No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / raidframe / rf_parityloggingdags.c
blob0a36badeb85986f28cdc033dd1935799feaf4678
1 /* $NetBSD: rf_parityloggingdags.c,v 1.18 2006/11/16 01:33:23 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Author: William V. Courtright II
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
30 DAGs specific to parity logging are created here
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.18 2006/11/16 01:33:23 christos Exp $");
36 #ifdef _KERNEL_OPT
37 #include "opt_raid_diagnostic.h"
38 #endif
40 #include "rf_archs.h"
42 #if RF_INCLUDE_PARITYLOGGING > 0
44 #include <dev/raidframe/raidframevar.h>
46 #include "rf_raid.h"
47 #include "rf_dag.h"
48 #include "rf_dagutils.h"
49 #include "rf_dagfuncs.h"
50 #include "rf_debugMem.h"
51 #include "rf_paritylog.h"
52 #include "rf_general.h"
54 #include "rf_parityloggingdags.h"
56 /******************************************************************************
58 * creates a DAG to perform a large-write operation:
60 * / Rod \ / Wnd \
61 * H -- NIL- Rod - NIL - Wnd ------ NIL - T
62 * \ Rod / \ Xor - Lpo /
64 * The writes are not done until the reads complete because if they were done in
65 * parallel, a failure on one of the reads could leave the parity in an inconsistent
66 * state, so that the retry with a new DAG would produce erroneous parity.
68 * Note: this DAG has the nasty property that none of the buffers allocated for reading
69 * old data can be freed until the XOR node fires. Need to fix this.
71 * The last two arguments are the number of faults tolerated, and function for the
72 * redundancy calculation. The undo for the redundancy calc is assumed to be null
74 *****************************************************************************/
76 void
77 rf_CommonCreateParityLoggingLargeWriteDAG(
78 RF_Raid_t * raidPtr,
79 RF_AccessStripeMap_t * asmap,
80 RF_DagHeader_t * dag_h,
81 void *bp,
82 RF_RaidAccessFlags_t flags,
83 RF_AllocListElem_t * allocList,
84 int nfaults,
85 int (*redFunc) (RF_DagNode_t *))
87 RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
88 *lpoNode, *blockNode, *unblockNode, *termNode;
89 int nWndNodes, nRodNodes, i;
90 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
91 RF_AccessStripeMapHeader_t *new_asm_h[2];
92 int nodeNum, asmNum;
93 RF_ReconUnitNum_t which_ru;
94 char *sosBuffer, *eosBuffer;
95 RF_PhysDiskAddr_t *pda;
96 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
98 if (rf_dagDebug)
99 printf("[Creating parity-logging large-write DAG]\n");
100 RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
101 dag_h->creator = "ParityLoggingLargeWriteDAG";
103 /* alloc the Wnd nodes, the xor node, and the Lpo node */
104 nWndNodes = asmap->numStripeUnitsAccessed;
105 RF_MallocAndAdd(nodes, (nWndNodes + 6) * sizeof(RF_DagNode_t),
106 (RF_DagNode_t *), allocList);
107 i = 0;
108 wndNodes = &nodes[i];
109 i += nWndNodes;
110 xorNode = &nodes[i];
111 i += 1;
112 lpoNode = &nodes[i];
113 i += 1;
114 blockNode = &nodes[i];
115 i += 1;
116 syncNode = &nodes[i];
117 i += 1;
118 unblockNode = &nodes[i];
119 i += 1;
120 termNode = &nodes[i];
121 i += 1;
123 dag_h->numCommitNodes = nWndNodes + 1;
124 dag_h->numCommits = 0;
125 dag_h->numSuccedents = 1;
127 rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
128 if (nRodNodes > 0)
129 RF_MallocAndAdd(rodNodes, nRodNodes * sizeof(RF_DagNode_t),
130 (RF_DagNode_t *), allocList);
132 /* begin node initialization */
133 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
134 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
135 rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
136 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
138 /* initialize the Rod nodes */
139 for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
140 if (new_asm_h[asmNum]) {
141 pda = new_asm_h[asmNum]->stripeMap->physInfo;
142 while (pda) {
143 rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
144 rodNodes[nodeNum].params[0].p = pda;
145 rodNodes[nodeNum].params[1].p = pda->bufPtr;
146 rodNodes[nodeNum].params[2].v = parityStripeID;
147 rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
148 nodeNum++;
149 pda = pda->next;
153 RF_ASSERT(nodeNum == nRodNodes);
155 /* initialize the wnd nodes */
156 pda = asmap->physInfo;
157 for (i = 0; i < nWndNodes; i++) {
158 rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
159 RF_ASSERT(pda != NULL);
160 wndNodes[i].params[0].p = pda;
161 wndNodes[i].params[1].p = pda->bufPtr;
162 wndNodes[i].params[2].v = parityStripeID;
163 wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
164 pda = pda->next;
167 /* initialize the redundancy node */
