No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / raidframe / rf_parityscan.c
blobdd1fd443d7e35f4725ebae6e4d71e10d8cddda5c
1 /* $NetBSD: rf_parityscan.c,v 1.32 2006/11/16 01:33:23 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Author: Mark Holland
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
29 /*****************************************************************************
31 * rf_parityscan.c -- misc utilities related to parity verification
33 ****************************************************************************/
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.32 2006/11/16 01:33:23 christos Exp $");
38 #include <dev/raidframe/raidframevar.h>
40 #include "rf_raid.h"
41 #include "rf_dag.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_dagutils.h"
44 #include "rf_mcpair.h"
45 #include "rf_general.h"
46 #include "rf_engine.h"
47 #include "rf_parityscan.h"
48 #include "rf_map.h"
49 #include "rf_paritymap.h"
51 /*****************************************************************************
53 * walk through the entire arry and write new parity. This works by
54 * creating two DAGs, one to read a stripe of data and one to write
55 * new parity. The first is executed, the data is xored together, and
56 * then the second is executed. To avoid constantly building and
57 * tearing down the DAGs, we create them a priori and fill them in
58 * with the mapping information as we go along.
60 * there should never be more than one thread running this.
62 ****************************************************************************/
64 int
65 rf_RewriteParity(RF_Raid_t *raidPtr)
67 if (raidPtr->parity_map != NULL)
68 return rf_paritymap_rewrite(raidPtr->parity_map);
69 else
70 return rf_RewriteParityRange(raidPtr, 0, raidPtr->totalSectors);
73 int
74 rf_RewriteParityRange(RF_Raid_t *raidPtr, RF_SectorNum_t sec_begin,
75 RF_SectorNum_t sec_len)
77 /*
78 * Note: It is the caller's responsibility to ensure that
79 * sec_begin and sec_len are stripe-aligned.
81 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
82 RF_AccessStripeMapHeader_t *asm_h;
83 int ret_val;
84 int rc;
85 RF_SectorNum_t i;
87 if (raidPtr->Layout.map->faultsTolerated == 0) {
88 /* There isn't any parity. Call it "okay." */
89 return (RF_PARITY_OKAY);
91 if (raidPtr->status != rf_rs_optimal) {
93 * We're in degraded mode. Don't try to verify parity now!
94 * XXX: this should be a "we don't want to", not a
95 * "we can't" error.
97 return (RF_PARITY_COULD_NOT_VERIFY);
100 ret_val = 0;
102 rc = RF_PARITY_OKAY;
104 for (i = sec_begin; i < sec_begin + sec_len &&
105 rc <= RF_PARITY_CORRECTED;
106 i += layoutPtr->dataSectorsPerStripe) {
107 if (raidPtr->waitShutdown) {
108 /* Someone is pulling the plug on this set...
109 abort the re-write */
110 return (1);
112 asm_h = rf_MapAccess(raidPtr, i,
113 layoutPtr->dataSectorsPerStripe,
114 NULL, RF_DONT_REMAP);
115 raidPtr->parity_rewrite_stripes_done =
116 i / layoutPtr->dataSectorsPerStripe ;
117 rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
119 switch (rc) {
120 case RF_PARITY_OKAY:
121 case RF_PARITY_CORRECTED:
122 break;
123 case RF_PARITY_BAD:
124 printf("Parity bad during correction\n");
125 ret_val = 1;
126 break;
127 case RF_PARITY_COULD_NOT_CORRECT:
128 printf("Could not correct bad parity\n");
129 ret_val = 1;
130 break;
131 case RF_PARITY_COULD_NOT_VERIFY:
132 printf("Could not verify parity\n");
133 ret_val = 1;
134 break;
135 default:
136 printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
137 ret_val = 1;
139 rf_FreeAccessStripeMap(asm_h);
141 return (ret_val);
143 /*****************************************************************************
145 * verify that the parity in a particular stripe is correct. we
146 * validate only the range of parity defined by parityPDA, since this
147 * is all we have locked. The way we do this is to create an asm that
148 * maps the whole stripe and then range-restrict it to the parity
149 * region defined by the parityPDA.
151 ****************************************************************************/
153 rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm,
154 int correct_it, RF_RaidAccessFlags_t flags)
156 RF_PhysDiskAddr_t *parityPDA;
157 RF_AccessStripeMap_t *doasm;
158 const RF_LayoutSW_t *lp;
159 int lrc, rc;
161 lp = raidPtr->Layout.map;
162 if (lp->faultsTolerated == 0) {
164 * There isn't any parity. Call it "okay."
166 return (RF_PARITY_OKAY);
168 rc = RF_PARITY_OKAY;
169 if (lp->VerifyParity) {
170 for (doasm = aasm; doasm; doasm = doasm->next) {
171 for (parityPDA = doasm->parityInfo; parityPDA;
172 parityPDA = parityPDA->next) {
173 lrc = lp->VerifyParity(raidPtr,
174 doasm->raidAddress,
175 parityPDA,
176 correct_it, flags);
177 if (lrc > rc) {
178 /* see rf_parityscan.h for why this
179 * works */
180 rc = lrc;
184 } else {
185 rc = RF_PARITY_COULD_NOT_VERIFY;
187 return (rc);
191 rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
192 RF_PhysDiskAddr_t *parityPDA, int correct_it,
193 RF_RaidAccessFlags_t flags)
195 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
196 RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
197 raidAddr);
198 RF_SectorCount_t numsector = parityPDA->numSector;
199 int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
200 int bytesPerStripe = numbytes * layoutPtr->numDataCol;
201 RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
202 RF_DagNode_t *blockNode, *wrBlock;
203 RF_AccessStripeMapHeader_t *asm_h;
204 RF_AccessStripeMap_t *asmap;
205 RF_AllocListElem_t *alloclist;
206 RF_PhysDiskAddr_t *pda;
207 char *pbuf, *bf, *end_p, *p;
208 int i, retcode;
209 RF_ReconUnitNum_t which_ru;
210 RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
211 raidAddr,
212 &which_ru);
213 int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
214 #if RF_ACC_TRACE > 0
215 RF_AccTraceEntry_t tracerec;
216 #endif
217 RF_MCPair_t *mcpair;
219 retcode = RF_PARITY_OKAY;
221 mcpair = rf_AllocMCPair();
222 rf_MakeAllocList(alloclist);
223 RF_MallocAndAdd(bf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
224 RF_MallocAndAdd(pbuf, numbytes, (char *), alloclist);
225 end_p = bf + bytesPerStripe;
227 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, bf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
228 "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
229 blockNode = rd_dag_h->succedents[0];
231 /* map the stripe and fill in the PDAs in the dag */
232 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, bf, RF_DONT_REMAP);
233 asmap = asm_h->stripeMap;
235 for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
236 RF_ASSERT(pda);
237 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
238 RF_ASSERT(pda->numSector != 0);
239 if (rf_TryToRedirectPDA(raidPtr, pda, 0))
240 goto out; /* no way to verify parity if disk is
241 * dead. return w/ good status */
242 blockNode->succedents[i]->params[0].p = pda;
243 blockNode->succedents[i]->params[2].v = psID;
244 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
247 RF_ASSERT(!asmap->parityInfo->next);
248 rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
249 RF_ASSERT(asmap->parityInfo->numSector != 0);
250 if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
251 goto out;
252 blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
254 /* fire off the DAG */
255 #if RF_ACC_TRACE > 0
256 memset((char *) &tracerec, 0, sizeof(tracerec));
257 rd_dag_h->tracerec = &tracerec;
258 #endif
259 #if 0
260 if (rf_verifyParityDebug) {
261 printf("Parity verify read dag:\n");
262 rf_PrintDAGList(rd_dag_h);
264 #endif
265 RF_LOCK_MUTEX(mcpair->mutex);
266 mcpair->flag = 0;
267 RF_UNLOCK_MUTEX(mcpair->mutex);
269 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
270 (void *) mcpair);
272 RF_LOCK_MUTEX(mcpair->mutex);
273 while (!mcpair->flag)
274 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
275 RF_UNLOCK_MUTEX(mcpair->mutex);
276 if (rd_dag_h->status != rf_enable) {
277 RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
278 retcode = RF_PARITY_COULD_NOT_VERIFY;
279 goto out;
281 for (p = bf; p < end_p; p += numbytes) {
282 rf_bxor(p, pbuf, numbytes);
284 for (i = 0; i < numbytes; i++) {
285 if (pbuf[i] != bf[bytesPerStripe + i]) {
286 if (!correct_it)
287 RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
288 i, (u_char) bf[bytesPerStripe + i], (u_char) pbuf[i]);
289 retcode = RF_PARITY_BAD;
290 break;
294 if (retcode && correct_it) {
295 wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
296 "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
297 wrBlock = wr_dag_h->succedents[0];
298 wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
299 wrBlock->succedents[0]->params[2].v = psID;
300 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
301 #if RF_ACC_TRACE > 0
302 memset((char *) &tracerec, 0, sizeof(tracerec));
303 wr_dag_h->tracerec = &tracerec;
304 #endif
305 #if 0
306 if (rf_verifyParityDebug) {
307 printf("Parity verify write dag:\n");
308 rf_PrintDAGList(wr_dag_h);
310 #endif
311 RF_LOCK_MUTEX(mcpair->mutex);
312 mcpair->flag = 0;
313 RF_UNLOCK_MUTEX(mcpair->mutex);
315 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
316 (void *) mcpair);
318 RF_LOCK_MUTEX(mcpair->mutex);
319 while (!mcpair->flag)
320 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
321 RF_UNLOCK_MUTEX(mcpair->mutex);
322 if (wr_dag_h->status != rf_enable) {
323 RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
324 retcode = RF_PARITY_COULD_NOT_CORRECT;
326 rf_FreeDAG(wr_dag_h);
327 if (retcode == RF_PARITY_BAD)
328 retcode = RF_PARITY_CORRECTED;
330 out:
331 rf_FreeAccessStripeMap(asm_h);
332 rf_FreeAllocList(alloclist);
333 rf_FreeDAG(rd_dag_h);
334 rf_FreeMCPair(mcpair);
335 return (retcode);
339 rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
340 int parity)
342 if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) {
343 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
344 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
345 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
346 #if RF_DEBUG_VERIFYPARITY
347 RF_RowCol_t oc = pda->col;
348 RF_SectorNum_t os = pda->startSector;
349 #endif
350 if (parity) {
351 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
352 #if RF_DEBUG_VERIFYPARITY
353 if (rf_verifyParityDebug)
354 printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n",
355 oc, (long) os, pda->col, (long) pda->startSector);
356 #endif
357 } else {
358 (raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
359 #if RF_DEBUG_VERIFYPARITY
360 if (rf_verifyParityDebug)
361 printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n",
362 oc, (long) os, pda->col, (long) pda->startSector);
363 #endif
365 } else {
366 #endif
367 RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol;
368 pda->col = spCol;
369 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
371 #endif
374 if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status))
375 return (1);
376 return (0);
378 /*****************************************************************************
380 * currently a stub.
