No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / raidframe / rf_pqdegdags.c
blob57c974b9052fe17c23bdbd80cd2fbdcea4560b0c
1 /* $NetBSD: rf_pqdegdags.c,v 1.11 2005/12/11 12:23:37 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Author: Daniel Stodolsky
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
30 * rf_pqdegdags.c
31 * Degraded mode dags for double fault cases.
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_pqdegdags.c,v 1.11 2005/12/11 12:23:37 christos Exp $");
38 #include "rf_archs.h"
40 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
42 #include <dev/raidframe/raidframevar.h>
44 #include "rf_raid.h"
45 #include "rf_dag.h"
46 #include "rf_dagdegrd.h"
47 #include "rf_dagdegwr.h"
48 #include "rf_dagfuncs.h"
49 #include "rf_dagutils.h"
50 #include "rf_etimer.h"
51 #include "rf_acctrace.h"
52 #include "rf_general.h"
53 #include "rf_pqdegdags.h"
54 #include "rf_pq.h"
56 static void
57 applyPDA(RF_Raid_t * raidPtr, RF_PhysDiskAddr_t * pda, RF_PhysDiskAddr_t * ppda,
58 RF_PhysDiskAddr_t * qpda, void *bp);
61 Two data drives have failed, and we are doing a read that covers one of them.
62 We may also be reading some of the surviving drives.
65 *****************************************************************************************
67 * creates a DAG to perform a degraded-mode read of data within one stripe.
68 * This DAG is as follows:
70 * Hdr
71 * |
72 * Block
73 * / / \ \ \ \
74 * Rud ... Rud Rrd ... Rrd Rp Rq
75 * | \ | \ | \ | \ | \ | \
77 * | |
78 * Unblock X
79 * \ /
80 * ------ T ------
82 * Each R node is a successor of the L node
83 * One successor arc from each R node goes to U, and the other to X
84 * There is one Rud for each chunk of surviving user data requested by the user,
85 * and one Rrd for each chunk of surviving user data _not_ being read by the user
86 * R = read, ud = user data, rd = recovery (surviving) data, p = P data, q = Qdata
87 * X = pq recovery node, T = terminate
89 * The block & unblock nodes are leftovers from a previous version. They
90 * do nothing, but I haven't deleted them because it would be a tremendous
91 * effort to put them back in.
93 * Note: The target buffer for the XOR node is set to the actual user buffer where the
94 * failed data is supposed to end up. This buffer is zero'd by the code here. Thus,
95 * if you create a degraded read dag, use it, and then re-use, you have to be sure to
96 * zero the target buffer prior to the re-use.
98 * Every buffer read is passed to the pq recovery node, whose job it is to sort out whats
99 * needs and what's not.
100 ****************************************************************************************/
101 /* init a disk node with 2 successors and one predecessor */
102 #define INIT_DISK_NODE(node,name) \
103 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
104 (node)->succedents[0] = unblockNode; \
105 (node)->succedents[1] = recoveryNode; \
106 (node)->antecedents[0] = blockNode; \
107 (node)->antType[0] = rf_control
109 #define DISK_NODE_PARAMS(_node_,_p_) \
110 (_node_).params[0].p = _p_ ; \
111 (_node_).params[1].p = (_p_)->bufPtr; \
112 (_node_).params[2].v = parityStripeID; \
113 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
115 #define DISK_NODE_PDA(node) ((node)->params[0].p)
117 RF_CREATE_DAG_FUNC_DECL(rf_PQ_DoubleDegRead)
119 rf_DoubleDegRead(raidPtr, asmap, dag_h, bp, flags, allocList,
120 "Rq", "PQ Recovery", rf_PQDoubleRecoveryFunc);
123 static void
124 applyPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda, RF_PhysDiskAddr_t *ppda, RF_PhysDiskAddr_t *qpda, void *bp)
126 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
127 RF_RaidAddr_t s0off = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
128 RF_SectorCount_t s0len = ppda->numSector, len;
129 RF_SectorNum_t suoffset;
130 unsigned coeff;
131 char *pbuf = ppda->bufPtr;
132 char *qbuf = qpda->bufPtr;
133 char *buf;
134 int delta;
136 suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
137 len = pda->numSector;
138 /* see if pda intersects a recovery pda */
139 if ((suoffset < s0off + s0len) && (suoffset + len > s0off)) {
140 buf = pda->bufPtr;
141 coeff = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), pda->raidAddress);
142 coeff = (coeff % raidPtr->Layout.numDataCol);
144 if (suoffset < s0off) {
145 delta = s0off - suoffset;
146 buf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
147 suoffset = s0off;
148 len -= delta;
150 if (suoffset > s0off) {
151 delta = suoffset - s0off;
152 pbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
153 qbuf += rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), delta);
155 if ((suoffset + len) > (s0len + s0off))
156 len = s0len + s0off - suoffset;
158 /* src, dest, len */
159 rf_bxor(buf, pbuf, rf_RaidAddressToByte(raidPtr, len), bp);
161 /* dest, src, len, coeff */
162 rf_IncQ((unsigned long *) qbuf, (unsigned long *) buf, rf_RaidAddressToByte(raidPtr, len), coeff);
166 Recover data in the case of a double failure. There can be two
167 result buffers, one for each chunk of data trying to be recovered.
168 The params are pda's that have not been range restricted or otherwise
169 politely massaged - this should be done here. The last params are the
170 pdas of P and Q, followed by the raidPtr. The list can look like
172 pda, pda, ... , p pda, q pda, raidptr, asm
176 pda, pda, ... , p_1 pda, p_2 pda, q_1 pda, q_2 pda, raidptr, asm
178 depending on wether two chunks of recovery data were required.
180 The second condition only arises if there are two failed buffers
181 whose lengths do not add up a stripe unit.
186 rf_PQDoubleRecoveryFunc(RF_DagNode_t *node)
188 int np = node->numParams;
189 RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
190 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
191 RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
192 int d, i;
193 unsigned coeff;
194 RF_RaidAddr_t sosAddr, suoffset;
195 RF_SectorCount_t len, secPerSU = layoutPtr->sectorsPerStripeUnit;
196 int two = 0;
197 RF_PhysDiskAddr_t *ppda, *ppda2, *qpda, *qpda2, *pda, npda;
198 char *buf;
199 int numDataCol = layoutPtr->numDataCol;
200 RF_Etimer_t timer;
201 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
203 RF_ETIMER_START(timer);
205 if (asmap->failedPDAs[1] &&
206 (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
207 RF_ASSERT(0);
208 ppda = node->params[np - 6].p;
209 ppda2 = node->params[np - 5].p;
210 qpda = node->params[np - 4].p;
211 qpda2 = node->params[np - 3].p;
212 d = (np - 6);
213 two = 1;
214 } else {
215 ppda = node->params[np - 4].p;
216 qpda = node->params[np - 3].p;
217 d = (np - 4);
220 for (i = 0; i < d; i++) {
221 pda = node->params[i].p;
222 buf = pda->bufPtr;
223 suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
224 len = pda->numSector;
225 coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
226 /* compute the data unit offset within the column */
227 coeff = (coeff % raidPtr->Layout.numDataCol);
228 /* see if pda intersects a recovery pda */
229 applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
230 if (two)
231 applyPDA(raidPtr, pda, ppda, qpda, node->dagHdr->bp);
234 /* ok, we got the parity back to the point where we can recover. We
235 * now need to determine the coeff of the columns that need to be
236 * recovered. We can also only need to recover a single stripe unit. */
238 if (asmap->failedPDAs[1] == NULL) { /* only a single stripe unit
239 * to recover. */
240 pda = asmap->failedPDAs[0];
241 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
242 /* need to determine the column of the other failed disk */
243 coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
244 /* compute the data unit offset within the column */
245 coeff = (coeff % raidPtr->Layout.numDataCol);
246 for (i = 0; i < numDataCol; i++) {
247 npda.raidAddress = sosAddr + (i * secPerSU);
248 (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
249 /* skip over dead disks */
250 if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
251 if (i != coeff)
252 break;
254 RF_ASSERT(i < numDataCol);
255 RF_ASSERT(two == 0);
256 /* recover the data. Since we need only want to recover one
257 * column, we overwrite the parity with the other one. */
258 if (coeff < i) /* recovering 'a' */
259 rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) pda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
260 else /* recovering 'b' */
261 rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) pda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
262 } else
263 RF_PANIC();
265 RF_ETIMER_STOP(timer);
266 RF_ETIMER_EVAL(timer);
267 if (tracerec)
268 tracerec->q_us += RF_ETIMER_VAL_US(timer);
269 rf_GenericWakeupFunc(node, 0);
270 return (0);
274 rf_PQWriteDoubleRecoveryFunc(RF_DagNode_t *node)
276 /* The situation:
278 * We are doing a write that hits only one failed data unit. The other
279 * failed data unit is not being overwritten, so we need to generate
280 * it.
282 * For the moment, we assume all the nonfailed data being written is in
283 * the shadow of the failed data unit. (i.e,, either a single data
284 * unit write or the entire failed stripe unit is being overwritten. )
286 * Recovery strategy: apply the recovery data to the parity and q. Use P
287 * & Q to recover the second failed data unit in P. Zero fill Q, then
288 * apply the recovered data to p. Then apply the data being written to
289 * the failed drive. Then walk through the surviving drives, applying
290 * new data when it exists, othewise the recovery data. Quite a mess.
293 * The params
295 * read pda0, read pda1, ... read pda (numDataCol-3), write pda0, ... ,
296 * write pda (numStripeUnitAccess - numDataFailed), failed pda,
297 * raidPtr, asmap */
299 int np = node->numParams;
300 RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np - 1].p;
301 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np - 2].p;
302 RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & (raidPtr->Layout);
303 int i;
304 RF_RaidAddr_t sosAddr;
305 unsigned coeff;
306 RF_StripeCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
307 RF_PhysDiskAddr_t *ppda, *qpda, *pda, npda;
308 int numDataCol = layoutPtr->numDataCol;
309 RF_Etimer_t timer;
310 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
312 RF_ASSERT(node->numResults == 2);
313 RF_ASSERT(asmap->failedPDAs[1] == NULL);
314 RF_ETIMER_START(timer);
315 ppda = node->results[0];
316 qpda = node->results[1];
317 /* apply the recovery data */
318 for (i = 0; i < numDataCol - 2; i++)
319 applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
321 /* determine the other failed data unit */
322 pda = asmap->failedPDAs[0];
323 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
324 /* need to determine the column of the other failed disk */
325 coeff = rf_RaidAddressToStripeUnitID(layoutPtr, pda->raidAddress);
326 /* compute the data unit offset within the column */
327 coeff = (coeff % raidPtr->Layout.numDataCol);
328 for (i = 0; i < numDataCol; i++) {
329 npda.raidAddress = sosAddr + (i * secPerSU);
330 (raidPtr->Layout.map->MapSector) (raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
331 /* skip over dead disks */
332 if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
333 if (i != coeff)
334 break;
336 RF_ASSERT(i < numDataCol);
337 /* recover the data. The column we want to recover we write over the
338 * parity. The column we don't care about we dump in q. */
339 if (coeff < i) /* recovering 'a' */
340 rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), coeff, i);
341 else /* recovering 'b' */
342 rf_PQ_recover((unsigned long *) ppda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, pda->numSector), i, coeff);
344 /* OK. The valid data is in P. Zero fill Q, then inc it into it. */
345 memset(qpda->bufPtr, 0, rf_RaidAddressToByte(raidPtr, qpda->numSector));
346 rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) ppda->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), i);
348 /* now apply all the write data to the buffer */
349 /* single stripe unit write case: the failed data is only thing we are
350 * writing. */
351 RF_ASSERT(asmap->numStripeUnitsAccessed == 1);
352 /* dest, src, len, coeff */
353 rf_IncQ((unsigned long *) qpda->bufPtr, (unsigned long *) asmap->failedPDAs[0]->bufPtr, rf_RaidAddressToByte(raidPtr, qpda->numSector), coeff);
354 rf_bxor(asmap->failedPDAs[0]->bufPtr, ppda->bufPtr, rf_RaidAddressToByte(raidPtr, ppda->numSector), node->dagHdr->bp);
356 /* now apply all the recovery data */
357 for (i = 0; i < numDataCol - 2; i++)
358 applyPDA(raidPtr, node->params[i].p, ppda, qpda, node->dagHdr->bp);
360 RF_ETIMER_STOP(timer);
361 RF_ETIMER_EVAL(timer);
362 if (tracerec)
363 tracerec->q_us += RF_ETIMER_VAL_US(timer);
365 rf_GenericWakeupFunc(node, 0);
366 return (0);
368 RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDLargeWrite)
370 RF_PANIC();
373 Two lost data unit write case.
375 There are really two cases here:
377 (1) The write completely covers the two lost data units.
378 In that case, a reconstruct write that doesn't write the
379 failed data units will do the correct thing. So in this case,
380 the dag looks like
382 full stripe read of surviving data units (not being overwriten)
383 write new data (ignoring failed units) compute P&Q
384 write P&Q
387 (2) The write does not completely cover both failed data units
388 (but touches at least one of them). Then we need to do the
389 equivalent of a reconstruct read to recover the missing data
390 unit from the other stripe.
392 For any data we are writing that is not in the "shadow"
393 of the failed units, we need to do a four cycle update.
394 PANIC on this case. for now
398 RF_CREATE_DAG_FUNC_DECL(rf_PQ_200_CreateWriteDAG)
400 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
401 RF_SectorCount_t sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
402 int sum;
403 int nf = asmap->numDataFailed;
405 sum = asmap->failedPDAs[0]->numSector;
406 if (nf == 2)
407 sum += asmap->failedPDAs[1]->numSector;
409 if ((nf == 2) && (sum == (2 * sectorsPerSU))) {
410 /* large write case */
411 rf_PQ_DDLargeWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
412 return;
414 if ((nf == asmap->numStripeUnitsAccessed) || (sum >= sectorsPerSU)) {
415 /* small write case, no user data not in shadow */
416 rf_PQ_DDSimpleSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList);
417 return;
419 RF_PANIC();
421 RF_CREATE_DAG_FUNC_DECL(rf_PQ_DDSimpleSmallWrite)
423 rf_DoubleDegSmallWrite(raidPtr, asmap, dag_h, bp, flags, allocList, "Rq", "Wq", "PQ Recovery", rf_PQWriteDoubleRecoveryFunc);
425 #endif /* (RF_INCLUDE_DECL_PQ > 0) ||
426 * (RF_INCLUDE_RAID6 > 0) */