168 rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
169 xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
170 for (i = 0; i < nWndNodes; i++) {
171 xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
172 xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
174 for (i = 0; i < nRodNodes; i++) {
175 xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
176 xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
178 xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
179 * at RAID information */
181 /* look for an Rod node that reads a complete SU. If none, alloc a
182 * buffer to receive the parity info. Note that we can't use a new
183 * data buffer because it will not have gotten written when the xor
184 * occurs. */
185 for (i = 0; i < nRodNodes; i++)
186 if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
187 break;
188 if (i == nRodNodes) {
189 RF_MallocAndAdd(xorNode->results[0],
190 rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
191 } else {
192 xorNode->results[0] = rodNodes[i].params[1].p;
195 /* initialize the Lpo node */
196 rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
198 lpoNode->params[0].p = asmap->parityInfo;
199 lpoNode->params[1].p = xorNode->results[0];
200 RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
201 * describe entire
202 * parity unit */
204 /* connect nodes to form graph */
206 /* connect dag header to block node */
207 RF_ASSERT(dag_h->numSuccedents == 1);
208 RF_ASSERT(blockNode->numAntecedents == 0);
209 dag_h->succedents[0] = blockNode;
211 /* connect the block node to the Rod nodes */
212 RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
213 for (i = 0; i < nRodNodes; i++) {
214 RF_ASSERT(rodNodes[i].numAntecedents == 1);
215 blockNode->succedents[i] = &rodNodes[i];
216 rodNodes[i].antecedents[0] = blockNode;
217 rodNodes[i].antType[0] = rf_control;
220 /* connect the block node to the sync node */
221 /* necessary if nRodNodes == 0 */
222 RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
223 blockNode->succedents[nRodNodes] = syncNode;
224 syncNode->antecedents[0] = blockNode;
225 syncNode->antType[0] = rf_control;
227 /* connect the Rod nodes to the syncNode */
228 for (i = 0; i < nRodNodes; i++) {
229 rodNodes[i].succedents[0] = syncNode;
230 syncNode->antecedents[1 + i] = &rodNodes[i];
231 syncNode->antType[1 + i] = rf_control;
234 /* connect the sync node to the xor node */
235 RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
236 RF_ASSERT(xorNode->numAntecedents == 1);
237 syncNode->succedents[0] = xorNode;
238 xorNode->antecedents[0] = syncNode;
239 xorNode->antType[0] = rf_trueData; /* carry forward from sync */
241 /* connect the sync node to the Wnd nodes */
242 for (i = 0; i < nWndNodes; i++) {
243 RF_ASSERT(wndNodes->numAntecedents == 1);
244 syncNode->succedents[1 + i] = &wndNodes[i];
245 wndNodes[i].antecedents[0] = syncNode;
246 wndNodes[i].antType[0] = rf_control;
249 /* connect the xor node to the Lpo node */
250 RF_ASSERT(xorNode->numSuccedents == 1);
251 RF_ASSERT(lpoNode->numAntecedents == 1);
252 xorNode->succedents[0] = lpoNode;
253 lpoNode->antecedents[0] = xorNode;
254 lpoNode->antType[0] = rf_trueData;
256 /* connect the Wnd nodes to the unblock node */
257 RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
258 for (i = 0; i < nWndNodes; i++) {
259 RF_ASSERT(wndNodes->numSuccedents == 1);
260 wndNodes[i].succedents[0] = unblockNode;
261 unblockNode->antecedents[i] = &wndNodes[i];
262 unblockNode->antType[i] = rf_control;
265 /* connect the Lpo node to the unblock node */
266 RF_ASSERT(lpoNode->numSuccedents == 1);
267 lpoNode->succedents[0] = unblockNode;
268 unblockNode->antecedents[nWndNodes] = lpoNode;
269 unblockNode->antType[nWndNodes] = rf_control;
271 /* connect unblock node to terminator */
272 RF_ASSERT(unblockNode->numSuccedents == 1);
273 RF_ASSERT(termNode->numAntecedents == 1);
274 RF_ASSERT(termNode->numSuccedents == 0);
275 unblockNode->succedents[0] = termNode;
276 termNode->antecedents[0] = unblockNode;
277 termNode->antType[0] = rf_control;
283 /******************************************************************************
285 * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
287 * Header
289 * Block
290 * / | ... \ \
291 * / | \ \
292 * Rod Rod Rod Rop
293 * | \ /| \ / | \/ |
294 * | | | /\ |
295 * Wnd Wnd Wnd X
296 * | \ / |
297 * | \ / |
298 * \ \ / Lpo
299 * \ \ / /
300 * +-> Unblock <-+
305 * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
306 * When the access spans a stripe unit boundary and is less than one SU in size, there will
307 * be two Rop -- X -- Wnp branches. I call this the "double-XOR" case.
