No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / raidframe / rf_dagfuncs.c
blobd8b7d90678bfcae926a2544ab9ccfb56be28257b
1 /* $NetBSD: rf_dagfuncs.c,v 1.29 2007/03/04 06:02:36 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Author: Mark Holland, William V. Courtright II
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
30 * dagfuncs.c -- DAG node execution routines
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 * get set to "good" or "bad", and "FinishNode" to be called. In the
35 * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 * the node execution function can do these two things directly. In
37 * the case of nodes that have to wait for some event (a disk read to
38 * complete, a lock to be released, etc) to occur before they can
39 * complete, this is typically achieved by having whatever module
40 * is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 * and NOP out their operations if the status is not "enable". However,
43 * execution functions that release resources must be sure to release
44 * them even when they NOP out the function that would use them.
45 * Functions that acquire resources should go ahead and acquire them
46 * even when they NOP, so that a downstream release node will not have
47 * to check to find out whether or not the acquire was suppressed.
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.29 2007/03/04 06:02:36 christos Exp $");
53 #include <sys/param.h>
54 #include <sys/ioctl.h>
56 #include "rf_archs.h"
57 #include "rf_raid.h"
58 #include "rf_dag.h"
59 #include "rf_layout.h"
60 #include "rf_etimer.h"
61 #include "rf_acctrace.h"
62 #include "rf_diskqueue.h"
63 #include "rf_dagfuncs.h"
64 #include "rf_general.h"
65 #include "rf_engine.h"
66 #include "rf_dagutils.h"
68 #include "rf_kintf.h"
70 #if RF_INCLUDE_PARITYLOGGING > 0
71 #include "rf_paritylog.h"
72 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
74 int (*rf_DiskReadFunc) (RF_DagNode_t *);
75 int (*rf_DiskWriteFunc) (RF_DagNode_t *);
76 int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77 int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78 int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
79 int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
80 int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
82 /*****************************************************************************
83 * main (only) configuration routine for this module
84 ****************************************************************************/
85 int
86 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
88 RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
89 ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
90 rf_DiskReadFunc = rf_DiskReadFuncForThreads;
91 rf_DiskReadUndoFunc = rf_DiskUndoFunc;
92 rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
93 rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
94 rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
95 rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
96 rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
97 return (0);
102 /*****************************************************************************
103 * the execution function associated with a terminate node
104 ****************************************************************************/
106 rf_TerminateFunc(RF_DagNode_t *node)
108 RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
109 node->status = rf_good;
110 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
114 rf_TerminateUndoFunc(RF_DagNode_t *node)
116 return (0);
120 /*****************************************************************************
121 * execution functions associated with a mirror node
123 * parameters:
125 * 0 - physical disk addres of data
126 * 1 - buffer for holding read data
127 * 2 - parity stripe ID
128 * 3 - flags
129 * 4 - physical disk address of mirror (parity)
131 ****************************************************************************/
134 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
136 /* select the mirror copy with the shortest queue and fill in node
137 * parameters with physical disk address */
139 rf_SelectMirrorDiskIdle(node);
140 return (rf_DiskReadFunc(node));
143 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
145 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
147 /* select the mirror copy with the shortest queue and fill in node
148 * parameters with physical disk address */
150 rf_SelectMirrorDiskPartition(node);
151 return (rf_DiskReadFunc(node));
153 #endif
156 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
158 return (0);
163 #if RF_INCLUDE_PARITYLOGGING > 0
164 /*****************************************************************************
165 * the execution function associated with a parity log update node
166 ****************************************************************************/
168 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
170 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
171 void *bf = (void *) node->params[1].p;
172 RF_ParityLogData_t *logData;
173 #if RF_ACC_TRACE > 0
174 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
175 RF_Etimer_t timer;
176 #endif
178 if (node->dagHdr->status == rf_enable) {
179 #if RF_ACC_TRACE > 0
180 RF_ETIMER_START(timer);
181 #endif
182 logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
183 (RF_Raid_t *) (node->dagHdr->raidPtr),
184 node->wakeFunc, (void *) node,
185 node->dagHdr->tracerec, timer);
186 if (logData)
187 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
188 else {
189 #if RF_ACC_TRACE > 0
190 RF_ETIMER_STOP(timer);
191 RF_ETIMER_EVAL(timer);
192 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
193 #endif
194 (node->wakeFunc) (node, ENOMEM);
