
720 /* Now program new ones */
721 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
722 while (enm != NULL) {
724 * If multicast range, fall back to ALLMULTI.
726 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
727 ETHER_ADDR_LEN) != 0)
728 goto allmulti;
730 error = vge_cam_set(sc, enm->enm_addrlo);
731 if (error)
732 break;
734 ETHER_NEXT_MULTI(step, enm);
737 /* If there were too many addresses, use the hash filter. */
738 if (error) {
739 vge_cam_clear(sc);
741 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
742 while (enm != NULL) {
744 * If multicast range, fall back to ALLMULTI.
746 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
747 ETHER_ADDR_LEN) != 0)
748 goto allmulti;
750 h = ether_crc32_be(enm->enm_addrlo,
751 ETHER_ADDR_LEN) >> 26;
752 hashes[h >> 5] |= 1 << (h & 0x1f);
754 ETHER_NEXT_MULTI(step, enm);
757 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
758 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
762 static void
763 vge_reset(struct vge_softc *sc)
765 int i;
767 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
769 for (i = 0; i < VGE_TIMEOUT; i++) {
770 DELAY(5);
771 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
772 break;
775 if (i == VGE_TIMEOUT) {
776 printf("%s: soft reset timed out", device_xname(sc->sc_dev));
777 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
778 DELAY(2000);
781 DELAY(5000);
783 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
785 for (i = 0; i < VGE_TIMEOUT; i++) {
786 DELAY(5);
787 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
788 break;
791 if (i == VGE_TIMEOUT) {
792 printf("%s: EEPROM reload timed out\n",
793 device_xname(sc->sc_dev));
794 return;
798 * On some machine, the first read data from EEPROM could be
799 * messed up, so read one dummy data here to avoid the mess.
801 (void)vge_read_eeprom(sc, 0);
803 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
807 * Probe for a VIA gigabit chip. Check the PCI vendor and device
808 * IDs against our list and return a device name if we find a match.
810 static int
811 vge_match(device_t parent, cfdata_t match, void *aux)
813 struct pci_attach_args *pa = aux;
815 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
816 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
817 return 1;
819 return 0;
822 static int
823 vge_allocmem(struct vge_softc *sc)
825 int error;
826 int nseg;
827 int i;
828 bus_dma_segment_t seg;
831 * Allocate memory for control data.
834 error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
835 VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
836 if (error) {
837 aprint_error_dev(sc->sc_dev,
838 "could not allocate control data dma memory\n");
839 goto fail_1;
842 /* Map the memory to kernel VA space */
844 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
845 sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
846 BUS_DMA_NOWAIT);
847 if (error) {
848 aprint_error_dev(sc->sc_dev,
849 "could not map control data dma memory\n");
850 goto fail_2;
852 memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));
855 * Create map for control data.
857 error = bus_dmamap_create(sc->sc_dmat,
858 sizeof(struct vge_control_data), 1,
859 sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
860 &sc->sc_cddmamap);
861 if (error) {
862 aprint_error_dev(sc->sc_dev,
863 "could not create control data dmamap\n");
864 goto fail_3;
867 /* Load the map for the control data. */
868 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
869 sc->sc_control_data, sizeof(struct vge_control_data), NULL,
870 BUS_DMA_NOWAIT);
871 if (error) {
872 aprint_error_dev(sc->sc_dev,
873 "could not load control data dma memory\n");
874 goto fail_4;
877 /* Create DMA maps for TX buffers */
879 for (i = 0; i < VGE_NTXDESC; i++) {
880 error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
881 VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
882 &sc->sc_txsoft[i].txs_dmamap);
883 if (error) {
884 aprint_error_dev(sc->sc_dev,
885 "can't create DMA map for TX descs\n");
886 goto fail_5;
890 /* Create DMA maps for RX buffers */
892 for (i = 0; i < VGE_NRXDESC; i++) {
893 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
894 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
895 &sc->sc_rxsoft[i].rxs_dmamap);
896 if (error) {
897 aprint_error_dev(sc->sc_dev,
898 "can't create DMA map for RX descs\n");
899 goto fail_6;
901 sc->sc_rxsoft[i].rxs_mbuf = NULL;
904 return 0;
906 fail_6:
907 for (i = 0; i < VGE_NRXDESC; i++) {
908 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
909 bus_dmamap_destroy(sc->sc_dmat,
910 sc->sc_rxsoft[i].rxs_dmamap);
912 fail_5:
913 for (i = 0; i < VGE_NTXDESC; i++) {
914 if (sc->sc_txsoft[i].txs_dmamap != NULL)
915 bus_dmamap_destroy(sc->sc_dmat,
916 sc->sc_txsoft[i].txs_dmamap);
918 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
919 fail_4:
920 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
921 fail_3:
922 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
923 sizeof(struct vge_control_data));
924 fail_2:
925 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
926 fail_1:
927 return ENOMEM;
931 * Attach the interface. Allocate softc structures, do ifmedia
932 * setup and ethernet/BPF attach.
934 static void
935 vge_attach(device_t parent, device_t self, void *aux)
937 uint8_t *eaddr;
938 struct vge_softc *sc = device_private(self);
939 struct ifnet *ifp;
940 struct pci_attach_args *pa = aux;
941 pci_chipset_tag_t pc = pa->pa_pc;
942 const char *intrstr;
943 pci_intr_handle_t ih;
944 uint16_t val;
946 sc->sc_dev = self;
948 aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n",
949 PCI_REVISION(pa->pa_class));
951 /* Make sure bus-mastering is enabled */
952 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
953 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
954 PCI_COMMAND_MASTER_ENABLE);
957 * Map control/status registers.
959 if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
960 &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
961 aprint_error_dev(self, "couldn't map memory\n");
962 return;
966 * Map and establish our interrupt.
968 if (pci_intr_map(pa, &ih)) {
969 aprint_error_dev(self, "unable to map interrupt\n");
970 return;
972 intrstr = pci_intr_string(pc, ih);
973 sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc);
974 if (sc->sc_intrhand == NULL) {
975 aprint_error_dev(self, "unable to establish interrupt");
976 if (intrstr != NULL)
977 aprint_error(" at %s", intrstr);
978 aprint_error("\n");
979 return;
981 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
983 /* Reset the adapter. */
984 vge_reset(sc);
987 * Get station address from the EEPROM.
989 eaddr = sc->sc_eaddr;
990 val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
991 eaddr[0] = val & 0xff;
992 eaddr[1] = val >> 8;
993 val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
994 eaddr[2] = val & 0xff;
995 eaddr[3] = val >> 8;
996 val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
997 eaddr[4] = val & 0xff;
998 eaddr[5] = val >> 8;
1000 aprint_normal_dev(self, "Ethernet address: %s\n",
1001 ether_sprintf(eaddr));
1004 * Use the 32bit tag. Hardware supports 48bit physical addresses,
1005 * but we don't use that for now.
1007 sc->sc_dmat = pa->pa_dmat;
1009 if (vge_allocmem(sc) != 0)
1010 return;
1012 ifp = &sc->sc_ethercom.ec_if;
1013 ifp->if_softc = sc;
1014 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1015 ifp->if_mtu = ETHERMTU;
1016 ifp->if_baudrate = IF_Gbps(1);
1017 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1018 ifp->if_ioctl = vge_ioctl;
1019 ifp->if_start = vge_start;
1020 ifp->if_init = vge_init;
1021 ifp->if_stop = vge_stop;
1024 * We can support 802.1Q VLAN-sized frames and jumbo
1025 * Ethernet frames.
1027 sc->sc_ethercom.ec_capabilities |=
1028 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
1029 ETHERCAP_VLAN_HWTAGGING;
1032 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
1034 ifp->if_capabilities |=
1035 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1036 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1037 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1039 #ifdef DEVICE_POLLING
1040 #ifdef IFCAP_POLLING
1041 ifp->if_capabilities |= IFCAP_POLLING;
1042 #endif
1043 #endif
1044 ifp->if_watchdog = vge_watchdog;
1045 IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
1046 IFQ_SET_READY(&ifp->if_snd);
1049 * Initialize our media structures and probe the MII.
1051 sc->sc_mii.mii_ifp = ifp;
1052 sc->sc_mii.mii_readreg = vge_miibus_readreg;
1053 sc->sc_mii.mii_writereg = vge_miibus_writereg;
1054 sc->sc_mii.mii_statchg = vge_miibus_statchg;
1056 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1057 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
1058 ether_mediastatus);
1059 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1060 MII_OFFSET_ANY, MIIF_DOPAUSE);
1061 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1062 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1063 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1064 } else
1065 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1068 * Attach the interface.
1070 if_attach(ifp);
1071 ether_ifattach(ifp, eaddr);
1072 ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);
1074 callout_init(&sc->sc_timeout, 0);
1075 callout_setfunc(&sc->sc_timeout, vge_tick, sc);
1078 * Make sure the interface is shutdown during reboot.
1080 if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
1081 pmf_class_network_register(self, ifp);
1082 else
1083 aprint_error_dev(self, "couldn't establish power handler\n");
1086 static int
1087 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1089 struct mbuf *m_new;
1090 struct vge_rxdesc *rxd;
1091 struct vge_rxsoft *rxs;
1092 bus_dmamap_t map;
1093 int i;
1094 #ifdef DIAGNOSTIC
1095 uint32_t rd_sts;
1096 #endif
1098 m_new = NULL;
1099 if (m == NULL) {
1100 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1101 if (m_new == NULL)
1102 return ENOBUFS;
1104 MCLGET(m_new, M_DONTWAIT);
1105 if ((m_new->m_flags & M_EXT) == 0) {
1106 m_freem(m_new);
1107 return ENOBUFS;
1110 m = m_new;
1111 } else
1112 m->m_data = m->m_ext.ext_buf;
1116 * This is part of an evil trick to deal with non-x86 platforms.
1117 * The VIA chip requires RX buffers to be aligned on 32-bit
1118 * boundaries, but that will hose non-x86 machines. To get around
1119 * this, we leave some empty space at the start of each buffer
1120 * and for non-x86 hosts, we copy the buffer back two bytes
1121 * to achieve word alignment. This is slightly more efficient
1122 * than allocating a new buffer, copying the contents, and
1123 * discarding the old buffer.
1125 m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
1126 #ifndef __NO_STRICT_ALIGNMENT
1127 m->m_data += VGE_RX_PAD;
1128 #endif
1129 rxs = &sc->sc_rxsoft[idx];
1130 map = rxs->rxs_dmamap;
1132 if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
1133 goto out;
1135 rxd = &sc->sc_rxdescs[idx];
1137 #ifdef DIAGNOSTIC
1138 /* If this descriptor is still owned by the chip, bail. */
1139 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1140 rd_sts = le32toh(rxd->rd_sts);
1141 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1142 if (rd_sts & VGE_RDSTS_OWN) {
1143 panic("%s: tried to map busy RX descriptor",
1144 device_xname(sc->sc_dev));
1146 #endif
1148 rxs->rxs_mbuf = m;
1149 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1150 BUS_DMASYNC_PREREAD);
1152 rxd->rd_buflen =
1153 htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
1154 vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
1155 rxd->rd_sts = 0;
1156 rxd->rd_ctl = 0;
1157 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1160 * Note: the manual fails to document the fact that for
1161 * proper opration, the driver needs to replentish the RX
1162 * DMA ring 4 descriptors at a time (rather than one at a
1163 * time, like most chips). We can allocate the new buffers
1164 * but we should not set the OWN bits until we're ready
1165 * to hand back 4 of them in one shot.
1168 #define VGE_RXCHUNK 4
1169 sc->sc_rx_consumed++;
1170 if (sc->sc_rx_consumed == VGE_RXCHUNK) {
1171 for (i = idx; i != idx - VGE_RXCHUNK; i--) {
1172 KASSERT(i >= 0);
1173 sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
1174 VGE_RXDESCSYNC(sc, i,
1175 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1177 sc->sc_rx_consumed = 0;
1180 return 0;
1181 out:
1182 if (m_new != NULL)
1183 m_freem(m_new);
1184 return ENOMEM;
1187 #ifndef __NO_STRICT_ALIGNMENT
1188 static inline void
1189 vge_fixup_rx(struct mbuf *m)
1191 int i;
1192 uint16_t *src, *dst;
1194 src = mtod(m, uint16_t *);
1195 dst = src - 1;
1197 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1198 *dst++ = *src++;
1200 m->m_data -= ETHER_ALIGN;
1202 #endif
1205 * RX handler. We support the reception of jumbo frames that have
1206 * been fragmented across multiple 2K mbuf cluster buffers.
1208 static void
1209 vge_rxeof(struct vge_softc *sc)
1211 struct mbuf *m;
1212 struct ifnet *ifp;
1213 int idx, total_len, lim;
1214 struct vge_rxdesc *cur_rxd;
1215 struct vge_rxsoft *rxs;
1216 uint32_t rxstat, rxctl;
1218 ifp = &sc->sc_ethercom.ec_if;
1219 lim = 0;
1221 /* Invalidate the descriptor memory */
1223 for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
1224 cur_rxd = &sc->sc_rxdescs[idx];
1226 VGE_RXDESCSYNC(sc, idx,
1227 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1228 rxstat = le32toh(cur_rxd->rd_sts);
1229 if ((rxstat & VGE_RDSTS_OWN) != 0) {
1230 VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1231 break;
1234 rxctl = le32toh(cur_rxd->rd_ctl);
1235 rxs = &sc->sc_rxsoft[idx];
1236 m = rxs->rxs_mbuf;
1237 total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;
1239 /* Invalidate the RX mbuf and unload its map */
1241 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
1242 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1243 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1246 * If the 'start of frame' bit is set, this indicates
1247 * either the first fragment in a multi-fragment receive,
1248 * or an intermediate fragment. Either way, we want to
1249 * accumulate the buffers.
1251 if (rxstat & VGE_RXPKT_SOF) {
1252 m->m_len = VGE_RX_BUFSIZE;
1253 if (sc->sc_rx_mhead == NULL)
1254 sc->sc_rx_mhead = sc->sc_rx_mtail = m;
1255 else {
1256 m->m_flags &= ~M_PKTHDR;
1257 sc->sc_rx_mtail->m_next = m;
1258 sc->sc_rx_mtail = m;
1260 vge_newbuf(sc, idx, NULL);
1261 continue;
1265 * Bad/error frames will have the RXOK bit cleared.
1266 * However, there's one error case we want to allow:
1267 * if a VLAN tagged frame arrives and the chip can't
1268 * match it against the CAM filter, it considers this
1269 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1270 * We don't want to drop the frame though: our VLAN
1271 * filtering is done in software.
1273 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1274 (rxstat & VGE_RDSTS_VIDM) == 0 &&
1275 (rxstat & VGE_RDSTS_CSUMERR) == 0) {
1276 ifp->if_ierrors++;
1278 * If this is part of a multi-fragment packet,
1279 * discard all the pieces.
1281 if (sc->sc_rx_mhead != NULL) {
1282 m_freem(sc->sc_rx_mhead);
1283 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1285 vge_newbuf(sc, idx, m);
1286 continue;
1290 * If allocating a replacement mbuf fails,
1291 * reload the current one.
1294 if (vge_newbuf(sc, idx, NULL)) {
1295 ifp->if_ierrors++;
1296 if (sc->sc_rx_mhead != NULL) {
1297 m_freem(sc->sc_rx_mhead);
1298 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1300 vge_newbuf(sc, idx, m);
1301 continue;
1304 if (sc->sc_rx_mhead != NULL) {
1305 m->m_len = total_len % VGE_RX_BUFSIZE;
1307 * Special case: if there's 4 bytes or less
1308 * in this buffer, the mbuf can be discarded:
1309 * the last 4 bytes is the CRC, which we don't
1310 * care about anyway.
1312 if (m->m_len <= ETHER_CRC_LEN) {
1313 sc->sc_rx_mtail->m_len -=
1314 (ETHER_CRC_LEN - m->m_len);
1315 m_freem(m);
1316 } else {
1317 m->m_len -= ETHER_CRC_LEN;
1318 m->m_flags &= ~M_PKTHDR;
1319 sc->sc_rx_mtail->m_next = m;
1321 m = sc->sc_rx_mhead;
1322 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1323 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1324 } else
1325 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1327 #ifndef __NO_STRICT_ALIGNMENT
1328 vge_fixup_rx(m);
1329 #endif
1330 ifp->if_ipackets++;
1331 m->m_pkthdr.rcvif = ifp;
1333 /* Do RX checksumming if enabled */
1334 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
1336 /* Check IP header checksum */
1337 if (rxctl & VGE_RDCTL_IPPKT)
1338 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1339 if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
1340 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1343 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1344 /* Check UDP checksum */
1345 if (rxctl & VGE_RDCTL_TCPPKT)
1346 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1348 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1349 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1352 if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
1353 /* Check UDP checksum */
1354 if (rxctl & VGE_RDCTL_UDPPKT)
1355 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1357 if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
1358 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1361 if (rxstat & VGE_RDSTS_VTAG) {
1363 * We use bswap16() here because:
1364 * On LE machines, tag is stored in BE as stream data.
1365 * On BE machines, tag is stored in BE as stream data
1366 * but it was already swapped by le32toh() above.
1368 VLAN_INPUT_TAG(ifp, m,
1369 bswap16(rxctl & VGE_RDCTL_VLANID), continue);
1372 #if NBPFILTER > 0
1374 * Handle BPF listeners.
1376 if (ifp->if_bpf)
1377 bpf_mtap(ifp->if_bpf, m);
1378 #endif
1380 (*ifp->if_input)(ifp, m);
1382 lim++;
1383 if (lim == VGE_NRXDESC)
1384 break;
1387 sc->sc_rx_prodidx = idx;
1388 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1391 static void
1392 vge_txeof(struct vge_softc *sc)
1394 struct ifnet *ifp;
1395 struct vge_txsoft *txs;
1396 uint32_t txstat;
1397 int idx;
1399 ifp = &sc->sc_ethercom.ec_if;
1401 for (idx = sc->sc_tx_considx;
1402 sc->sc_tx_free < VGE_NTXDESC;
1403 idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
1404 VGE_TXDESCSYNC(sc, idx,
1405 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1406 txstat = le32toh(sc->sc_txdescs[idx].td_sts);
1407 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1408 if (txstat & VGE_TDSTS_OWN) {
1409 break;
1412 txs = &sc->sc_txsoft[idx];
1413 m_freem(txs->txs_mbuf);
1414 txs->txs_mbuf = NULL;
1415 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1416 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1417 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1418 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1419 ifp->if_collisions++;
1420 if (txstat & VGE_TDSTS_TXERR)
1421 ifp->if_oerrors++;
1422 else
1423 ifp->if_opackets++;
1426 sc->sc_tx_considx = idx;
1428 if (sc->sc_tx_free > 0) {
1429 ifp->if_flags &= ~IFF_OACTIVE;
1433 * If not all descriptors have been released reaped yet,
1434 * reload the timer so that we will eventually get another
1435 * interrupt that will cause us to re-enter this routine.
