No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / raidframe / rf_dagffrd.c
blobfc73a98ccf3e71a8304621ff25e6f57bfc19472a
1 /* $NetBSD: rf_dagffrd.c,v 1.17 2006/10/12 01:31:50 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
30 * rf_dagffrd.c
32 * code for creating fault-free read DAGs
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.17 2006/10/12 01:31:50 christos Exp $");
39 #include <dev/raidframe/raidframevar.h>
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagffrd.h"
49 /******************************************************************************
51 * General comments on DAG creation:
53 * All DAGs in this file use roll-away error recovery. Each DAG has a single
54 * commit node, usually called "Cmt." If an error occurs before the Cmt node
55 * is reached, the execution engine will halt forward execution and work
56 * backward through the graph, executing the undo functions. Assuming that
57 * each node in the graph prior to the Cmt node are undoable and atomic - or -
58 * does not make changes to permanent state, the graph will fail atomically.
59 * If an error occurs after the Cmt node executes, the engine will roll-forward
60 * through the graph, blindly executing nodes until it reaches the end.
61 * If a graph reaches the end, it is assumed to have completed successfully.
63 * A graph has only 1 Cmt node.
68 /******************************************************************************
70 * The following wrappers map the standard DAG creation interface to the
71 * DAG creation routines. Additionally, these wrappers enable experimentation
72 * with new DAG structures by providing an extra level of indirection, allowing
73 * the DAG creation routines to be replaced at this single point.
76 void
77 rf_CreateFaultFreeReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
78 RF_DagHeader_t *dag_h, void *bp,
79 RF_RaidAccessFlags_t flags,
80 RF_AllocListElem_t *allocList)
82 rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
83 RF_IO_TYPE_READ);
87 /******************************************************************************
89 * DAG creation code begins here
92 /******************************************************************************
94 * creates a DAG to perform a nonredundant read or write of data within one
95 * stripe.
96 * For reads, this DAG is as follows:
98 * /---- read ----\
99 * Header -- Block ---- read ---- Commit -- Terminate
100 * \---- read ----/
102 * For writes, this DAG is as follows:
104 * /---- write ----\
105 * Header -- Commit ---- write ---- Block -- Terminate
106 * \---- write ----/
108 * There is one disk node per stripe unit accessed, and all disk nodes are in
109 * parallel.
111 * Tricky point here: The first disk node (read or write) is created
112 * normally. Subsequent disk nodes are created by copying the first one,
113 * and modifying a few params. The "succedents" and "antecedents" fields are
114 * _not_ re-created in each node, but rather left pointing to the same array
115 * that was malloc'd when the first node was created. Thus, it's essential
116 * that when this DAG is freed, the succedents and antecedents fields be freed
117 * in ONLY ONE of the read nodes. This does not apply to the "params" field
118 * because it is recreated for each READ node.
120 * Note that normal-priority accesses do not need to be tagged with their
121 * parity stripe ID, because they will never be promoted. Hence, I've
122 * commented-out the code to do this, and marked it with UNNEEDED.
124 *****************************************************************************/
126 void
127 rf_CreateNonredundantDAG(RF_Raid_t *raidPtr,
128 RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp,
129 RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
130 RF_IoType_t type)
132 RF_DagNode_t *diskNodes, *blockNode, *commitNode, *termNode;
133 RF_DagNode_t *tmpNode, *tmpdiskNode;
134 RF_PhysDiskAddr_t *pda = asmap->physInfo;
135 int (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
136 int i, n, totalNumNodes;
137 const char *name;
139 n = asmap->numStripeUnitsAccessed;
140 dag_h->creator = "NonredundantDAG";
142 RF_ASSERT(RF_IO_IS_R_OR_W(type));
143 switch (type) {
144 case RF_IO_TYPE_READ:
145 doFunc = rf_DiskReadFunc;
146 undoFunc = rf_DiskReadUndoFunc;
147 name = "R ";
148 #if RF_DEBUG_DAG
149 if (rf_dagDebug)
150 printf("[Creating non-redundant read DAG]\n");
151 #endif
152 break;
153 case RF_IO_TYPE_WRITE:
154 doFunc = rf_DiskWriteFunc;
155 undoFunc = rf_DiskWriteUndoFunc;
156 name = "W ";
157 #if RF_DEBUG_DAG
158 if (rf_dagDebug)
159 printf("[Creating non-redundant write DAG]\n");
160 #endif
161 break;
162 default:
163 RF_PANIC();
167 * For reads, the dag can not commit until the block node is reached.
168 * for writes, the dag commits immediately.