197 return (0);
201 /*****************************************************************************
202 * the execution function associated with a parity log overwrite node
203 ****************************************************************************/
205 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
207 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
208 void *bf = (void *) node->params[1].p;
209 RF_ParityLogData_t *logData;
210 #if RF_ACC_TRACE > 0
211 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
212 RF_Etimer_t timer;
213 #endif
215 if (node->dagHdr->status == rf_enable) {
216 #if RF_ACC_TRACE > 0
217 RF_ETIMER_START(timer);
218 #endif
219 logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
220 (RF_Raid_t *) (node->dagHdr->raidPtr),
221 node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
222 if (logData)
223 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
224 else {
225 #if RF_ACC_TRACE > 0
226 RF_ETIMER_STOP(timer);
227 RF_ETIMER_EVAL(timer);
228 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
229 #endif
230 (node->wakeFunc) (node, ENOMEM);
233 return (0);
237 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
239 return (0);
243 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
245 return (0);
247 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
249 /*****************************************************************************
250 * the execution function associated with a NOP node
251 ****************************************************************************/
253 rf_NullNodeFunc(RF_DagNode_t *node)
255 node->status = rf_good;
256 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
260 rf_NullNodeUndoFunc(RF_DagNode_t *node)
262 node->status = rf_undone;
263 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
267 /*****************************************************************************
268 * the execution function associated with a disk-read node
269 ****************************************************************************/
271 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
273 RF_DiskQueueData_t *req;
274 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
275 void *bf = (void *) node->params[1].p;
276 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
277 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
278 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
279 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
280 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
281 void *b_proc = NULL;
283 if (node->dagHdr->bp)
284 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
286 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
287 bf, parityStripeID, which_ru,
288 (int (*) (void *, int)) node->wakeFunc,
289 node,
290 #if RF_ACC_TRACE > 0
291 node->dagHdr->tracerec,
292 #else
293 NULL,
294 #endif
295 (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT);
296 if (!req) {
297 (node->wakeFunc) (node, ENOMEM);
298 } else {
299 node->dagFuncData = (void *) req;
300 rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
302 return (0);
306 /*****************************************************************************
307 * the execution function associated with a disk-write node
308 ****************************************************************************/
310 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
312 RF_DiskQueueData_t *req;
313 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
314 void *bf = (void *) node->params[1].p;
315 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
316 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
317 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
318 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
319 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
320 void *b_proc = NULL;
322 if (node->dagHdr->bp)
323 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
325 /* normal processing (rollaway or forward recovery) begins here */
326 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
327 bf, parityStripeID, which_ru,
328 (int (*) (void *, int)) node->wakeFunc,
329 (void *) node,
330 #if RF_ACC_TRACE > 0
331 node->dagHdr->tracerec,
332 #else
333 NULL,
334 #endif
335 (void *) (node->dagHdr->raidPtr),
336 0, b_proc, PR_NOWAIT);
338 if (!req) {
339 (node->wakeFunc) (node, ENOMEM);
340 } else {
341 node->dagFuncData = (void *) req;
342 rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
345 return (0);
347 /*****************************************************************************
348 * the undo function for disk nodes
349 * Note: this is not a proper undo of a write node, only locks are released.
350 * old data is not restored to disk!
351 ****************************************************************************/
353 rf_DiskUndoFunc(RF_DagNode_t *node)
355 RF_DiskQueueData_t *req;
356 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
357 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
359 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
360 0L, 0, NULL, 0L, 0,
361 (int (*) (void *, int)) node->wakeFunc,
362 (void *) node,
363 #if RF_ACC_TRACE > 0
364 node->dagHdr->tracerec,
365 #else
366 NULL,
367 #endif
368 (void *) (node->dagHdr->raidPtr),
369 0, NULL, PR_NOWAIT);
370 if (!req)
371 (node->wakeFunc) (node, ENOMEM);
372 else {
373 node->dagFuncData = (void *) req;
374 rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
377 return (0);
380 /*****************************************************************************
381 * Callback routine for DiskRead and DiskWrite nodes. When the disk
382 * op completes, the routine is called to set the node status and
383 * inform the execution engine that the node has fired.