308 * The second output from each Rod node goes to the X node. In the double-XOR
309 * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
310 * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
312 * The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG.
314 * Note: this DAG ignores all the optimizations related to making the RMWs atomic.
315 * it also has the nasty property that none of the buffers allocated for reading
316 * old data & parity can be freed until the XOR node fires. Need to fix this.
318 * A null qfuncs indicates single fault tolerant
319 *****************************************************************************/
321 void
322 rf_CommonCreateParityLoggingSmallWriteDAG(
323 RF_Raid_t * raidPtr,
324 RF_AccessStripeMap_t * asmap,
325 RF_DagHeader_t * dag_h,
326 void *bp,
327 RF_RaidAccessFlags_t flags,
328 RF_AllocListElem_t * allocList,
329 const RF_RedFuncs_t * pfuncs,
330 const RF_RedFuncs_t * qfuncs)
332 RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
333 RF_DagNode_t *readDataNodes, *readParityNodes;
334 RF_DagNode_t *writeDataNodes, *lpuNodes;
335 RF_DagNode_t *termNode;
336 RF_PhysDiskAddr_t *pda = asmap->physInfo;
337 int numDataNodes = asmap->numStripeUnitsAccessed;
338 int numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
339 int i, j, nNodes, totalNumNodes;
340 RF_ReconUnitNum_t which_ru;
341 int (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
342 int (*qfunc) (RF_DagNode_t * node);
343 const char *name, *qname;
344 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
345 #ifdef RAID_DIAGNOSTIC
346 long nfaults = qfuncs ? 2 : 1;
347 #endif /* RAID_DIAGNOSTIC */
349 if (rf_dagDebug)
350 printf("[Creating parity-logging small-write DAG]\n");
351 RF_ASSERT(numDataNodes > 0);
352 RF_ASSERT(nfaults == 1);
353 dag_h->creator = "ParityLoggingSmallWriteDAG";
355 /* DAG creation occurs in three steps: 1. count the number of nodes in
356 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
357 * nodes */
359 /* Step 1. compute number of nodes in the graph */
361 /* number of nodes: a read and write for each data unit a redundancy
362 * computation node for each parity node a read and Lpu for each
363 * parity unit a block and unblock node (2) a terminator node if
364 * atomic RMW an unlock node for each data unit, redundancy unit */
365 totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
367 nNodes = numDataNodes + numParityNodes;
369 dag_h->numCommitNodes = numDataNodes + numParityNodes;
370 dag_h->numCommits = 0;
371 dag_h->numSuccedents = 1;
373 /* Step 2. create the nodes */
374 RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
375 (RF_DagNode_t *), allocList);
376 i = 0;
377 blockNode = &nodes[i];
378 i += 1;
379 unblockNode = &nodes[i];
380 i += 1;
381 readDataNodes = &nodes[i];
382 i += numDataNodes;
383 readParityNodes = &nodes[i];
384 i += numParityNodes;
385 writeDataNodes = &nodes[i];
386 i += numDataNodes;
387 lpuNodes = &nodes[i];
388 i += numParityNodes;
389 xorNodes = &nodes[i];
390 i += numParityNodes;
391 termNode = &nodes[i];
392 i += 1;
394 RF_ASSERT(i == totalNumNodes);
396 /* Step 3. initialize the nodes */
397 /* initialize block node (Nil) */
398 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
400 /* initialize unblock node (Nil) */
401 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
403 /* initialize terminatory node (Trm) */
404 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
406 /* initialize nodes which read old data (Rod) */
407 for (i = 0; i < numDataNodes; i++) {
408 rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
409 RF_ASSERT(pda != NULL);
410 readDataNodes[i].params[0].p = pda; /* physical disk addr
411 * desc */
412 readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); /* buffer to hold old data */
413 readDataNodes[i].params[2].v = parityStripeID;
414 readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
415 pda = pda->next;
416 readDataNodes[i].propList[0] = NULL;
417 readDataNodes[i].propList[1] = NULL;
420 /* initialize nodes which read old parity (Rop) */
421 pda = asmap->parityInfo;
422 i = 0;
423 for (i = 0; i < numParityNodes; i++) {