382 * takes as input an ASM describing a write operation and containing
383 * one failure, and verifies that the parity was correctly updated to
384 * reflect the write.
386 * if it's a data unit that's failed, we read the other data units in
387 * the stripe and the parity unit, XOR them together, and verify that
388 * we get the data intended for the failed disk. Since it's easy, we
389 * also validate that the right data got written to the surviving data
390 * disks.
392 * If it's the parity that failed, there's really no validation we can
393 * do except the above verification that the right data got written to
394 * all disks. This is because the new data intended for the failed
395 * disk is supplied in the ASM, but this is of course not the case for
396 * the new parity.
398 ****************************************************************************/
399 #if 0
401 rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh)
403 return (0);
405 #endif
406 /* creates a simple DAG with a header, a block-recon node at level 1,
407 * nNodes nodes at level 2, an unblock-recon node at level 3, and a
408 * terminator node at level 4. The stripe address field in the block
409 * and unblock nodes are not touched, nor are the pda fields in the
410 * second-level nodes, so they must be filled in later.
412 * commit point is established at unblock node - this means that any
413 * failure during dag execution causes the dag to fail
415 * name - node names at the second level
417 RF_DagHeader_t *
418 rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf,
419 int (*doFunc) (RF_DagNode_t * node),
420 int (*undoFunc) (RF_DagNode_t * node),
421 const char *name, RF_AllocListElem_t *alloclist,
422 RF_RaidAccessFlags_t flags, int priority)
424 RF_DagHeader_t *dag_h;
425 RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode;
426 int i;
428 /* grab a DAG header... */
430 dag_h = rf_AllocDAGHeader();
431 dag_h->raidPtr = (void *) raidPtr;
432 dag_h->allocList = NULL;/* we won't use this alloc list */
433 dag_h->status = rf_enable;
434 dag_h->numSuccedents = 1;
435 dag_h->creator = "SimpleDAG";
437 /* this dag can not commit until the unblock node is reached errors
438 * prior to the commit point imply the dag has failed */
439 dag_h->numCommitNodes = 1;
440 dag_h->numCommits = 0;
442 /* create the nodes, the block & unblock nodes, and the terminator
443 * node */
445 for (i = 0; i < nNodes; i++) {
446 tmpNode = rf_AllocDAGNode();
447 tmpNode->list_next = dag_h->nodes;
448 dag_h->nodes = tmpNode;
450 nodes = dag_h->nodes;
452 blockNode = rf_AllocDAGNode();
453 blockNode->list_next = dag_h->nodes;
454 dag_h->nodes = blockNode;
456 unblockNode = rf_AllocDAGNode();
457 unblockNode->list_next = dag_h->nodes;
458 dag_h->nodes = unblockNode;
460 termNode = rf_AllocDAGNode();
461 termNode->list_next = dag_h->nodes;
462 dag_h->nodes = termNode;
464 dag_h->succedents[0] = blockNode;
465 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
466 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
467 unblockNode->succedents[0] = termNode;
468 tmpNode = nodes;
469 for (i = 0; i < nNodes; i++) {
470 blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode;
471 unblockNode->antType[i] = rf_control;
472 rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
473 tmpNode->succedents[0] = unblockNode;
474 tmpNode->antecedents[0] = blockNode;
475 tmpNode->antType[0] = rf_control;
476 tmpNode->params[1].p = (databuf + (i * bytesPerSU));
477 tmpNode = tmpNode->list_next;
479 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
480 termNode->antecedents[0] = unblockNode;
481 termNode->antType[0] = rf_control;
482 return (dag_h);