384 ****************************************************************************/
386 rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
389 switch (node->status) {
390 case rf_fired:
391 if (status)
392 node->status = rf_bad;
393 else
394 node->status = rf_good;
395 break;
396 case rf_recover:
397 /* probably should never reach this case */
398 if (status)
399 node->status = rf_panic;
400 else
401 node->status = rf_undone;
402 break;
403 default:
404 printf("rf_GenericWakeupFunc:");
405 printf("node->status is %d,", node->status);
406 printf("status is %d \n", status);
407 RF_PANIC();
408 break;
410 if (node->dagFuncData)
411 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
412 return (rf_FinishNode(node, RF_INTR_CONTEXT));
416 /*****************************************************************************
417 * there are three distinct types of xor nodes:
419 * A "regular xor" is used in the fault-free case where the access
420 * spans a complete stripe unit. It assumes that the result buffer is
421 * one full stripe unit in size, and uses the stripe-unit-offset
422 * values that it computes from the PDAs to determine where within the
423 * stripe unit to XOR each argument buffer.
425 * A "simple xor" is used in the fault-free case where the access
426 * touches only a portion of one (or two, in some cases) stripe
427 * unit(s). It assumes that all the argument buffers are of the same
428 * size and have the same stripe unit offset.
430 * A "recovery xor" is used in the degraded-mode case. It's similar
431 * to the regular xor function except that it takes the failed PDA as
432 * an additional parameter, and uses it to determine what portions of
433 * the argument buffers need to be xor'd into the result buffer, and
434 * where in the result buffer they should go.
435 ****************************************************************************/
437 /* xor the params together and store the result in the result field.
438 * assume the result field points to a buffer that is the size of one
439 * SU, and use the pda params to determine where within the buffer to
440 * XOR the input buffers. */
442 rf_RegularXorFunc(RF_DagNode_t *node)
444 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
445 #if RF_ACC_TRACE > 0
446 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
447 RF_Etimer_t timer;
448 #endif
449 int i, retcode;
451 retcode = 0;
452 if (node->dagHdr->status == rf_enable) {
453 /* don't do the XOR if the input is the same as the output */
454 #if RF_ACC_TRACE > 0
455 RF_ETIMER_START(timer);
456 #endif
457 for (i = 0; i < node->numParams - 1; i += 2)
458 if (node->params[i + 1].p != node->results[0]) {
459 retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
460 (char *) node->params[i + 1].p, (char *) node->results[0]);
462 #if RF_ACC_TRACE > 0
463 RF_ETIMER_STOP(timer);
464 RF_ETIMER_EVAL(timer);
465 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
466 #endif
468 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
469 * explicitly since no
470 * I/O in this node */
472 /* xor the inputs into the result buffer, ignoring placement issues */
474 rf_SimpleXorFunc(RF_DagNode_t *node)
476 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
477 int i, retcode = 0;
478 #if RF_ACC_TRACE > 0
479 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
480 RF_Etimer_t timer;
481 #endif
483 if (node->dagHdr->status == rf_enable) {
484 #if RF_ACC_TRACE > 0
485 RF_ETIMER_START(timer);
486 #endif
487 /* don't do the XOR if the input is the same as the output */
488 for (i = 0; i < node->numParams - 1; i += 2)
489 if (node->params[i + 1].p != node->results[0]) {
490 retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
491 rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
493 #if RF_ACC_TRACE > 0
494 RF_ETIMER_STOP(timer);
495 RF_ETIMER_EVAL(timer);
496 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
497 #endif
499 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
500 * explicitly since no
501 * I/O in this node */
503 /* this xor is used by the degraded-mode dag functions to recover lost
504 * data. the second-to-last parameter is the PDA for the failed
505 * portion of the access. the code here looks at this PDA and assumes
506 * that the xor target buffer is equal in size to the number of
507 * sectors in the failed PDA. It then uses the other PDAs in the
508 * parameter list to determine where within the target buffer the
509 * corresponding data should be xored. */
511 rf_RecoveryXorFunc(RF_DagNode_t *node)
513 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
514 RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
515 RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
516 int i, retcode = 0;
517 RF_PhysDiskAddr_t *pda;
518 int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
519 char *srcbuf, *destbuf;
520 #if RF_ACC_TRACE > 0
521 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
522 RF_Etimer_t timer;
523 #endif
525 if (node->dagHdr->status == rf_enable) {
526 #if RF_ACC_TRACE > 0
527 RF_ETIMER_START(timer);
528 #endif
529 for (i = 0; i < node->numParams - 2; i += 2)
530 if (node->params[i + 1].p != node->results[0]) {
531 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
532 srcbuf = (char *) node->params[i + 1].p;
533 suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
534 destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
535 retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
537 #if RF_ACC_TRACE > 0
538 RF_ETIMER_STOP(timer);
539 RF_ETIMER_EVAL(timer);
540 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
541 #endif
543 return (rf_GenericWakeupFunc(node, retcode));
545 /*****************************************************************************
546 * The next three functions are utilities used by the above
547 * xor-execution functions.