424 RF_ASSERT(pda != NULL);
425 rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
426 readParityNodes[i].params[0].p = pda;
427 readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); /* buffer to hold old parity */
428 readParityNodes[i].params[2].v = parityStripeID;
429 readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
430 readParityNodes[i].propList[0] = NULL;
431 pda = pda->next;
434 /* initialize nodes which write new data (Wnd) */
435 pda = asmap->physInfo;
436 for (i = 0; i < numDataNodes; i++) {
437 RF_ASSERT(pda != NULL);
438 rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
439 writeDataNodes[i].params[0].p = pda; /* physical disk addr
440 * desc */
441 writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
442 * data to be written */
443 writeDataNodes[i].params[2].v = parityStripeID;
444 writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
446 pda = pda->next;
450 /* initialize nodes which compute new parity */
451 /* we use the simple XOR func in the double-XOR case, and when we're
452 * accessing only a portion of one stripe unit. the distinction
453 * between the two is that the regular XOR func assumes that the
454 * targbuf is a full SU in size, and examines the pda associated with
455 * the buffer to decide where within the buffer to XOR the data,
456 * whereas the simple XOR func just XORs the data into the start of
457 * the buffer. */
458 if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
459 func = pfuncs->simple;
460 undoFunc = rf_NullNodeUndoFunc;
461 name = pfuncs->SimpleName;
462 if (qfuncs) {
463 qfunc = qfuncs->simple;
464 qname = qfuncs->SimpleName;
466 } else {
467 func = pfuncs->regular;
468 undoFunc = rf_NullNodeUndoFunc;
469 name = pfuncs->RegularName;
470 if (qfuncs) {
471 qfunc = qfuncs->regular;
472 qname = qfuncs->RegularName;
475 /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
476 * nodes, and raidPtr */
477 if (numParityNodes == 2) { /* double-xor case */
478 for (i = 0; i < numParityNodes; i++) {
479 rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
480 * xor */
481 xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
482 xorNodes[i].params[0] = readDataNodes[i].params[0];
483 xorNodes[i].params[1] = readDataNodes[i].params[1];
484 xorNodes[i].params[2] = readParityNodes[i].params[0];
485 xorNodes[i].params[3] = readParityNodes[i].params[1];
486 xorNodes[i].params[4] = writeDataNodes[i].params[0];
487 xorNodes[i].params[5] = writeDataNodes[i].params[1];
488 xorNodes[i].params[6].p = raidPtr;
489 xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
490 * target buf */
492 } else {
493 /* there is only one xor node in this case */
494 rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
495 xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
496 for (i = 0; i < numDataNodes + 1; i++) {
497 /* set up params related to Rod and Rop nodes */
498 xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
499 xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
501 for (i = 0; i < numDataNodes; i++) {
502 /* set up params related to Wnd and Wnp nodes */
503 xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
504 xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
506 xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
507 * at RAID information */
508 xorNodes[0].results[0] = readParityNodes[0].params[1].p;
511 /* initialize the log node(s) */
512 pda = asmap->parityInfo;
513 for (i = 0; i < numParityNodes; i++) {
514 RF_ASSERT(pda);
515 rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
516 lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */
517 lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to
518 * parity */
519 pda = pda->next;
523 /* Step 4. connect the nodes */
525 /* connect header to block node */
526 RF_ASSERT(dag_h->numSuccedents == 1);
527 RF_ASSERT(blockNode->numAntecedents == 0);
528 dag_h->succedents[0] = blockNode;
530 /* connect block node to read old data nodes */
531 RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
532 for (i = 0; i < numDataNodes; i++) {
533 blockNode->succedents[i] = &readDataNodes[i];