170 dag_h->numCommitNodes = 1;
171 dag_h->numCommits = 0;
172 dag_h->numSuccedents = 1;
175 * Node count:
176 * 1 block node
177 * n data reads (or writes)
178 * 1 commit node
179 * 1 terminator node
181 RF_ASSERT(n > 0);
182 totalNumNodes = n + 3;
184 for (i = 0; i < n; i++) {
185 tmpNode = rf_AllocDAGNode();
186 tmpNode->list_next = dag_h->nodes;
187 dag_h->nodes = tmpNode;
189 diskNodes = dag_h->nodes;
191 blockNode = rf_AllocDAGNode();
192 blockNode->list_next = dag_h->nodes;
193 dag_h->nodes = blockNode;
195 commitNode = rf_AllocDAGNode();
196 commitNode->list_next = dag_h->nodes;
197 dag_h->nodes = commitNode;
199 termNode = rf_AllocDAGNode();
200 termNode->list_next = dag_h->nodes;
201 dag_h->nodes = termNode;
203 /* initialize nodes */
204 switch (type) {
205 case RF_IO_TYPE_READ:
206 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
207 NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
208 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
209 NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
210 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
211 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
212 break;
213 case RF_IO_TYPE_WRITE:
214 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
215 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
216 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
217 NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
218 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
219 NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
220 break;
221 default:
222 RF_PANIC();
225 tmpdiskNode = diskNodes;
226 for (i = 0; i < n; i++) {
227 RF_ASSERT(pda != NULL);
228 rf_InitNode(tmpdiskNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
229 1, 1, 4, 0, dag_h, name, allocList);
230 tmpdiskNode->params[0].p = pda;
231 tmpdiskNode->params[1].p = pda->bufPtr;
232 /* parity stripe id is not necessary */
233 tmpdiskNode->params[2].v = 0;
234 tmpdiskNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
235 pda = pda->next;
236 tmpdiskNode = tmpdiskNode->list_next;
240 * Connect nodes.
243 /* connect hdr to block node */
244 RF_ASSERT(blockNode->numAntecedents == 0);
245 dag_h->succedents[0] = blockNode;
247 if (type == RF_IO_TYPE_READ) {
248 /* connecting a nonredundant read DAG */
249 RF_ASSERT(blockNode->numSuccedents == n);
250 RF_ASSERT(commitNode->numAntecedents == n);
251 tmpdiskNode = diskNodes;
252 for (i = 0; i < n; i++) {
253 /* connect block node to each read node */
254 RF_ASSERT(tmpdiskNode->numAntecedents == 1);
255 blockNode->succedents[i] = tmpdiskNode;
256 tmpdiskNode->antecedents[0] = blockNode;
257 tmpdiskNode->antType[0] = rf_control;
259 /* connect each read node to the commit node */
260 RF_ASSERT(tmpdiskNode->numSuccedents == 1);
261 tmpdiskNode->succedents[0] = commitNode;
262 commitNode->antecedents[i] = tmpdiskNode;
263 commitNode->antType[i] = rf_control;
264 tmpdiskNode = tmpdiskNode->list_next;
266 /* connect the commit node to the term node */
267 RF_ASSERT(commitNode->numSuccedents == 1);
268 RF_ASSERT(termNode->numAntecedents == 1);
269 RF_ASSERT(termNode->numSuccedents == 0);
270 commitNode->succedents[0] = termNode;
271 termNode->antecedents[0] = commitNode;
272 termNode->antType[0] = rf_control;
273 } else {
274 /* connecting a nonredundant write DAG */
275 /* connect the block node to the commit node */
276 RF_ASSERT(blockNode->numSuccedents == 1);
277 RF_ASSERT(commitNode->numAntecedents == 1);
278 blockNode->succedents[0] = commitNode;
279 commitNode->antecedents[0] = blockNode;
280 commitNode->antType[0] = rf_control;
282 RF_ASSERT(commitNode->numSuccedents == n);
283 RF_ASSERT(termNode->numAntecedents == n);
284 RF_ASSERT(termNode->numSuccedents == 0);
285 tmpdiskNode = diskNodes;
286 for (i = 0; i < n; i++) {
287 /* connect the commit node to each write node */
288 RF_ASSERT(tmpdiskNode->numAntecedents == 1);
289 commitNode->succedents[i] = tmpdiskNode;
290 tmpdiskNode->antecedents[0] = commitNode;
291 tmpdiskNode->antType[0] = rf_control;
293 /* connect each write node to the term node */
294 RF_ASSERT(tmpdiskNode->numSuccedents == 1);
295 tmpdiskNode->succedents[0] = termNode;
296 termNode->antecedents[i] = tmpdiskNode;
297 termNode->antType[i] = rf_control;
298 tmpdiskNode = tmpdiskNode->list_next;
302 /******************************************************************************
303 * Create a fault-free read DAG for RAID level 1
305 * Hdr -> Nil -> Rmir -> Cmt -> Trm
307 * The "Rmir" node schedules a read from the disk in the mirror pair with the
308 * shortest disk queue. the proper queue is selected at Rmir execution. this
309 * deferred mapping is unlike other archs in RAIDframe which generally fix
310 * mapping at DAG creation time.