548 ****************************************************************************/
552 * this is just a glorified buffer xor. targbuf points to a buffer
553 * that is one full stripe unit in size. srcbuf points to a buffer
554 * that may be less than 1 SU, but never more. When the access
555 * described by pda is one SU in size (which by implication means it's
556 * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
557 * When the access is less than one SU in size the XOR occurs on only
558 * the portion of targbuf identified in the pda. */
561 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
562 char *srcbuf, char *targbuf)
564 char *targptr;
565 int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
566 int SUOffset = pda->startSector % sectPerSU;
567 int length, retcode = 0;
569 RF_ASSERT(pda->numSector <= sectPerSU);
571 targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
572 length = rf_RaidAddressToByte(raidPtr, pda->numSector);
573 retcode = rf_bxor(srcbuf, targptr, length);
574 return (retcode);
576 /* it really should be the case that the buffer pointers (returned by
577 * malloc) are aligned to the natural word size of the machine, so
578 * this is the only case we optimize for. The length should always be
579 * a multiple of the sector size, so there should be no problem with
580 * leftover bytes at the end. */
582 rf_bxor(char *src, char *dest, int len)
584 unsigned mask = sizeof(long) - 1, retcode = 0;
586 if (!(((unsigned long) src) & mask) &&
587 !(((unsigned long) dest) & mask) && !(len & mask)) {
588 retcode = rf_longword_bxor((unsigned long *) src,
589 (unsigned long *) dest,
590 len >> RF_LONGSHIFT);
591 } else {
592 RF_ASSERT(0);
594 return (retcode);
597 /* When XORing in kernel mode, we need to map each user page to kernel
598 * space before we can access it. We don't want to assume anything
599 * about which input buffers are in kernel/user space, nor about their
600 * alignment, so in each loop we compute the maximum number of bytes
601 * that we can xor without crossing any page boundaries, and do only
602 * this many bytes before the next remap.
604 * len - is in longwords
607 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
609 unsigned long *end = src + len;
610 unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
611 unsigned long *pg_src, *pg_dest; /* per-page source/dest pointers */
612 int longs_this_time;/* # longwords to xor in the current iteration */
614 pg_src = src;
615 pg_dest = dest;
616 if (!pg_src || !pg_dest)
617 return (EFAULT);
619 while (len >= 4) {
620 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
621 src += longs_this_time;
622 dest += longs_this_time;
623 len -= longs_this_time;
624 while (longs_this_time >= 4) {
625 d0 = pg_dest[0];
626 d1 = pg_dest[1];
627 d2 = pg_dest[2];
628 d3 = pg_dest[3];
629 s0 = pg_src[0];
630 s1 = pg_src[1];
631 s2 = pg_src[2];
632 s3 = pg_src[3];
633 pg_dest[0] = d0 ^ s0;
634 pg_dest[1] = d1 ^ s1;
635 pg_dest[2] = d2 ^ s2;
636 pg_dest[3] = d3 ^ s3;
637 pg_src += 4;
638 pg_dest += 4;
639 longs_this_time -= 4;
641 while (longs_this_time > 0) { /* cannot cross any page
642 * boundaries here */
643 *pg_dest++ ^= *pg_src++;
644 longs_this_time--;
647 /* either we're done, or we've reached a page boundary on one
648 * (or possibly both) of the pointers */
649 if (len) {
650 if (RF_PAGE_ALIGNED(src))
651 pg_src = src;
652 if (RF_PAGE_ALIGNED(dest))
653 pg_dest = dest;
654 if (!pg_src || !pg_dest)
655 return (EFAULT);
658 while (src < end) {
659 *pg_dest++ ^= *pg_src++;
660 src++;
661 dest++;
662 len--;
663 if (RF_PAGE_ALIGNED(src))
664 pg_src = src;
665 if (RF_PAGE_ALIGNED(dest))
666 pg_dest = dest;
668 RF_ASSERT(len == 0);
669 return (0);
672 #if 0
674 dst = a ^ b ^ c;
675 a may equal dst
676 see comment above longword_bxor
677 len is length in longwords
680 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
681 unsigned long *c, int len, void *bp)
683 unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
684 unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
685 * pointers */
686 int longs_this_time;/* # longs to xor in the current iteration */
687 char dst_is_a = 0;
689 pg_a = a;
690 pg_b = b;
691 pg_c = c;
692 if (a == dst) {
693 pg_dst = pg_a;
694 dst_is_a = 1;
695 } else {
696 pg_dst = dst;
699 /* align dest to cache line. Can't cross a pg boundary on dst here. */
700 while ((((unsigned long) pg_dst) & 0x1f)) {
701 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
702 dst++;
703 a++;
704 b++;
705 c++;
706 if (RF_PAGE_ALIGNED(a)) {
707 pg_a = a;
708 if (!pg_a)
709 return (EFAULT);
711 if (RF_PAGE_ALIGNED(b)) {
712 pg_b = a;
713 if (!pg_b)
714 return (EFAULT);
716 if (RF_PAGE_ALIGNED(c)) {
717 pg_c = a;
718 if (!pg_c)
719 return (EFAULT);
721 len--;
724 while (len > 4) {
725 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
726 a += longs_this_time;
727 b += longs_this_time;
728 c += longs_this_time;
729 dst += longs_this_time;
730 len -= longs_this_time;
731 while (longs_this_time >= 4) {
732 a0 = pg_a[0];
733 longs_this_time -= 4;
735 a1 = pg_a[1];
736 a2 = pg_a[2];
738 a3 = pg_a[3];
739 pg_a += 4;
741 b0 = pg_b[0];
742 b1 = pg_b[1];
744 b2 = pg_b[2];
745 b3 = pg_b[3];
746 /* start dual issue */
747 a0 ^= b0;
748 b0 = pg_c[0];
750 pg_b += 4;
751 a1 ^= b1;
753 a2 ^= b2;
754 a3 ^= b3;
756 b1 = pg_c[1];
757 a0 ^= b0;
759 b2 = pg_c[2];
760 a1 ^= b1;
762 b3 = pg_c[3];
763 a2 ^= b2;
765 pg_dst[0] = a0;
766 a3 ^= b3;
767 pg_dst[1] = a1;
768 pg_c += 4;
769 pg_dst[2] = a2;
770 pg_dst[3] = a3;
771 pg_dst += 4;
773 while (longs_this_time > 0) { /* cannot cross any page
774 * boundaries here */
775 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
776 longs_this_time--;
779 if (len) {
780 if (RF_PAGE_ALIGNED(a)) {
781 pg_a = a;
782 if (!pg_a)
783 return (EFAULT);
784 if (dst_is_a)
785 pg_dst = pg_a;
787 if (RF_PAGE_ALIGNED(b)) {
788 pg_b = b;
789 if (!pg_b)
790 return (EFAULT);
792 if (RF_PAGE_ALIGNED(c)) {
793 pg_c = c;
794 if (!pg_c)
795 return (EFAULT);
797 if (!dst_is_a)
798 if (RF_PAGE_ALIGNED(dst)) {
799 pg_dst = dst;
800 if (!pg_dst)
801 return (EFAULT);
805 while (len) {
806 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
807 dst++;
808 a++;
809 b++;
810 c++;
811 if (RF_PAGE_ALIGNED(a)) {
812 pg_a = a;
813 if (!pg_a)
814 return (EFAULT);
815 if (dst_is_a)
816 pg_dst = pg_a;
818 if (RF_PAGE_ALIGNED(b)) {
819 pg_b = b;
820 if (!pg_b)
821 return (EFAULT);
823 if (RF_PAGE_ALIGNED(c)) {
824 pg_c = c;
825 if (!pg_c)
826 return (EFAULT);
828 if (!dst_is_a)
829 if (RF_PAGE_ALIGNED(dst)) {
830 pg_dst = dst;
831 if (!pg_dst)
832 return (EFAULT);
834 len--;
836 return (0);
840 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
841 unsigned char *c, unsigned long len, void *bp)
843 RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
845 return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
846 (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
848 #endif