534 RF_ASSERT(readDataNodes[i].numAntecedents == 1);
535 readDataNodes[i].antecedents[0] = blockNode;
536 readDataNodes[i].antType[0] = rf_control;
539 /* connect block node to read old parity nodes */
540 for (i = 0; i < numParityNodes; i++) {
541 blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
542 RF_ASSERT(readParityNodes[i].numAntecedents == 1);
543 readParityNodes[i].antecedents[0] = blockNode;
544 readParityNodes[i].antType[0] = rf_control;
547 /* connect read old data nodes to write new data nodes */
548 for (i = 0; i < numDataNodes; i++) {
549 RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
550 for (j = 0; j < numDataNodes; j++) {
551 RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
552 readDataNodes[i].succedents[j] = &writeDataNodes[j];
553 writeDataNodes[j].antecedents[i] = &readDataNodes[i];
554 if (i == j)
555 writeDataNodes[j].antType[i] = rf_antiData;
556 else
557 writeDataNodes[j].antType[i] = rf_control;
561 /* connect read old data nodes to xor nodes */
562 for (i = 0; i < numDataNodes; i++)
563 for (j = 0; j < numParityNodes; j++) {
564 RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
565 readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
566 xorNodes[j].antecedents[i] = &readDataNodes[i];
567 xorNodes[j].antType[i] = rf_trueData;
570 /* connect read old parity nodes to write new data nodes */
571 for (i = 0; i < numParityNodes; i++) {
572 RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
573 for (j = 0; j < numDataNodes; j++) {
574 readParityNodes[i].succedents[j] = &writeDataNodes[j];
575 writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
576 writeDataNodes[j].antType[numDataNodes + i] = rf_control;
580 /* connect read old parity nodes to xor nodes */
581 for (i = 0; i < numParityNodes; i++)
582 for (j = 0; j < numParityNodes; j++) {
583 readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
584 xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
585 xorNodes[j].antType[numDataNodes + i] = rf_trueData;
588 /* connect xor nodes to write new parity nodes */
589 for (i = 0; i < numParityNodes; i++) {
590 RF_ASSERT(xorNodes[i].numSuccedents == 1);
591 RF_ASSERT(lpuNodes[i].numAntecedents == 1);
592 xorNodes[i].succedents[0] = &lpuNodes[i];
593 lpuNodes[i].antecedents[0] = &xorNodes[i];
594 lpuNodes[i].antType[0] = rf_trueData;
597 for (i = 0; i < numDataNodes; i++) {
598 /* connect write new data nodes to unblock node */
599 RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
600 RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
601 writeDataNodes[i].succedents[0] = unblockNode;
602 unblockNode->antecedents[i] = &writeDataNodes[i];
603 unblockNode->antType[i] = rf_control;
606 /* connect write new parity nodes to unblock node */
607 for (i = 0; i < numParityNodes; i++) {
608 RF_ASSERT(lpuNodes[i].numSuccedents == 1);
609 lpuNodes[i].succedents[0] = unblockNode;
610 unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
611 unblockNode->antType[numDataNodes + i] = rf_control;
614 /* connect unblock node to terminator */
615 RF_ASSERT(unblockNode->numSuccedents == 1);
616 RF_ASSERT(termNode->numAntecedents == 1);
617 RF_ASSERT(termNode->numSuccedents == 0);
618 unblockNode->succedents[0] = termNode;
619 termNode->antecedents[0] = unblockNode;
620 termNode->antType[0] = rf_control;
624 void
625 rf_CreateParityLoggingSmallWriteDAG(
626 RF_Raid_t * raidPtr,
627 RF_AccessStripeMap_t * asmap,
628 RF_DagHeader_t * dag_h,
629 void *bp,
630 RF_RaidAccessFlags_t flags,
631 RF_AllocListElem_t * allocList,
632 const RF_RedFuncs_t * pfuncs,
633 const RF_RedFuncs_t * qfuncs)
635 dag_h->creator = "ParityLoggingSmallWriteDAG";
636 rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
640 void
641 rf_CreateParityLoggingLargeWriteDAG(
642 RF_Raid_t * raidPtr,
643 RF_AccessStripeMap_t * asmap,
644 RF_DagHeader_t * dag_h,
645 void *bp,
646 RF_RaidAccessFlags_t flags,
647 RF_AllocListElem_t * allocList,
648 int nfaults,
649 int (*redFunc) (RF_DagNode_t *))
651 dag_h->creator = "ParityLoggingSmallWriteDAG";
652 rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
654 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */