No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / pci / mly.c
blob6e6d889209e90e4cf7b3194dca2ccd7632bbc90a
1 /* $NetBSD: mly.c,v 1.42 2009/05/12 08:23:01 cegger Exp $ */
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 /*-
33 * Copyright (c) 2000, 2001 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
58 * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
62 * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
64 * TODO:
66 * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
67 * o Handle FC and multiple LUNs.
68 * o Fix mmbox usage.
69 * o Fix transfer speed fudge.
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.42 2009/05/12 08:23:01 cegger Exp $");
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/device.h>
78 #include <sys/kernel.h>
79 #include <sys/queue.h>
80 #include <sys/buf.h>
81 #include <sys/endian.h>
82 #include <sys/conf.h>
83 #include <sys/malloc.h>
84 #include <sys/ioctl.h>
85 #include <sys/scsiio.h>
86 #include <sys/kthread.h>
87 #include <sys/kauth.h>
89 #include <uvm/uvm_extern.h>
91 #include <sys/bus.h>
93 #include <dev/scsipi/scsi_all.h>
94 #include <dev/scsipi/scsipi_all.h>
95 #include <dev/scsipi/scsiconf.h>
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99 #include <dev/pci/pcidevs.h>
101 #include <dev/pci/mlyreg.h>
102 #include <dev/pci/mlyio.h>
103 #include <dev/pci/mlyvar.h>
104 #include <dev/pci/mly_tables.h>
106 static void mly_attach(device_t, device_t, void *);
107 static int mly_match(device_t, cfdata_t, void *);
108 static const struct mly_ident *mly_find_ident(struct pci_attach_args *);
109 static int mly_fwhandshake(struct mly_softc *);
110 static int mly_flush(struct mly_softc *);
111 static int mly_intr(void *);
112 static void mly_shutdown(void *);
114 static int mly_alloc_ccbs(struct mly_softc *);
115 static void mly_check_event(struct mly_softc *);
116 static void mly_complete_event(struct mly_softc *, struct mly_ccb *);
117 static void mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
118 static int mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
119 void **, bus_addr_t *, bus_dma_segment_t *);
120 static void mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
121 void *, bus_dma_segment_t *);
122 static int mly_enable_mmbox(struct mly_softc *);
123 static void mly_fetch_event(struct mly_softc *);
124 static int mly_get_controllerinfo(struct mly_softc *);
125 static int mly_get_eventstatus(struct mly_softc *);
126 static int mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
127 void **, size_t, void *, size_t *);
128 static void mly_padstr(char *, const char *, int);
129 static void mly_process_event(struct mly_softc *, struct mly_event *);
130 static void mly_release_ccbs(struct mly_softc *);
131 static int mly_scan_btl(struct mly_softc *, int, int);
132 static void mly_scan_channel(struct mly_softc *, int);
133 static void mly_thread(void *);
135 static int mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
136 static void mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
137 static void mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
138 static void mly_ccb_free(struct mly_softc *, struct mly_ccb *);
139 static int mly_ccb_map(struct mly_softc *, struct mly_ccb *);
140 static int mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
141 static int mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
142 static void mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
143 static int mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
145 static void mly_get_xfer_mode(struct mly_softc *, int,
146 struct scsipi_xfer_mode *);
147 static void mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
148 static int mly_scsipi_ioctl(struct scsipi_channel *, u_long, void *,
149 int, struct proc *);
150 static void mly_scsipi_minphys(struct buf *);
151 static void mly_scsipi_request(struct scsipi_channel *,
152 scsipi_adapter_req_t, void *);
154 static int mly_user_command(struct mly_softc *, struct mly_user_command *);
155 static int mly_user_health(struct mly_softc *, struct mly_user_health *);
157 extern struct cfdriver mly_cd;
159 CFATTACH_DECL(mly, sizeof(struct mly_softc),
160 mly_match, mly_attach, NULL, NULL);
162 dev_type_open(mlyopen);
163 dev_type_close(mlyclose);
164 dev_type_ioctl(mlyioctl);
166 const struct cdevsw mly_cdevsw = {
167 mlyopen, mlyclose, noread, nowrite, mlyioctl,
168 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
171 static struct mly_ident {
172 u_short vendor;
173 u_short product;
174 u_short subvendor;
175 u_short subproduct;
176 int hwif;
177 const char *desc;
178 } const mly_ident[] = {
180 PCI_VENDOR_MYLEX,
181 PCI_PRODUCT_MYLEX_EXTREMERAID,
182 PCI_VENDOR_MYLEX,
183 0x0040,
184 MLY_HWIF_STRONGARM,
185 "eXtremeRAID 2000"
188 PCI_VENDOR_MYLEX,
189 PCI_PRODUCT_MYLEX_EXTREMERAID,
190 PCI_VENDOR_MYLEX,
191 0x0030,
192 MLY_HWIF_STRONGARM,
193 "eXtremeRAID 3000"
196 PCI_VENDOR_MYLEX,
197 PCI_PRODUCT_MYLEX_ACCELERAID,
198 PCI_VENDOR_MYLEX,
199 0x0050,
200 MLY_HWIF_I960RX,
201 "AcceleRAID 352"
204 PCI_VENDOR_MYLEX,
205 PCI_PRODUCT_MYLEX_ACCELERAID,
206 PCI_VENDOR_MYLEX,
207 0x0052,
208 MLY_HWIF_I960RX,
209 "AcceleRAID 170"
212 PCI_VENDOR_MYLEX,
213 PCI_PRODUCT_MYLEX_ACCELERAID,
214 PCI_VENDOR_MYLEX,
215 0x0054,
216 MLY_HWIF_I960RX,
217 "AcceleRAID 160"
221 static void *mly_sdh;
224 * Try to find a `mly_ident' entry corresponding to this board.
226 static const struct mly_ident *
227 mly_find_ident(struct pci_attach_args *pa)
229 const struct mly_ident *mpi, *maxmpi;
230 pcireg_t reg;
232 mpi = mly_ident;
233 maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
235 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
236 return (NULL);
238 for (; mpi < maxmpi; mpi++) {
239 if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
240 PCI_PRODUCT(pa->pa_id) != mpi->product)
241 continue;
243 if (mpi->subvendor == 0x0000)
244 return (mpi);
246 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
248 if (PCI_VENDOR(reg) == mpi->subvendor &&
249 PCI_PRODUCT(reg) == mpi->subproduct)
250 return (mpi);
253 return (NULL);
257 * Match a supported board.
259 static int
260 mly_match(device_t parent, cfdata_t cfdata, void *aux)
263 return (mly_find_ident(aux) != NULL);
267 * Attach a supported board.
269 static void
270 mly_attach(device_t parent, device_t self, void *aux)
272 struct pci_attach_args *pa;
273 struct mly_softc *mly;
274 struct mly_ioctl_getcontrollerinfo *mi;
275 const struct mly_ident *ident;
276 pci_chipset_tag_t pc;
277 pci_intr_handle_t ih;
278 bus_space_handle_t memh, ioh;
279 bus_space_tag_t memt, iot;
280 pcireg_t reg;
281 const char *intrstr;
282 int ior, memr, i, rv, state;
283 struct scsipi_adapter *adapt;
284 struct scsipi_channel *chan;
286 mly = device_private(self);
287 pa = aux;
288 pc = pa->pa_pc;
289 ident = mly_find_ident(pa);
290 state = 0;
292 mly->mly_dmat = pa->pa_dmat;
293 mly->mly_hwif = ident->hwif;
295 printf(": Mylex %s\n", ident->desc);
298 * Map the PCI register window.
300 memr = -1;
301 ior = -1;
303 for (i = 0x10; i <= 0x14; i += 4) {
304 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
306 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
307 if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
308 ior = i;
309 } else {
310 if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
311 memr = i;
315 if (memr != -1)
316 if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
317 &memt, &memh, NULL, NULL))
318 memr = -1;
319 if (ior != -1)
320 if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
321 &iot, &ioh, NULL, NULL))
322 ior = -1;
324 if (memr != -1) {
325 mly->mly_iot = memt;
326 mly->mly_ioh = memh;
327 } else if (ior != -1) {
328 mly->mly_iot = iot;
329 mly->mly_ioh = ioh;
330 } else {
331 aprint_error_dev(self, "can't map i/o or memory space\n");
332 return;
336 * Enable the device.