1436 * This is done in case the transmitter has gone idle.
1438 if (sc->sc_tx_free < VGE_NTXDESC)
1439 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1440 else
1441 ifp->if_timer = 0;
1444 static void
1445 vge_tick(void *arg)
1447 struct vge_softc *sc;
1448 struct ifnet *ifp;
1449 struct mii_data *mii;
1450 int s;
1452 sc = arg;
1453 ifp = &sc->sc_ethercom.ec_if;
1454 mii = &sc->sc_mii;
1456 s = splnet();
1458 callout_schedule(&sc->sc_timeout, hz);
1460 mii_tick(mii);
1461 if (sc->sc_link) {
1462 if ((mii->mii_media_status & IFM_ACTIVE) == 0)
1463 sc->sc_link = 0;
1464 } else {
1465 if (mii->mii_media_status & IFM_ACTIVE &&
1466 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1467 sc->sc_link = 1;
1468 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1469 vge_start(ifp);
1473 splx(s);
1476 static int
1477 vge_intr(void *arg)
1479 struct vge_softc *sc;
1480 struct ifnet *ifp;
1481 uint32_t status;
1482 int claim;
1484 sc = arg;
1485 claim = 0;
1486 if (sc->sc_suspended) {
1487 return claim;
1490 ifp = &sc->sc_ethercom.ec_if;
1492 if ((ifp->if_flags & IFF_UP) == 0) {
1493 return claim;
1496 /* Disable interrupts */
1497 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1499 for (;;) {
1501 status = CSR_READ_4(sc, VGE_ISR);
1502 /* If the card has gone away the read returns 0xffffffff. */
1503 if (status == 0xFFFFFFFF)
1504 break;
1506 if (status) {
1507 claim = 1;
1508 CSR_WRITE_4(sc, VGE_ISR, status);
1511 if ((status & VGE_INTRS) == 0)
1512 break;
1514 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1515 vge_rxeof(sc);
1517 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1518 vge_rxeof(sc);
1519 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1520 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1523 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1524 vge_txeof(sc);
1526 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1527 vge_init(ifp);
1529 if (status & VGE_ISR_LINKSTS)
1530 vge_tick(sc);
1533 /* Re-enable interrupts */
1534 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1536 if (claim && !IFQ_IS_EMPTY(&ifp->if_snd))
1537 vge_start(ifp);
1539 return claim;
1542 static int
1543 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1545 struct vge_txsoft *txs;
1546 struct vge_txdesc *txd;
1547 struct vge_txfrag *f;
1548 struct mbuf *m_new;
1549 bus_dmamap_t map;
1550 int m_csumflags, seg, error, flags;
1551 struct m_tag *mtag;
1552 size_t sz;
1553 uint32_t td_sts, td_ctl;
1555 KASSERT(sc->sc_tx_free > 0);
1557 txd = &sc->sc_txdescs[idx];
1559 #ifdef DIAGNOSTIC
1560 /* If this descriptor is still owned by the chip, bail. */
1561 VGE_TXDESCSYNC(sc, idx,
1562 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1563 td_sts = le32toh(txd->td_sts);
1564 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1565 if (td_sts & VGE_TDSTS_OWN) {
1566 return ENOBUFS;
1568 #endif
1571 * Preserve m_pkthdr.csum_flags here since m_head might be
1572 * updated by m_defrag()
1574 m_csumflags = m_head->m_pkthdr.csum_flags;
1576 txs = &sc->sc_txsoft[idx];
1577 map = txs->txs_dmamap;
1578 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);
1580 /* If too many segments to map, coalesce */
1581 if (error == EFBIG ||
1582 (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
1583 map->dm_nsegs == VGE_TX_FRAGS)) {
1584 m_new = m_defrag(m_head, M_DONTWAIT);
1585 if (m_new == NULL)
1586 return EFBIG;
1588 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1589 m_new, BUS_DMA_NOWAIT);
1590 if (error) {
1591 m_freem(m_new);
1592 return error;
1595 m_head = m_new;
1596 } else if (error)
1597 return error;
1599 txs->txs_mbuf = m_head;
1601 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1602 BUS_DMASYNC_PREWRITE);
1604 for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
1605 f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
1606 vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
1609 /* Argh. This chip does not autopad short frames */
1610 sz = m_head->m_pkthdr.len;
1611 if (sz < ETHER_PAD_LEN) {
1612 f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
1613 vge_set_txaddr(f, VGE_CDPADADDR(sc));
1614 sz = ETHER_PAD_LEN;
1615 seg++;
1617 VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);
1620 * When telling the chip how many segments there are, we
1621 * must use nsegs + 1 instead of just nsegs. Darned if I
1622 * know why.
1624 seg++;
1626 flags = 0;
1627 if (m_csumflags & M_CSUM_IPv4)
1628 flags |= VGE_TDCTL_IPCSUM;
1629 if (m_csumflags & M_CSUM_TCPv4)
1630 flags |= VGE_TDCTL_TCPCSUM;
1631 if (m_csumflags & M_CSUM_UDPv4)
1632 flags |= VGE_TDCTL_UDPCSUM;
1633 td_sts = sz << 16;
1634 td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;
1636 if (sz > ETHERMTU + ETHER_HDR_LEN)
1637 td_ctl |= VGE_TDCTL_JUMBO;
1640 * Set up hardware VLAN tagging.
1642 mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head);
1643 if (mtag != NULL) {
1645 * No need htons() here since vge(4) chip assumes
1646 * that tags are written in little endian and
1647 * we already use htole32() here.
1649 td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG;
1651 txd->td_ctl = htole32(td_ctl);
1652 txd->td_sts = htole32(td_sts);
1653 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1655 txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
1656 VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1658 sc->sc_tx_free--;
1660 return 0;
1664 * Main transmit routine.
1667 static void
1668 vge_start(struct ifnet *ifp)
1670 struct vge_softc *sc;
1671 struct vge_txsoft *txs;
1672 struct mbuf *m_head;
1673 int idx, pidx, ofree, error;
1675 sc = ifp->if_softc;
1677 if (!sc->sc_link ||
1678 (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1679 return;
1682 m_head = NULL;
1683 idx = sc->sc_tx_prodidx;
1684 pidx = VGE_PREV_TXDESC(idx);
1685 ofree = sc->sc_tx_free;
1688 * Loop through the send queue, setting up transmit descriptors
1689 * until we drain the queue, or use up all available transmit
1690 * descriptors.
1692 for (;;) {
1693 /* Grab a packet off the queue. */
1694 IFQ_POLL(&ifp->if_snd, m_head);
1695 if (m_head == NULL)
1696 break;
1698 if (sc->sc_tx_free == 0) {
1700 * All slots used, stop for now.
1702 ifp->if_flags |= IFF_OACTIVE;
1703 break;
1706 txs = &sc->sc_txsoft[idx];
1707 KASSERT(txs->txs_mbuf == NULL);
1709 if ((error = vge_encap(sc, m_head, idx))) {
1710 if (error == EFBIG) {
1711 printf("%s: Tx packet consumes too many "
1712 "DMA segments, dropping...\n",
1713 device_xname(sc->sc_dev));
1714 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1715 m_freem(m_head);
1716 continue;
1720 * Short on resources, just stop for now.
1722 if (error == ENOBUFS)
1723 ifp->if_flags |= IFF_OACTIVE;
1724 break;
1727 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1730 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1733 sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
1734 htole16(VGE_TXDESC_Q);
1735 VGE_TXFRAGSYNC(sc, pidx, 1,
1736 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1738 if (txs->txs_mbuf != m_head) {
1739 m_freem(m_head);
1740 m_head = txs->txs_mbuf;
1743 pidx = idx;
1744 idx = VGE_NEXT_TXDESC(idx);
1747 * If there's a BPF listener, bounce a copy of this frame
1748 * to him.
1750 #if NBPFILTER > 0
1751 if (ifp->if_bpf)
1752 bpf_mtap(ifp->if_bpf, m_head);
1753 #endif
1756 if (sc->sc_tx_free < ofree) {
1757 /* TX packet queued */
1759 sc->sc_tx_prodidx = idx;
1761 /* Issue a transmit command. */
1762 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1765 * Use the countdown timer for interrupt moderation.
1766 * 'TX done' interrupts are disabled. Instead, we reset the
1767 * countdown timer, which will begin counting until it hits
1768 * the value in the SSTIMER register, and then trigger an
1769 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1770 * the timer count is reloaded. Only when the transmitter
1771 * is idle will the timer hit 0 and an interrupt fire.
1773 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1776 * Set a timeout in case the chip goes out to lunch.
1778 ifp->if_timer = 5;
1782 static int
1783 vge_init(struct ifnet *ifp)
1785 struct vge_softc *sc;
1786 int i, rc = 0;
1788 sc = ifp->if_softc;
1791 * Cancel pending I/O and free all RX/TX buffers.
1793 vge_stop(ifp, 0);
1794 vge_reset(sc);
1796 /* Initialize the RX descriptors and mbufs. */
1797 memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
1798 sc->sc_rx_consumed = 0;
1799 for (i = 0; i < VGE_NRXDESC; i++) {
1800 if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
1801 printf("%s: unable to allocate or map rx buffer\n",
1802 device_xname(sc->sc_dev));
1803 return 1; /* XXX */
1806 sc->sc_rx_prodidx = 0;
1807 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
1809 /* Initialize the TX descriptors and mbufs. */
1810 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1811 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
1812 VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
1813 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1814 for (i = 0; i < VGE_NTXDESC; i++)
1815 sc->sc_txsoft[i].txs_mbuf = NULL;
1817 sc->sc_tx_prodidx = 0;
1818 sc->sc_tx_considx = 0;
1819 sc->sc_tx_free = VGE_NTXDESC;
1821 /* Set our station address */
1822 for (i = 0; i < ETHER_ADDR_LEN; i++)
1823 CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);
1826 * Set receive FIFO threshold. Also allow transmission and
1827 * reception of VLAN tagged frames.
1829 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1830 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1832 /* Set DMA burst length */
1833 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1834 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1836 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1838 /* Set collision backoff algorithm */
1839 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1840 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1841 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1843 /* Disable LPSEL field in priority resolution */
1844 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1847 * Load the addresses of the DMA queues into the chip.
1848 * Note that we only use one transmit queue.
1851 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
1852 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);
1854 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
1855 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
1856 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);
1858 /* Enable and wake up the RX descriptor queue */
1859 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1860 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1862 /* Enable the TX descriptor queue */
1863 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1865 /* Set up the receive filter -- allow large frames for VLANs. */
1866 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1868 /* If we want promiscuous mode, set the allframes bit. */
1869 if (ifp->if_flags & IFF_PROMISC) {
1870 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1873 /* Set capture broadcast bit to capture broadcast frames. */
1874 if (ifp->if_flags & IFF_BROADCAST) {
1875 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1878 /* Set multicast bit to capture multicast frames. */
1879 if (ifp->if_flags & IFF_MULTICAST) {
1880 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1883 /* Init the cam filter. */
1884 vge_cam_clear(sc);
1886 /* Init the multicast filter. */
1887 vge_setmulti(sc);
1889 /* Enable flow control */
1891 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1893 /* Enable jumbo frame reception (if desired) */
1895 /* Start the MAC. */
1896 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1897 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1898 CSR_WRITE_1(sc, VGE_CRS0,
1899 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1902 * Configure one-shot timer for microsecond
1903 * resulution and load it for 500 usecs.
1905 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1906 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1909 * Configure interrupt moderation for receive. Enable
1910 * the holdoff counter and load it, and set the RX
1911 * suppression count to the number of descriptors we
1912 * want to allow before triggering an interrupt.
1913 * The holdoff timer is in units of 20 usecs.
1916 #ifdef notyet
1917 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1918 /* Select the interrupt holdoff timer page. */
1919 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1920 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1921 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1923 /* Enable use of the holdoff timer. */
1924 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1925 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1927 /* Select the RX suppression threshold page. */
1928 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1929 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1930 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1932 /* Restore the page select bits. */
1933 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1934 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1935 #endif
1937 #ifdef DEVICE_POLLING
1939 * Disable interrupts if we are polling.
1941 if (ifp->if_flags & IFF_POLLING) {
1942 CSR_WRITE_4(sc, VGE_IMR, 0);
1943 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1944 } else /* otherwise ... */
1945 #endif /* DEVICE_POLLING */
1948 * Enable interrupts.
1950 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1951 CSR_WRITE_4(sc, VGE_ISR, 0);
1952 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1955 if ((rc = ether_mediachange(ifp)) != 0)
1956 goto out;
1958 ifp->if_flags |= IFF_RUNNING;
1959 ifp->if_flags &= ~IFF_OACTIVE;
1961 sc->sc_if_flags = 0;
1962 sc->sc_link = 0;
1964 callout_schedule(&sc->sc_timeout, hz);
1966 out:
1967 return rc;
1970 static void
1971 vge_miibus_statchg(device_t self)
1973 struct vge_softc *sc;
1974 struct mii_data *mii;
1975 struct ifmedia_entry *ife;
1977 sc = device_private(self);
1978 mii = &sc->sc_mii;
1979 ife = mii->mii_media.ifm_cur;
1981 * If the user manually selects a media mode, we need to turn
1982 * on the forced MAC mode bit in the DIAGCTL register. If the
1983 * user happens to choose a full duplex mode, we also need to
1984 * set the 'force full duplex' bit. This applies only to
1985 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1986 * mode is disabled, and in 1000baseT mode, full duplex is
1987 * always implied, so we turn on the forced mode bit but leave
1988 * the FDX bit cleared.
1991 switch (IFM_SUBTYPE(ife->ifm_media)) {
1992 case IFM_AUTO:
1993 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1994 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1995 break;
1996 case IFM_1000_T:
1997 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1998 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1999 break;
2000 case IFM_100_TX:
2001 case IFM_10_T:
2002 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2003 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2004 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2005 } else {
2006 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2008 break;
2009 default:
2010 printf("%s: unknown media type: %x\n",
2011 device_xname(sc->sc_dev),
2012 IFM_SUBTYPE(ife->ifm_media));
2013 break;
2017 static int
2018 vge_ifflags_cb(struct ethercom *ec)
2020 struct ifnet *ifp = &ec->ec_if;
2021 struct vge_softc *sc = ifp->if_softc;
2022 int change = ifp->if_flags ^ sc->sc_if_flags;
2024 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2025 return ENETRESET;
2026 else if ((change & IFF_PROMISC) == 0)
2027 return 0;
2029 if ((ifp->if_flags & IFF_PROMISC) == 0)
2030 CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2031 else
2032 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2033 vge_setmulti(sc);
2034 return 0;
2037 static int
2038 vge_ioctl(struct ifnet *ifp, u_long command, void *data)
2040 struct vge_softc *sc;
2041 struct ifreq *ifr;
2042 int s, error;
2044 sc = ifp->if_softc;
2045 ifr = (struct ifreq *)data;
2046 error = 0;
2048 s = splnet();
2050 if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
2051 error = 0;
2052 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2054 else if (ifp->if_flags & IFF_RUNNING) {
2056 * Multicast list has changed; set the hardware filter
2057 * accordingly.
2059 vge_setmulti(sc);
2062 sc->sc_if_flags = ifp->if_flags;
2064 splx(s);
2065 return error;
2068 static void
2069 vge_watchdog(struct ifnet *ifp)
2071 struct vge_softc *sc;
2072 int s;
2074 sc = ifp->if_softc;
2075 s = splnet();
2076 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2077 ifp->if_oerrors++;
2079 vge_txeof(sc);
2080 vge_rxeof(sc);
2082 vge_init(ifp);
2084 splx(s);
2088 * Stop the adapter and free any mbufs allocated to the
2089 * RX and TX lists.
2091 static void
2092 vge_stop(struct ifnet *ifp, int disable)
2094 struct vge_softc *sc = ifp->if_softc;
2095 struct vge_txsoft *txs;
2096 struct vge_rxsoft *rxs;
2097 int i, s;
2099 s = splnet();
2100 ifp->if_timer = 0;
2102 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2103 #ifdef DEVICE_POLLING
2104 ether_poll_deregister(ifp);
2105 #endif /* DEVICE_POLLING */
2107 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2108 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2109 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2110 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2111 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2112 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2114 if (sc->sc_rx_mhead != NULL) {
2115 m_freem(sc->sc_rx_mhead);
2116 sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
2119 /* Free the TX list buffers. */
2121 for (i = 0; i < VGE_NTXDESC; i++) {
2122 txs = &sc->sc_txsoft[i];
2123 if (txs->txs_mbuf != NULL) {
2124 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2125 m_freem(txs->txs_mbuf);
2126 txs->txs_mbuf = NULL;
2130 /* Free the RX list buffers. */
2132 for (i = 0; i < VGE_NRXDESC; i++) {
2133 rxs = &sc->sc_rxsoft[i];
2134 if (rxs->rxs_mbuf != NULL) {
2135 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2136 m_freem(rxs->rxs_mbuf);
2137 rxs->rxs_mbuf = NULL;
2141 splx(s);
2144 #if VGE_POWER_MANAGEMENT
2146 * Device suspend routine. Stop the interface and save some PCI
2147 * settings in case the BIOS doesn't restore them properly on
2148 * resume.
2150 static int
2151 vge_suspend(device_t dev)
2153 struct vge_softc *sc;
2154 int i;
2156 sc = device_get_softc(dev);
2158 vge_stop(sc);
2160 for (i = 0; i < 5; i++)
2161 sc->sc_saved_maps[i] =
2162 pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2163 sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2164 sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2165 sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2166 sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2168 sc->suspended = 1;
2170 return 0;
2174 * Device resume routine. Restore some PCI settings in case the BIOS
2175 * doesn't, re-enable busmastering, and restart the interface if
2176 * appropriate.
2178 static int
2179 vge_resume(device_t dev)
2181 struct vge_softc *sc;
2182 struct ifnet *ifp;
2183 int i;
2185 sc = device_private(dev);
2186 ifp = &sc->sc_ethercom.ec_if;
2188 /* better way to do this? */
2189 for (i = 0; i < 5; i++)
2190 pci_write_config(dev, PCIR_MAPS + i * 4,
2191 sc->sc_saved_maps[i], 4);
2192 pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
2193 pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
2194 pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
2195 pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);
2197 /* reenable busmastering */
2198 pci_enable_busmaster(dev);
2199 pci_enable_io(dev, SYS_RES_MEMORY);
2201 /* reinitialize interface if necessary */
2202 if (ifp->if_flags & IFF_UP)
2203 vge_init(sc);
2205 sc->suspended = 0;
2207 return 0;
2209 #endif
2212 * Stop all chip I/O so that the kernel's probe routines don't
2213 * get confused by errant DMAs when rebooting.
2215 static bool
2216 vge_shutdown(device_t self, int howto)
2218 struct vge_softc *sc;
2220 sc = device_private(self);
2221 vge_stop(&sc->sc_ethercom.ec_if, 1);
2223 return true;