312 * Parameters: raidPtr - description of the physical array
313 * asmap - logical & physical addresses for this access
314 * bp - buffer ptr (for holding read data)
315 * flags - general flags (e.g. disk locking)
316 * allocList - list of memory allocated in DAG creation
317 *****************************************************************************/
319 static void
320 CreateMirrorReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
321 RF_DagHeader_t *dag_h, void *bp,
322 RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
323 int (*readfunc) (RF_DagNode_t * node))
325 RF_DagNode_t *readNodes, *blockNode, *commitNode, *termNode;
326 RF_DagNode_t *tmpNode, *tmpreadNode;
327 RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
328 RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
329 int i, n, totalNumNodes;
331 n = asmap->numStripeUnitsAccessed;
332 dag_h->creator = "RaidOneReadDAG";
333 #if RF_DEBUG_DAG
334 if (rf_dagDebug) {
335 printf("[Creating RAID level 1 read DAG]\n");
337 #endif
339 * This dag can not commit until the commit node is reached
340 * errors prior to the commit point imply the dag has failed.
342 dag_h->numCommitNodes = 1;
343 dag_h->numCommits = 0;
344 dag_h->numSuccedents = 1;
347 * Node count:
348 * n data reads
349 * 1 block node
350 * 1 commit node
351 * 1 terminator node
353 RF_ASSERT(n > 0);
354 totalNumNodes = n + 3;
356 for (i = 0; i < n; i++) {
357 tmpNode = rf_AllocDAGNode();
358 tmpNode->list_next = dag_h->nodes;
359 dag_h->nodes = tmpNode;
361 readNodes = dag_h->nodes;
363 blockNode = rf_AllocDAGNode();
364 blockNode->list_next = dag_h->nodes;
365 dag_h->nodes = blockNode;
367 commitNode = rf_AllocDAGNode();
368 commitNode->list_next = dag_h->nodes;
369 dag_h->nodes = commitNode;
371 termNode = rf_AllocDAGNode();
372 termNode->list_next = dag_h->nodes;
373 dag_h->nodes = termNode;
375 /* initialize nodes */
376 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
377 rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
378 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
379 rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
380 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
381 rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
383 tmpreadNode = readNodes;
384 for (i = 0; i < n; i++) {
385 RF_ASSERT(data_pda != NULL);
386 RF_ASSERT(parity_pda != NULL);
387 rf_InitNode(tmpreadNode, rf_wait, RF_FALSE, readfunc,
388 rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
389 "Rmir", allocList);
390 tmpreadNode->params[0].p = data_pda;
391 tmpreadNode->params[1].p = data_pda->bufPtr;
392 /* parity stripe id is not necessary */
393 tmpreadNode->params[2].p = 0;
394 tmpreadNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
395 tmpreadNode->params[4].p = parity_pda;
396 data_pda = data_pda->next;
397 parity_pda = parity_pda->next;
398 tmpreadNode = tmpreadNode->list_next;
402 * Connect nodes
405 /* connect hdr to block node */
406 RF_ASSERT(blockNode->numAntecedents == 0);
407 dag_h->succedents[0] = blockNode;
409 /* connect block node to read nodes */
410 RF_ASSERT(blockNode->numSuccedents == n);
411 tmpreadNode = readNodes;
412 for (i = 0; i < n; i++) {
413 RF_ASSERT(tmpreadNode->numAntecedents == 1);
414 blockNode->succedents[i] = tmpreadNode;
415 tmpreadNode->antecedents[0] = blockNode;
416 tmpreadNode->antType[0] = rf_control;
417 tmpreadNode = tmpreadNode->list_next;
420 /* connect read nodes to commit node */
421 RF_ASSERT(commitNode->numAntecedents == n);
422 tmpreadNode = readNodes;
423 for (i = 0; i < n; i++) {
424 RF_ASSERT(tmpreadNode->numSuccedents == 1);
425 tmpreadNode->succedents[0] = commitNode;
426 commitNode->antecedents[i] = tmpreadNode;
427 commitNode->antType[i] = rf_control;
428 tmpreadNode = tmpreadNode->list_next;
431 /* connect commit node to term node */
432 RF_ASSERT(commitNode->numSuccedents == 1);
433 RF_ASSERT(termNode->numAntecedents == 1);
434 RF_ASSERT(termNode->numSuccedents == 0);
435 commitNode->succedents[0] = termNode;
436 termNode->antecedents[0] = commitNode;
437 termNode->antType[0] = rf_control;
440 void
441 rf_CreateMirrorIdleReadDAG(
442 RF_Raid_t * raidPtr,
443 RF_AccessStripeMap_t * asmap,
444 RF_DagHeader_t * dag_h,
445 void *bp,
446 RF_RaidAccessFlags_t flags,
447 RF_AllocListElem_t * allocList)
449 CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
450 rf_DiskReadMirrorIdleFunc);
453 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0)
455 void
456 rf_CreateMirrorPartitionReadDAG(RF_Raid_t *raidPtr,
457 RF_AccessStripeMap_t *asmap,
458 RF_DagHeader_t *dag_h, void *bp,
459 RF_RaidAccessFlags_t flags,
460 RF_AllocListElem_t *allocList)
462 CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
463 rf_DiskReadMirrorPartitionFunc);
465 #endif