338 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
339 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
340 reg | PCI_COMMAND_MASTER_ENABLE);
343 * Map and establish the interrupt.
345 if (pci_intr_map(pa, &ih)) {
346 aprint_error_dev(self, "can't map interrupt\n");
347 return;
349 intrstr = pci_intr_string(pc, ih);
350 mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
351 if (mly->mly_ih == NULL) {
352 aprint_error_dev(self, "can't establish interrupt");
353 if (intrstr != NULL)
354 aprint_error(" at %s", intrstr);
355 aprint_error("\n");
356 return;
359 if (intrstr != NULL)
360 aprint_normal_dev(&mly->mly_dv, "interrupting at %s\n",
361 intrstr);
364 * Take care of interface-specific tasks.
366 switch (mly->mly_hwif) {
367 case MLY_HWIF_I960RX:
368 mly->mly_doorbell_true = 0x00;
369 mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
370 mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
371 mly->mly_idbr = MLY_I960RX_IDBR;
372 mly->mly_odbr = MLY_I960RX_ODBR;
373 mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
374 mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
375 mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
376 break;
378 case MLY_HWIF_STRONGARM:
379 mly->mly_doorbell_true = 0xff;
380 mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
381 mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
382 mly->mly_idbr = MLY_STRONGARM_IDBR;
383 mly->mly_odbr = MLY_STRONGARM_ODBR;
384 mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
385 mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
386 mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
387 break;
391 * Allocate and map the scatter/gather lists.
393 rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
394 &mly->mly_sg_dmamap, (void **)&mly->mly_sg,
395 &mly->mly_sg_busaddr, &mly->mly_sg_seg);
396 if (rv) {
397 printf("%s: unable to allocate S/G maps\n",
398 device_xname(&mly->mly_dv));
399 goto bad;
401 state++;
404 * Allocate and map the memory mailbox.
406 rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
407 &mly->mly_mmbox_dmamap, (void **)&mly->mly_mmbox,
408 &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
409 if (rv) {
410 aprint_error_dev(&mly->mly_dv, "unable to allocate mailboxes\n");
411 goto bad;
413 state++;
416 * Initialise per-controller queues.
418 SLIST_INIT(&mly->mly_ccb_free);
419 SIMPLEQ_INIT(&mly->mly_ccb_queue);
422 * Disable interrupts before we start talking to the controller.
424 mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
427 * Wait for the controller to come ready, handshaking with the
428 * firmware if required. This is typically only necessary on
429 * platforms where the controller BIOS does not run.
431 if (mly_fwhandshake(mly)) {
432 aprint_error_dev(&mly->mly_dv, "unable to bring controller online\n");
433 goto bad;
437 * Allocate initial command buffers, obtain controller feature
438 * information, and then reallocate command buffers, since we'll
439 * know how many we want.
441 if (mly_alloc_ccbs(mly)) {
442 aprint_error_dev(&mly->mly_dv, "unable to allocate CCBs\n");
443 goto bad;
445 state++;
446 if (mly_get_controllerinfo(mly)) {
447 aprint_error_dev(&mly->mly_dv, "unable to retrieve controller info\n");
448 goto bad;
450 mly_release_ccbs(mly);
451 if (mly_alloc_ccbs(mly)) {
452 aprint_error_dev(&mly->mly_dv, "unable to allocate CCBs\n");
453 state--;
454 goto bad;
458 * Get the current event counter for health purposes, populate the
459 * initial health status buffer.
461 if (mly_get_eventstatus(mly)) {
462 aprint_error_dev(&mly->mly_dv, "unable to retrieve event status\n");
463 goto bad;
467 * Enable memory-mailbox mode.
469 if (mly_enable_mmbox(mly)) {
470 aprint_error_dev(&mly->mly_dv, "unable to enable memory mailbox\n");
471 goto bad;
475 * Print a little information about the controller.
477 mi = mly->mly_controllerinfo;
479 printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
480 "(%02d%02d%02d%02d), %dMB RAM\n", device_xname(&mly->mly_dv),
481 mi->physical_channels_present,
482 (mi->physical_channels_present) > 1 ? "s" : "",
483 mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
484 mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
485 le16toh(mi->memory_size));
488 * Register our `shutdownhook'.
490 if (mly_sdh == NULL)
491 shutdownhook_establish(mly_shutdown, NULL);
494 * Clear any previous BTL information. For each bus that scsipi
495 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
496 * all BTL info at that point.
498 memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
500 mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
501 mly->mly_controllerinfo->virtual_channels_present;
504 * Attach to scsipi.
506 adapt = &mly->mly_adapt;
507 memset(adapt, 0, sizeof(*adapt));
508 adapt->adapt_dev = &mly->mly_dv;
509 adapt->adapt_nchannels = mly->mly_nchans;
510 adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
511 adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
512 adapt->adapt_request = mly_scsipi_request;
513 adapt->adapt_minphys = mly_scsipi_minphys;
514 adapt->adapt_ioctl = mly_scsipi_ioctl;
516 for (i = 0; i < mly->mly_nchans; i++) {
517 chan = &mly->mly_chans[i];
518 memset(chan, 0, sizeof(*chan));
519 chan->chan_adapter = adapt;
520 chan->chan_bustype = &scsi_bustype;
521 chan->chan_channel = i;
522 chan->chan_ntargets = MLY_MAX_TARGETS;
523 chan->chan_nluns = MLY_MAX_LUNS;
524 chan->chan_id = mly->mly_controllerparam->initiator_id;
525 chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
526 config_found(&mly->mly_dv, chan, scsiprint);
530 * Now enable interrupts...
532 mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
535 * Finally, create our monitoring thread.
537 mly->mly_state |= MLY_STATE_INITOK;
538 rv = kthread_create(PRI_NONE, 0, NULL, mly_thread, mly,
539 &mly->mly_thread, "%s", device_xname(&mly->mly_dv));
540 if (rv != 0)
541 aprint_error_dev(&mly->mly_dv, "unable to create thread (%d)\n",
542 rv);
543 return;
545 bad:
546 if (state > 2)
547 mly_release_ccbs(mly);
548 if (state > 1)
549 mly_dmamem_free(mly, sizeof(struct mly_mmbox),
550 mly->mly_mmbox_dmamap, (void *)mly->mly_mmbox,
551 &mly->mly_mmbox_seg);
552 if (state > 0)
553 mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
554 mly->mly_sg_dmamap, (void *)mly->mly_sg,
555 &mly->mly_sg_seg);
559 * Scan all possible devices on the specified channel.
561 static void
562 mly_scan_channel(struct mly_softc *mly, int bus)
564 int s, target;
566 for (target = 0; target < MLY_MAX_TARGETS; target++) {
567 s = splbio();
568 if (!mly_scan_btl(mly, bus, target)) {
569 tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
572 splx(s);
577 * Shut down all configured `mly' devices.
579 static void
580 mly_shutdown(void *cookie)
582 struct mly_softc *mly;
583 int i;
585 for (i = 0; i < mly_cd.cd_ndevs; i++) {
586 if ((mly = device_lookup_private(&mly_cd, i)) == NULL)
587 continue;
589 if (mly_flush(mly))
590 aprint_error_dev(&mly->mly_dv, "unable to flush cache\n");
595 * Fill in the mly_controllerinfo and mly_controllerparam fields in the
596 * softc.
598 static int
599 mly_get_controllerinfo(struct mly_softc *mly)
601 struct mly_cmd_ioctl mci;
602 int rv;
605 * Build the getcontrollerinfo ioctl and send it.
607 memset(&mci, 0, sizeof(mci));
608 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
609 rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
610 sizeof(*mly->mly_controllerinfo), NULL, NULL);
611 if (rv != 0)
612 return (rv);
615 * Build the getcontrollerparameter ioctl and send it.
617 memset(&mci, 0, sizeof(mci));
618 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
619 rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
620 sizeof(*mly->mly_controllerparam), NULL, NULL);
622 return (rv);
626 * Rescan a device, possibly as a consequence of getting an event which
627 * suggests that it may have changed. Must be called with interrupts
628 * blocked.
630 static int
631 mly_scan_btl(struct mly_softc *mly, int bus, int target)
633 struct mly_ccb *mc;
634 struct mly_cmd_ioctl *mci;
635 int rv;
637 if (target == mly->mly_controllerparam->initiator_id) {
638 mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
639 return (EIO);
642 /* Don't re-scan if a scan is already in progress. */
643 if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
644 return (EBUSY);
646 /* Get a command. */
647 if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
648 return (rv);
650 /* Set up the data buffer. */
651 mc->mc_data = malloc(sizeof(union mly_devinfo),
652 M_DEVBUF, M_NOWAIT|M_ZERO);
654 mc->mc_flags |= MLY_CCB_DATAIN;
655 mc->mc_complete = mly_complete_rescan;
658 * Build the ioctl.
660 mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
661 mci->opcode = MDACMD_IOCTL;
662 mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
663 memset(&mci->param, 0, sizeof(mci->param));
665 if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
666 mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
667 mci->data_size = htole32(mc->mc_length);
668 mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
669 _lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
670 mci->addr);
671 } else {
672 mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
673 mci->data_size = htole32(mc->mc_length);
674 mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
675 _lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
679 * Dispatch the command.
681 if ((rv = mly_ccb_map(mly, mc)) != 0) {
682 free(mc->mc_data, M_DEVBUF);
683 mly_ccb_free(mly, mc);
684 return(rv);
687 mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
688 mly_ccb_enqueue(mly, mc);
689 return (0);
693 * Handle the completion of a rescan operation.
695 static void
696 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
698 struct mly_ioctl_getlogdevinfovalid *ldi;
699 struct mly_ioctl_getphysdevinfovalid *pdi;
700 struct mly_cmd_ioctl *mci;
701 struct mly_btl btl, *btlp;
702 struct scsipi_xfer_mode xm;
703 int bus, target, rescan;
704 u_int tmp;
706 mly_ccb_unmap(mly, mc);
709 * Recover the bus and target from the command. We need these even
710 * in the case where we don't have a useful response.
712 mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
713 tmp = _3ltol(mci->addr);
714 rescan = 0;
716 if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
717 bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
718 target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
719 } else {
720 bus = MLY_PHYADDR_CHANNEL(tmp);
721 target = MLY_PHYADDR_TARGET(tmp);
724 btlp = &mly->mly_btl[bus][target];
726 /* The default result is 'no device'. */
727 memset(&btl, 0, sizeof(btl));
728 btl.mb_flags = MLY_BTL_PROTECTED;
730 /* If the rescan completed OK, we have possibly-new BTL data. */
731 if (mc->mc_status != 0)
732 goto out;
734 if (mc->mc_length == sizeof(*ldi)) {
735 ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
736 tmp = le32toh(ldi->logical_device_number);
738 if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
739 MLY_LOGDEV_TARGET(mly, tmp) != target) {
740 #ifdef MLYDEBUG
741 printf("%s: WARNING: BTL rescan (logical) for %d:%d "
742 "returned data for %d:%d instead\n",
743 device_xname(&mly->mly_dv), bus, target,
744 MLY_LOGDEV_BUS(mly, tmp),
745 MLY_LOGDEV_TARGET(mly, tmp));
746 #endif
747 goto out;
750 btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
751 btl.mb_type = ldi->raid_level;
752 btl.mb_state = ldi->state;
753 } else if (mc->mc_length == sizeof(*pdi)) {
754 pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
756 if (pdi->channel != bus || pdi->target != target) {
757 #ifdef MLYDEBUG
758 printf("%s: WARNING: BTL rescan (physical) for %d:%d "
759 " returned data for %d:%d instead\n",
760 device_xname(&mly->mly_dv),
761 bus, target, pdi->channel, pdi->target);
762 #endif
763 goto out;
766 btl.mb_flags = MLY_BTL_PHYSICAL;
767 btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
768 btl.mb_state = pdi->state;
769 btl.mb_speed = pdi->speed;
770 btl.mb_width = pdi->width;
772 if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
773 btl.mb_flags |= MLY_BTL_PROTECTED;
774 if (pdi->command_tags != 0)
775 btl.mb_flags |= MLY_BTL_TQING;
776 } else {
777 printf("%s: BTL rescan result invalid\n", device_xname(&mly->mly_dv));
778 goto out;
781 /* Decide whether we need to rescan the device. */
782 if (btl.mb_flags != btlp->mb_flags ||
783 btl.mb_speed != btlp->mb_speed ||
784 btl.mb_width != btlp->mb_width)
785 rescan = 1;
787 out:
788 *btlp = btl;
790 if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
791 xm.xm_target = target;
792 mly_get_xfer_mode(mly, bus, &xm);
793 /* XXX SCSI mid-layer rescan goes here. */
796 /* Wake anybody waiting on the device to be rescanned. */
797 wakeup(btlp);
799 free(mc->mc_data, M_DEVBUF);
800 mly_ccb_free(mly, mc);
804 * Get the current health status and set the 'next event' counter to suit.
806 static int
807 mly_get_eventstatus(struct mly_softc *mly)
809 struct mly_cmd_ioctl mci;
810 struct mly_health_status *mh;
811 int rv;
813 /* Build the gethealthstatus ioctl and send it. */
814 memset(&mci, 0, sizeof(mci));
815 mh = NULL;
816 mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
818 rv = mly_ioctl(mly, &mci, (void *)&mh, sizeof(*mh), NULL, NULL);
819 if (rv)
820 return (rv);
822 /* Get the event counter. */
823 mly->mly_event_change = le32toh(mh->change_counter);
824 mly->mly_event_waiting = le32toh(mh->next_event);
825 mly->mly_event_counter = le32toh(mh->next_event);
827 /* Save the health status into the memory mailbox */
828 memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
830 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
831 offsetof(struct mly_mmbox, mmm_health),
832 sizeof(mly->mly_mmbox->mmm_health),
833 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
835 free(mh, M_DEVBUF);
836 return (0);
840 * Enable memory mailbox mode.
842 static int
843 mly_enable_mmbox(struct mly_softc *mly)
845 struct mly_cmd_ioctl mci;
846 u_int8_t *sp;
847 u_int64_t tmp;
848 int rv;
850 /* Build the ioctl and send it. */
851 memset(&mci, 0, sizeof(mci));
852 mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
854 /* Set buffer addresses. */
855 tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
856 mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
858 tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
859 mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
861 tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
862 mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
864 /* Set buffer sizes - abuse of data_size field is revolting. */
865 sp = (u_int8_t *)&mci.data_size;
866 sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
867 sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
868 mci.param.setmemorymailbox.health_buffer_size =
869 sizeof(union mly_health_region) >> 10;
871 rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
872 if (rv)
873 return (rv);
875 mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
876 return (0);
880 * Flush all pending I/O from the controller.
882 static int
883 mly_flush(struct mly_softc *mly)
885 struct mly_cmd_ioctl mci;
887 /* Build the ioctl */
888 memset(&mci, 0, sizeof(mci));
889 mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
890 mci.param.deviceoperation.operation_device =
891 MLY_OPDEVICE_PHYSICAL_CONTROLLER;
893 /* Pass it off to the controller */
894 return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
898 * Perform an ioctl command.
900 * If (data) is not NULL, the command requires data transfer to the
901 * controller. If (*data) is NULL the command requires data transfer from
902 * the controller, and we will allocate a buffer for it.
904 static int
905 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
906 size_t datasize, void *sense_buffer,
907 size_t *sense_length)
909 struct mly_ccb *mc;
910 struct mly_cmd_ioctl *mci;
911 u_int8_t status;
912 int rv;
914 mc = NULL;
915 if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
916 goto bad;
919 * Copy the ioctl structure, but save some important fields and then
920 * fixup.
922 mci = &mc->mc_packet->ioctl;
923 ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
924 ioctl->maximum_sense_size = mci->maximum_sense_size;
925 *mci = *ioctl;
926 mci->opcode = MDACMD_IOCTL;
927 mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
929 /* Handle the data buffer. */
930 if (data != NULL) {
931 if (*data == NULL) {
932 /* Allocate data buffer */
933 mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
934 mc->mc_flags |= MLY_CCB_DATAIN;
935 } else {
936 mc->mc_data = *data;
937 mc->mc_flags |= MLY_CCB_DATAOUT;
939 mc->mc_length = datasize;
940 mc->mc_packet->generic.data_size = htole32(datasize);
943 /* Run the command. */
944 if (datasize > 0)
945 if ((rv = mly_ccb_map(mly, mc)) != 0)
946 goto bad;
947 rv = mly_ccb_poll(mly, mc, 30000);
948 if (datasize > 0)
949 mly_ccb_unmap(mly, mc);
950 if (rv != 0)
951 goto bad;
953 /* Clean up and return any data. */
954 status = mc->mc_status;
956 if (status != 0)
957 printf("mly_ioctl: command status %d\n", status);
959 if (mc->mc_sense > 0 && sense_buffer != NULL) {
960 memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
961 *sense_length = mc->mc_sense;
962 goto bad;
965 /* Should we return a data pointer? */
966 if (data != NULL && *data == NULL)
967 *data = mc->mc_data;
969 /* Command completed OK. */
970 rv = (status != 0 ? EIO : 0);
972 bad:
973 if (mc != NULL) {
974 /* Do we need to free a data buffer we allocated? */
975 if (rv != 0 && mc->mc_data != NULL &&
976 (data == NULL || *data == NULL))
977 free(mc->mc_data, M_DEVBUF);
978 mly_ccb_free(mly, mc);
981 return (rv);
985 * Check for event(s) outstanding in the controller.
987 static void
988 mly_check_event(struct mly_softc *mly)
991 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
992 offsetof(struct mly_mmbox, mmm_health),
993 sizeof(mly->mly_mmbox->mmm_health),
994 BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
997 * The controller may have updated the health status information, so
998 * check for it here. Note that the counters are all in host
999 * memory, so this check is very cheap. Also note that we depend on
1000 * checking on completion
1002 if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
1003 mly->mly_event_change) {
1004 mly->mly_event_change =
1005 le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
1006 mly->mly_event_waiting =
1007 le32toh(mly->mly_mmbox->mmm_health.status.next_event);
1009 /* Wake up anyone that might be interested in this. */
1010 wakeup(&mly->mly_event_change);
1013 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1014 offsetof(struct mly_mmbox, mmm_health),
1015 sizeof(mly->mly_mmbox->mmm_health),
1016 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1018 if (mly->mly_event_counter != mly->mly_event_waiting)
1019 mly_fetch_event(mly);
1023 * Fetch one event from the controller. If we fail due to resource
1024 * starvation, we'll be retried the next time a command completes.
1026 static void
1027 mly_fetch_event(struct mly_softc *mly)
1029 struct mly_ccb *mc;
1030 struct mly_cmd_ioctl *mci;
1031 int s;
1032 u_int32_t event;
1034 /* Get a command. */
1035 if (mly_ccb_alloc(mly, &mc))
1036 return;
1038 /* Set up the data buffer. */
1039 mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF,
1040 M_NOWAIT|M_ZERO);
1042 mc->mc_length = sizeof(struct mly_event);
1043 mc->mc_flags |= MLY_CCB_DATAIN;
1044 mc->mc_complete = mly_complete_event;
1047 * Get an event number to fetch. It's possible that we've raced
1048 * with another context for the last event, in which case there will
1049 * be no more events.
1051 s = splbio();
1052 if (mly->mly_event_counter == mly->mly_event_waiting) {
1053 splx(s);
1054 free(mc->mc_data, M_DEVBUF);
1055 mly_ccb_free(mly, mc);
1056 return;
1058 event = mly->mly_event_counter++;
1059 splx(s);
1062 * Build the ioctl.
1064 * At this point we are committed to sending this request, as it
1065 * will be the only one constructed for this particular event
1066 * number.
1068 mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
1069 mci->opcode = MDACMD_IOCTL;
1070 mci->data_size = htole32(sizeof(struct mly_event));
1071 _lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
1072 mci->addr);
1073 mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
1074 mci->sub_ioctl = MDACIOCTL_GETEVENT;
1075 mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
1078 * Submit the command.
1080 if (mly_ccb_map(mly, mc) != 0)
1081 goto bad;
1082 mly_ccb_enqueue(mly, mc);
1083 return;
1085 bad:
1086 printf("%s: couldn't fetch event %u\n", device_xname(&mly->mly_dv), event);
1087 free(mc->mc_data, M_DEVBUF);
1088 mly_ccb_free(mly, mc);
1092 * Handle the completion of an event poll.
1094 static void
1095 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
1097 struct mly_event *me;
1099 me = (struct mly_event *)mc->mc_data;
1100 mly_ccb_unmap(mly, mc);
1101 mly_ccb_free(mly, mc);
1103 /* If the event was successfully fetched, process it. */
1104 if (mc->mc_status == SCSI_OK)
1105 mly_process_event(mly, me);
1106 else
1107 aprint_error_dev(&mly->mly_dv, "unable to fetch event; status = 0x%x\n",
1108 mc->mc_status);
1110 free(me, M_DEVBUF);
1112 /* Check for another event. */
1113 mly_check_event(mly);
1117 * Process a controller event. Called with interrupts blocked (i.e., at
1118 * interrupt time).
1120 static void
1121 mly_process_event(struct mly_softc *mly, struct mly_event *me)
1123 struct scsi_sense_data *ssd;
1124 int bus, target, event, class, action;
1125 const char *fp, *tp;
1127 ssd = (struct scsi_sense_data *)&me->sense[0];
1130 * Errors can be reported using vendor-unique sense data. In this
1131 * case, the event code will be 0x1c (Request sense data present),
1132 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
1133 * will be set, and the actual event code will be a 16-bit value
1134 * comprised of the ASCQ (low byte) and low seven bits of the ASC
1135 * (low seven bits of the high byte).
1137 if (le32toh(me->code) == 0x1c &&
1138 SSD_SENSE_KEY(ssd->flags) == SKEY_VENDOR_SPECIFIC &&
1139 (ssd->asc & 0x80) != 0) {
1140 event = ((int)(ssd->asc & ~0x80) << 8) +
1141 ssd->ascq;
1142 } else
1143 event = le32toh(me->code);
1145 /* Look up event, get codes. */
1146 fp = mly_describe_code(mly_table_event, event);
1148 /* Quiet event? */
1149 class = fp[0];
1150 #ifdef notyet
1151 if (isupper(class) && bootverbose)
1152 class = tolower(class);
1153 #endif
1155 /* Get action code, text string. */
1156 action = fp[1];
1157 tp = fp + 3;
1160 * Print some information about the event.
1162 * This code uses a table derived from the corresponding portion of
1163 * the Linux driver, and thus the parser is very similar.
1165 switch (class) {
1166 case 'p':
1168 * Error on physical drive.
1170 printf("%s: physical device %d:%d %s\n", device_xname(&mly->mly_dv),
1171 me->channel, me->target, tp);
1172 if (action == 'r')
1173 mly->mly_btl[me->channel][me->target].mb_flags |=
1174 MLY_BTL_RESCAN;
1175 break;
1177 case 'l':
1178 case 'm':
1180 * Error on logical unit, or message about logical unit.
1182 bus = MLY_LOGDEV_BUS(mly, me->lun);
1183 target = MLY_LOGDEV_TARGET(mly, me->lun);
1184 printf("%s: logical device %d:%d %s\n", device_xname(&mly->mly_dv),
1185 bus, target, tp);
1186 if (action == 'r')
1187 mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1188 break;
1190 case 's':
1192 * Report of sense data.
1194 if ((SSD_SENSE_KEY(ssd->flags) == SKEY_NO_SENSE ||
1195 SSD_SENSE_KEY(ssd->flags) == SKEY_NOT_READY) &&
1196 ssd->asc == 0x04 &&
1197 (ssd->ascq == 0x01 ||
1198 ssd->ascq == 0x02)) {
1199 /* Ignore NO_SENSE or NOT_READY in one case */
1200 break;
1204 * XXX Should translate this if SCSIVERBOSE.
1206 printf("%s: physical device %d:%d %s\n", device_xname(&mly->mly_dv),
1207 me->channel, me->target, tp);
1208 printf("%s: sense key %d asc %02x ascq %02x\n",
1209 device_xname(&mly->mly_dv), SSD_SENSE_KEY(ssd->flags),
1210 ssd->asc, ssd->ascq);
1211 printf("%s: info %x%x%x%x csi %x%x%x%x\n",
1212 device_xname(&mly->mly_dv), ssd->info[0], ssd->info[1],
1213 ssd->info[2], ssd->info[3], ssd->csi[0],
1214 ssd->csi[1], ssd->csi[2],
1215 ssd->csi[3]);
1216 if (action == 'r')
1217 mly->mly_btl[me->channel][me->target].mb_flags |=
1218 MLY_BTL_RESCAN;
1219 break;
1221 case 'e':
1222 printf("%s: ", device_xname(&mly->mly_dv));
1223 printf(tp, me->target, me->lun);
1224 break;
1226 case 'c':
1227 printf("%s: controller %s\n", device_xname(&mly->mly_dv), tp);
1228 break;
1230 case '?':
1231 printf("%s: %s - %d\n", device_xname(&mly->mly_dv), tp, event);
1232 break;
1234 default:
1235 /* Probably a 'noisy' event being ignored. */
1236 break;
1241 * Perform periodic activities.
1243 static void
1244 mly_thread(void *cookie)
1246 struct mly_softc *mly;
1247 struct mly_btl *btl;
1248 int s, bus, target, done;
1250 mly = (struct mly_softc *)cookie;
1252 for (;;) {
1253 /* Check for new events. */
1254 mly_check_event(mly);
1256 /* Re-scan up to 1 device. */
1257 s = splbio();
1258 done = 0;
1259 for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
1260 for (target = 0; target < MLY_MAX_TARGETS; target++) {
1261 /* Perform device rescan? */
1262 btl = &mly->mly_btl[bus][target];
1263 if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
1264 btl->mb_flags ^= MLY_BTL_RESCAN;
1265 mly_scan_btl(mly, bus, target);
1266 done = 1;
1267 break;
1271 splx(s);
1273 /* Sleep for N seconds. */
1274 tsleep(mly_thread, PWAIT, "mlyzzz",
1275 hz * MLY_PERIODIC_INTERVAL);
1280 * Submit a command to the controller and poll on completion. Return
1281 * non-zero on timeout.
1283 static int
1284 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1286 int rv;
1288 if ((rv = mly_ccb_submit(mly, mc)) != 0)
1289 return (rv);
1291 for (timo *= 10; timo != 0; timo--) {
1292 if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
1293 break;
1294 mly_intr(mly);
1295 DELAY(100);
1298 return (timo == 0);
1302 * Submit a command to the controller and sleep on completion. Return
1303 * non-zero on timeout.
1305 static int
1306 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1308 int rv, s;
1310 mly_ccb_enqueue(mly, mc);
1312 s = splbio();
1313 if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
1314 splx(s);
1315 return (0);
1317 rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
1318 splx(s);
1320 return (rv);
1324 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1325 * the order that they were enqueued and try to submit their command blocks
1326 * to the controller for execution.
1328 void
1329 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
1331 int s;
1333 s = splbio();
1335 if (mc != NULL)
1336 SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1338 while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
1339 if (mly_ccb_submit(mly, mc))
1340 break;
1341 SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc_link.simpleq);
1344 splx(s);
1348 * Deliver a command to the controller.
1350 static int
1351 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
1353 union mly_cmd_packet *pkt;
1354 int s, off;
1356 mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
1358 bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1359 mc->mc_packetphys - mly->mly_pkt_busaddr,
1360 sizeof(union mly_cmd_packet),
1361 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1363 s = splbio();
1366 * Do we have to use the hardware mailbox?
1368 if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
1370 * Check to see if the controller is ready for us.
1372 if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
1373 splx(s);
1374 return (EBUSY);
1378 * It's ready, send the command.
1380 mly_outl(mly, mly->mly_cmd_mailbox,
1381 (u_int64_t)mc->mc_packetphys & 0xffffffff);
1382 mly_outl(mly, mly->mly_cmd_mailbox + 4,
1383 (u_int64_t)mc->mc_packetphys >> 32);
1384 mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
1385 } else {
1386 pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
1387 off = (char *)pkt - (char *)mly->mly_mmbox;
1389 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1390 off, sizeof(mly->mly_mmbox->mmm_command[0]),
1391 BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1393 /* Check to see if the next index is free yet. */
1394 if (pkt->mmbox.flag != 0) {
1395 splx(s);
1396 return (EBUSY);
1399 /* Copy in new command */
1400 memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
1401 sizeof(pkt->mmbox.data));
1403 /* Copy flag last. */
1404 pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1406 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1407 off, sizeof(mly->mly_mmbox->mmm_command[0]),
1408 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1410 /* Signal controller and update index. */
1411 mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
1412 mly->mly_mmbox_cmd_idx =
1413 (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
1416 splx(s);
1417 return (0);
1421 * Pick up completed commands from the controller and handle accordingly.
1424 mly_intr(void *cookie)
1426 struct mly_ccb *mc;
1427 union mly_status_packet *sp;
1428 u_int16_t slot;
1429 int forus, off;
1430 struct mly_softc *mly;
1432 mly = cookie;
1433 forus = 0;
1436 * Pick up hardware-mailbox commands.
1438 if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
1439 slot = mly_inw(mly, mly->mly_status_mailbox);
1441 if (slot < MLY_SLOT_MAX) {
1442 mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1443 mc->mc_status =
1444 mly_inb(mly, mly->mly_status_mailbox + 2);
1445 mc->mc_sense =
1446 mly_inb(mly, mly->mly_status_mailbox + 3);
1447 mc->mc_resid =
1448 mly_inl(mly, mly->mly_status_mailbox + 4);
1450 mly_ccb_complete(mly, mc);
1451 } else {
1452 /* Slot 0xffff may mean "extremely bogus command". */
1453 printf("%s: got HM completion for illegal slot %u\n",
1454 device_xname(&mly->mly_dv), slot);
1457 /* Unconditionally acknowledge status. */
1458 mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
1459 mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
1460 forus = 1;
1464 * Pick up memory-mailbox commands.
1466 if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
1467 for (;;) {
1468 sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
1469 off = (char *)sp - (char *)mly->mly_mmbox;
1471 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1472 off, sizeof(mly->mly_mmbox->mmm_command[0]),
1473 BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1475 /* Check for more status. */
1476 if (sp->mmbox.flag == 0)
1477 break;
1479 /* Get slot number. */
1480 slot = le16toh(sp->status.command_id);
1481 if (slot < MLY_SLOT_MAX) {
1482 mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1483 mc->mc_status = sp->status.status;
1484 mc->mc_sense = sp->status.sense_length;
1485 mc->mc_resid = le32toh(sp->status.residue);
1486 mly_ccb_complete(mly, mc);
1487 } else {
1489 * Slot 0xffff may mean "extremely bogus
1490 * command".
1492 printf("%s: got AM completion for illegal "
1493 "slot %u at %d\n", device_xname(&mly->mly_dv),
1494 slot, mly->mly_mmbox_sts_idx);
1497 /* Clear and move to next index. */
1498 sp->mmbox.flag = 0;
1499 mly->mly_mmbox_sts_idx =
1500 (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
1503 /* Acknowledge that we have collected status value(s). */
1504 mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
1505 forus = 1;
1509 * Run the queue.
1511 if (forus && ! SIMPLEQ_EMPTY(&mly->mly_ccb_queue))
1512 mly_ccb_enqueue(mly, NULL);
1514 return (forus);
1518 * Process completed commands
1520 static void
1521 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
1523 void (*complete)(struct mly_softc *, struct mly_ccb *);
1525 bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1526 mc->mc_packetphys - mly->mly_pkt_busaddr,
1527 sizeof(union mly_cmd_packet),
1528 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1530 complete = mc->mc_complete;
1531 mc->mc_flags |= MLY_CCB_COMPLETE;
1534 * Call completion handler or wake up sleeping consumer.
1536 if (complete != NULL)
1537 (*complete)(mly, mc);
1538 else
1539 wakeup(mc);
1543 * Allocate a command.
1546 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
1548 struct mly_ccb *mc;
1549 int s;
1551 s = splbio();
1552 mc = SLIST_FIRST(&mly->mly_ccb_free);
1553 if (mc != NULL)
1554 SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
1555 splx(s);
1557 *mcp = mc;
1558 return (mc == NULL ? EAGAIN : 0);
1562 * Release a command back to the freelist.
1564 void
1565 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
1567 int s;
1570 * Fill in parts of the command that may cause confusion if a
1571 * consumer doesn't when we are later allocated.
1573 mc->mc_data = NULL;
1574 mc->mc_flags = 0;
1575 mc->mc_complete = NULL;
1576 mc->mc_private = NULL;
1577 mc->mc_packet->generic.command_control = 0;
1580 * By default, we set up to overwrite the command packet with sense
1581 * information.
1583 mc->mc_packet->generic.sense_buffer_address =
1584 htole64(mc->mc_packetphys);
1585 mc->mc_packet->generic.maximum_sense_size =
1586 sizeof(union mly_cmd_packet);
1588 s = splbio();
1589 SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
1590 splx(s);
1594 * Allocate and initialize command and packet structures.
1596 * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
1597 * allocation to that number. If we don't yet know how many commands the
1598 * controller supports, allocate a very small set (suitable for initialization
1599 * purposes only).
1601 static int
1602 mly_alloc_ccbs(struct mly_softc *mly)
1604 struct mly_ccb *mc;
1605 int i, rv;
1607 if (mly->mly_controllerinfo == NULL)
1608 mly->mly_ncmds = MLY_CCBS_RESV;
1609 else {
1610 i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
1611 mly->mly_ncmds = min(MLY_MAX_CCBS, i);
1615 * Allocate enough space for all the command packets in one chunk
1616 * and map them permanently into controller-visible space.
1618 rv = mly_dmamem_alloc(mly,
1619 mly->mly_ncmds * sizeof(union mly_cmd_packet),
1620 &mly->mly_pkt_dmamap, (void **)&mly->mly_pkt,
1621 &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
1622 if (rv)
1623 return (rv);
1625 mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
1626 M_DEVBUF, M_NOWAIT|M_ZERO);
1628 for (i = 0; i < mly->mly_ncmds; i++) {
1629 mc = mly->mly_ccbs + i;
1630 mc->mc_slot = MLY_SLOT_START + i;
1631 mc->mc_packet = mly->mly_pkt + i;
1632 mc->mc_packetphys = mly->mly_pkt_busaddr +
1633 (i * sizeof(union mly_cmd_packet));
1635 rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
1636 MLY_MAX_SEGS, MLY_MAX_XFER, 0,
1637 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1638 &mc->mc_datamap);
1639 if (rv) {
1640 mly_release_ccbs(mly);
1641 return (rv);
1644 mly_ccb_free(mly, mc);
1647 return (0);
1651 * Free all the storage held by commands.
1653 * Must be called with all commands on the free list.
1655 static void
1656 mly_release_ccbs(struct mly_softc *mly)
1658 struct mly_ccb *mc;
1660 /* Throw away command buffer DMA maps. */
1661 while (mly_ccb_alloc(mly, &mc) == 0)
1662 bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
1664 /* Release CCB storage. */
1665 free(mly->mly_ccbs, M_DEVBUF);
1667 /* Release the packet storage. */
1668 mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
1669 mly->mly_pkt_dmamap, (void *)mly->mly_pkt, &mly->mly_pkt_seg);
1673 * Map a command into controller-visible space.
1675 static int
1676 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
1678 struct mly_cmd_generic *gen;
1679 struct mly_sg_entry *sg;
1680 bus_dma_segment_t *ds;
1681 int flg, nseg, rv;
1683 #ifdef DIAGNOSTIC
1684 /* Don't map more than once. */
1685 if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
1686 panic("mly_ccb_map: already mapped");
1687 mc->mc_flags |= MLY_CCB_MAPPED;
1689 /* Does the command have a data buffer? */
1690 if (mc->mc_data == NULL)
1691 panic("mly_ccb_map: no data buffer");
1692 #endif
1694 rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
1695 mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1696 ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
1697 BUS_DMA_READ : BUS_DMA_WRITE));
1698 if (rv != 0)
1699 return (rv);
1701 gen = &mc->mc_packet->generic;
1704 * Can we use the transfer structure directly?
1706 if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
1707 mc->mc_sgoff = -1;
1708 sg = &gen->transfer.direct.sg[0];
1709 } else {
1710 mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
1711 MLY_MAX_SEGS;
1712 sg = mly->mly_sg + mc->mc_sgoff;
1713 gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
1714 gen->transfer.indirect.entries[0] = htole16(nseg);
1715 gen->transfer.indirect.table_physaddr[0] =
1716 htole64(mly->mly_sg_busaddr +
1717 (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
1721 * Fill the S/G table.
1723 for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
1724 sg->physaddr = htole64(ds->ds_addr);
1725 sg->length = htole64(ds->ds_len);
1729 * Sync up the data map.
1731 if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1732 flg = BUS_DMASYNC_PREREAD;
1733 else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
1734 gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
1735 flg = BUS_DMASYNC_PREWRITE;
1738 bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1741 * Sync up the chained S/G table, if we're using one.
1743 if (mc->mc_sgoff == -1)
1744 return (0);
1746 bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1747 MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1749 return (0);
1753 * Unmap a command from controller-visible space.
1755 static void
1756 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
1758 int flg;
1760 #ifdef DIAGNOSTIC
1761 if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
1762 panic("mly_ccb_unmap: not mapped");
1763 mc->mc_flags &= ~MLY_CCB_MAPPED;
1764 #endif
1766 if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1767 flg = BUS_DMASYNC_POSTREAD;
1768 else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
1769 flg = BUS_DMASYNC_POSTWRITE;
1771 bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1772 bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
1774 if (mc->mc_sgoff == -1)
1775 return;
1777 bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1778 MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
1782 * Adjust the size of each I/O before it passes to the SCSI layer.
1784 static void
1785 mly_scsipi_minphys(struct buf *bp)
1788 if (bp->b_bcount > MLY_MAX_XFER)
1789 bp->b_bcount = MLY_MAX_XFER;
1790 minphys(bp);
1794 * Start a SCSI command.
1796 static void
1797 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1798 void *arg)
1800 struct mly_ccb *mc;
1801 struct mly_cmd_scsi_small *ss;
1802 struct scsipi_xfer *xs;
1803 struct scsipi_periph *periph;
1804 struct mly_softc *mly;
1805 struct mly_btl *btl;
1806 int s, tmp;
1808 mly = device_private(chan->chan_adapter->adapt_dev);
1810 switch (req) {
1811 case ADAPTER_REQ_RUN_XFER:
1812 xs = arg;
1813 periph = xs->xs_periph;
1814 btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
1815 s = splbio();
1816 tmp = btl->mb_flags;
1817 splx(s);
1820 * Check for I/O attempt to a protected or non-existant
1821 * device.
1823 if ((tmp & MLY_BTL_PROTECTED) != 0) {
1824 xs->error = XS_SELTIMEOUT;
1825 scsipi_done(xs);
1826 break;
1829 #ifdef DIAGNOSTIC
1830 /* XXX Increase if/when we support large SCSI commands. */
1831 if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
1832 printf("%s: cmd too large\n", device_xname(&mly->mly_dv));
1833 xs->error = XS_DRIVER_STUFFUP;
1834 scsipi_done(xs);
1835 break;
1837 #endif
1839 if (mly_ccb_alloc(mly, &mc)) {
1840 xs->error = XS_RESOURCE_SHORTAGE;
1841 scsipi_done(xs);
1842 break;
1845 /* Build the command. */
1846 mc->mc_data = xs->data;
1847 mc->mc_length = xs->datalen;
1848 mc->mc_complete = mly_scsipi_complete;
1849 mc->mc_private = xs;
1851 /* Build the packet for the controller. */
1852 ss = &mc->mc_packet->scsi_small;
1853 ss->opcode = MDACMD_SCSI;
1854 #ifdef notdef
1856 * XXX FreeBSD does this, but it doesn't fix anything,
1857 * XXX and appears potentially harmful.
1859 ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
1860 #endif
1862 ss->data_size = htole32(xs->datalen);
1863 _lto3l(MLY_PHYADDR(0, chan->chan_channel,
1864 periph->periph_target, periph->periph_lun), ss->addr);
1866 if (xs->timeout < 60 * 1000)
1867 ss->timeout = xs->timeout / 1000 |
1868 MLY_TIMEOUT_SECONDS;
1869 else if (xs->timeout < 60 * 60 * 1000)
1870 ss->timeout = xs->timeout / (60 * 1000) |
1871 MLY_TIMEOUT_MINUTES;
1872 else
1873 ss->timeout = xs->timeout / (60 * 60 * 1000) |
1874 MLY_TIMEOUT_HOURS;
1876 ss->maximum_sense_size = sizeof(xs->sense);
1877 ss->cdb_length = xs->cmdlen;
1878 memcpy(ss->cdb, xs->cmd, xs->cmdlen);
1880 if (mc->mc_length != 0) {
1881 if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
1882 mc->mc_flags |= MLY_CCB_DATAOUT;
1883 else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
1884 mc->mc_flags |= MLY_CCB_DATAIN;
1886 if (mly_ccb_map(mly, mc) != 0) {
1887 xs->error = XS_DRIVER_STUFFUP;
1888 mly_ccb_free(mly, mc);
1889 scsipi_done(xs);
1890 break;
1895 * Give the command to the controller.
1897 if ((xs->xs_control & XS_CTL_POLL) != 0) {
1898 if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
1899 xs->error = XS_REQUEUE;
1900 if (mc->mc_length != 0)
1901 mly_ccb_unmap(mly, mc);
1902 mly_ccb_free(mly, mc);
1903 scsipi_done(xs);
1905 } else
1906 mly_ccb_enqueue(mly, mc);
1908 break;
1910 case ADAPTER_REQ_GROW_RESOURCES:
1912 * Not supported.
1914 break;
1916 case ADAPTER_REQ_SET_XFER_MODE:
1918 * We can't change the transfer mode, but at least let
1919 * scsipi know what the adapter has negotiated.
1921 mly_get_xfer_mode(mly, chan->chan_channel, arg);
1922 break;
1927 * Handle completion of a SCSI command.
1929 static void
1930 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
1932 struct scsipi_xfer *xs;
1933 struct scsipi_channel *chan;
1934 struct scsipi_inquiry_data *inq;
1935 struct mly_btl *btl;
1936 int target, sl, s;
1937 const char *p;
1939 xs = mc->mc_private;
1940 xs->status = mc->mc_status;
1943 * XXX The `resid' value as returned by the controller appears to be
1944 * bogus, so we always set it to zero. Is it perhaps the transfer
1945 * count?
1947 xs->resid = 0; /* mc->mc_resid; */
1949 if (mc->mc_length != 0)
1950 mly_ccb_unmap(mly, mc);
1952 switch (mc->mc_status) {
1953 case SCSI_OK:
1955 * In order to report logical device type and status, we
1956 * overwrite the result of the INQUIRY command to logical
1957 * devices.
1959 if (xs->cmd->opcode == INQUIRY) {
1960 chan = xs->xs_periph->periph_channel;
1961 target = xs->xs_periph->periph_target;
1962 btl = &mly->mly_btl[chan->chan_channel][target];
1964 s = splbio();
1965 if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
1966 inq = (struct scsipi_inquiry_data *)xs->data;
1967 mly_padstr(inq->vendor, "MYLEX", 8);
1968 p = mly_describe_code(mly_table_device_type,
1969 btl->mb_type);
1970 mly_padstr(inq->product, p, 16);
1971 p = mly_describe_code(mly_table_device_state,
1972 btl->mb_state);
1973 mly_padstr(inq->revision, p, 4);
1975 splx(s);
1978 xs->error = XS_NOERROR;
1979 break;
1981 case SCSI_CHECK:
1982 sl = mc->mc_sense;
1983 if (sl > sizeof(xs->sense.scsi_sense))
1984 sl = sizeof(xs->sense.scsi_sense);
1985 memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
1986 xs->error = XS_SENSE;
1987 break;
1989 case SCSI_BUSY:
1990 case SCSI_QUEUE_FULL:
1991 xs->error = XS_BUSY;
1992 break;
1994 default:
1995 printf("%s: unknown SCSI status 0x%x\n",
1996 device_xname(&mly->mly_dv), xs->status);
1997 xs->error = XS_DRIVER_STUFFUP;
1998 break;
2001 mly_ccb_free(mly, mc);
2002 scsipi_done(xs);
2006 * Notify scsipi about a target's transfer mode.
2008 static void
2009 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
2011 struct mly_btl *btl;
2012 int s;
2014 btl = &mly->mly_btl[bus][xm->xm_target];
2015 xm->xm_mode = 0;
2017 s = splbio();
2019 if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
2020 if (btl->mb_speed == 0) {
2021 xm->xm_period = 0;
2022 xm->xm_offset = 0;
2023 } else {
2024 xm->xm_period = 12; /* XXX */
2025 xm->xm_offset = 8; /* XXX */
2026 xm->xm_mode |= PERIPH_CAP_SYNC; /* XXX */
2029 switch (btl->mb_width) {
2030 case 32:
2031 xm->xm_mode = PERIPH_CAP_WIDE32;
2032 break;
2033 case 16:
2034 xm->xm_mode = PERIPH_CAP_WIDE16;
2035 break;
2036 default:
2037 xm->xm_mode = 0;
2038 break;
2040 } else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
2041 xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
2042 xm->xm_period = 12;
2043 xm->xm_offset = 8;
2046 if ((btl->mb_flags & MLY_BTL_TQING) != 0)
2047 xm->xm_mode |= PERIPH_CAP_TQING;
2049 splx(s);
2051 scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
2055 * ioctl hook; used here only to initiate low-level rescans.
2057 static int
2058 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, void *data,
2059 int flag, struct proc *p)
2061 struct mly_softc *mly;
2062 int rv;
2064 mly = device_private(chan->chan_adapter->adapt_dev);
2066 switch (cmd) {
2067 case SCBUSIOLLSCAN:
2068 mly_scan_channel(mly, chan->chan_channel);
2069 rv = 0;
2070 break;
2071 default:
2072 rv = ENOTTY;
2073 break;
2076 return (rv);
2080 * Handshake with the firmware while the card is being initialized.
2082 static int
2083 mly_fwhandshake(struct mly_softc *mly)
2085 u_int8_t error, param0, param1;
2086 int spinup;
2088 spinup = 0;
2090 /* Set HM_STSACK and let the firmware initialize. */
2091 mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
2092 DELAY(1000); /* too short? */
2094 /* If HM_STSACK is still true, the controller is initializing. */
2095 if (!mly_idbr_true(mly, MLY_HM_STSACK))
2096 return (0);
2098 printf("%s: controller initialization started\n",
2099 device_xname(&mly->mly_dv));
2102 * Spin waiting for initialization to finish, or for a message to be
2103 * delivered.
2105 while (mly_idbr_true(mly, MLY_HM_STSACK)) {
2106 /* Check for a message */
2107 if (!mly_error_valid(mly))
2108 continue;
2110 error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
2111 param0 = mly_inb(mly, mly->mly_cmd_mailbox);
2112 param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
2114 switch (error) {
2115 case MLY_MSG_SPINUP:
2116 if (!spinup) {
2117 printf("%s: drive spinup in progress\n",
2118 device_xname(&mly->mly_dv));
2119 spinup = 1;
2121 break;
2123 case MLY_MSG_RACE_RECOVERY_FAIL:
2124 printf("%s: mirror race recovery failed - \n",
2125 device_xname(&mly->mly_dv));
2126 printf("%s: one or more drives offline\n",
2127 device_xname(&mly->mly_dv));
2128 break;
2130 case MLY_MSG_RACE_IN_PROGRESS:
2131 printf("%s: mirror race recovery in progress\n",
2132 device_xname(&mly->mly_dv));
2133 break;
2135 case MLY_MSG_RACE_ON_CRITICAL:
2136 printf("%s: mirror race recovery on critical drive\n",
2137 device_xname(&mly->mly_dv));
2138 break;
2140 case MLY_MSG_PARITY_ERROR:
2141 printf("%s: FATAL MEMORY PARITY ERROR\n",
2142 device_xname(&mly->mly_dv));
2143 return (ENXIO);
2145 default:
2146 printf("%s: unknown initialization code 0x%x\n",
2147 device_xname(&mly->mly_dv), error);
2148 break;
2152 return (0);
2156 * Space-fill a character string
2158 static void
2159 mly_padstr(char *dst, const char *src, int len)
2162 while (len-- > 0) {
2163 if (*src != '\0')
2164 *dst++ = *src++;
2165 else
2166 *dst++ = ' ';
2171 * Allocate DMA safe memory.
2173 static int
2174 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
2175 void **kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
2177 int rseg, rv, state;
2179 state = 0;
2181 if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, PAGE_SIZE, 0,
2182 seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
2183 aprint_error_dev(&mly->mly_dv, "dmamem_alloc = %d\n", rv);
2184 goto bad;
2187 state++;
2189 if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
2190 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2191 aprint_error_dev(&mly->mly_dv, "dmamem_map = %d\n", rv);
2192 goto bad;
2195 state++;
2197 if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
2198 BUS_DMA_NOWAIT, dmamap)) != 0) {
2199 aprint_error_dev(&mly->mly_dv, "dmamap_create = %d\n", rv);
2200 goto bad;
2203 state++;
2205 if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
2206 NULL, BUS_DMA_NOWAIT)) != 0) {
2207 aprint_error_dev(&mly->mly_dv, "dmamap_load = %d\n", rv);
2208 goto bad;
2211 *paddr = (*dmamap)->dm_segs[0].ds_addr;
2212 memset(*kva, 0, size);
2213 return (0);
2215 bad:
2216 if (state > 2)
2217 bus_dmamap_destroy(mly->mly_dmat, *dmamap);
2218 if (state > 1)
2219 bus_dmamem_unmap(mly->mly_dmat, *kva, size);
2220 if (state > 0)
2221 bus_dmamem_free(mly->mly_dmat, seg, 1);
2223 return (rv);
2227 * Free DMA safe memory.
2229 static void
2230 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
2231 void *kva, bus_dma_segment_t *seg)
2234 bus_dmamap_unload(mly->mly_dmat, dmamap);
2235 bus_dmamap_destroy(mly->mly_dmat, dmamap);
2236 bus_dmamem_unmap(mly->mly_dmat, kva, size);
2237 bus_dmamem_free(mly->mly_dmat, seg, 1);
2242 * Accept an open operation on the control device.
2245 mlyopen(dev_t dev, int flag, int mode, struct lwp *l)
2247 struct mly_softc *mly;
2249 if ((mly = device_lookup_private(&mly_cd, minor(dev))) == NULL)
2250 return (ENXIO);
2251 if ((mly->mly_state & MLY_STATE_INITOK) == 0)
2252 return (ENXIO);
2253 if ((mly->mly_state & MLY_STATE_OPEN) != 0)
2254 return (EBUSY);
2256 mly->mly_state |= MLY_STATE_OPEN;
2257 return (0);
2261 * Accept the last close on the control device.
2264 mlyclose(dev_t dev, int flag, int mode,
2265 struct lwp *l)
2267 struct mly_softc *mly;
2269 mly = device_lookup_private(&mly_cd, minor(dev));
2270 mly->mly_state &= ~MLY_STATE_OPEN;
2271 return (0);
2275 * Handle control operations.
2278 mlyioctl(dev_t dev, u_long cmd, void *data, int flag,
2279 struct lwp *l)
2281 struct mly_softc *mly;
2282 int rv;
2284 mly = device_lookup_private(&mly_cd, minor(dev));
2286 switch (cmd) {
2287 case MLYIO_COMMAND:
2288 rv = kauth_authorize_device_passthru(l->l_cred, dev,
2289 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
2290 if (rv)
2291 break;
2293 rv = mly_user_command(mly, (void *)data);
2294 break;
2295 case MLYIO_HEALTH:
2296 rv = mly_user_health(mly, (void *)data);
2297 break;
2298 default:
2299 rv = ENOTTY;
2300 break;
2303 return (rv);
2307 * Execute a command passed in from userspace.
2309 * The control structure contains the actual command for the controller, as
2310 * well as the user-space data pointer and data size, and an optional sense
2311 * buffer size/pointer. On completion, the data size is adjusted to the
2312 * command residual, and the sense buffer size to the size of the returned
2313 * sense data.
2315 static int
2316 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
2318 struct mly_ccb *mc;
2319 int rv, mapped;
2321 if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
2322 return (rv);
2324 mapped = 0;
2325 mc->mc_data = NULL;
2328 * Handle data size/direction.
2330 if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
2331 if (mc->mc_length > MAXPHYS) {
2332 rv = EINVAL;
2333 goto out;
2336 mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
2337 if (mc->mc_data == NULL) {
2338 rv = ENOMEM;
2339 goto out;
2342 if (uc->DataTransferLength > 0) {
2343 mc->mc_flags |= MLY_CCB_DATAIN;
2344 memset(mc->mc_data, 0, mc->mc_length);
2347 if (uc->DataTransferLength < 0) {
2348 mc->mc_flags |= MLY_CCB_DATAOUT;
2349 rv = copyin(uc->DataTransferBuffer, mc->mc_data,
2350 mc->mc_length);
2351 if (rv != 0)
2352 goto out;
2355 if ((rv = mly_ccb_map(mly, mc)) != 0)
2356 goto out;
2357 mapped = 1;
2360 /* Copy in the command and execute it. */
2361 memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
2363 if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
2364 goto out;
2366 /* Return the data to userspace. */
2367 if (uc->DataTransferLength > 0) {
2368 rv = copyout(mc->mc_data, uc->DataTransferBuffer,
2369 mc->mc_length);
2370 if (rv != 0)
2371 goto out;
2374 /* Return the sense buffer to userspace. */
2375 if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
2376 rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2377 min(uc->RequestSenseLength, mc->mc_sense));
2378 if (rv != 0)
2379 goto out;
2382 /* Return command results to userspace (caller will copy out). */
2383 uc->DataTransferLength = mc->mc_resid;
2384 uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2385 uc->CommandStatus = mc->mc_status;
2386 rv = 0;
2388 out:
2389 if (mapped)
2390 mly_ccb_unmap(mly, mc);
2391 if (mc->mc_data != NULL)
2392 free(mc->mc_data, M_DEVBUF);
2393 mly_ccb_free(mly, mc);
2395 return (rv);
2399 * Return health status to userspace. If the health change index in the
2400 * user structure does not match that currently exported by the controller,
2401 * we return the current status immediately. Otherwise, we block until
2402 * either interrupted or new status is delivered.
2404 static int
2405 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
2407 struct mly_health_status mh;
2408 int rv, s;
2410 /* Fetch the current health status from userspace. */
2411 rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
2412 if (rv != 0)
2413 return (rv);
2415 /* spin waiting for a status update */
2416 s = splbio();
2417 if (mly->mly_event_change == mh.change_counter)
2418 rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
2419 "mlyhealth", 0);
2420 splx(s);
2422 if (rv == 0) {
2424 * Copy the controller's health status buffer out (there is
2425 * a race here if it changes again).
2427 rv = copyout(&mly->mly_mmbox->mmm_health.status,
2428 uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
2431 return (rv);