No empty .Rs/.Re
[netbsd-mini2440.git] / sys / dev / raidframe / rf_raid1.c
blob02736ea0230722735e5ed753b355c810efaffcbf
1 /* $NetBSD: rf_raid1.c,v 1.30 2007/03/04 06:02:39 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Author: William V. Courtright II
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
29 /*****************************************************************************
31 * rf_raid1.c -- implements RAID Level 1
33 *****************************************************************************/
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.30 2007/03/04 06:02:39 christos Exp $");
38 #include "rf_raid.h"
39 #include "rf_raid1.h"
40 #include "rf_dag.h"
41 #include "rf_dagffrd.h"
42 #include "rf_dagffwr.h"
43 #include "rf_dagdegrd.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_diskqueue.h"
47 #include "rf_general.h"
48 #include "rf_utils.h"
49 #include "rf_parityscan.h"
50 #include "rf_mcpair.h"
51 #include "rf_layout.h"
52 #include "rf_map.h"
53 #include "rf_engine.h"
54 #include "rf_reconbuffer.h"
56 typedef struct RF_Raid1ConfigInfo_s {
57 RF_RowCol_t **stripeIdentifier;
58 } RF_Raid1ConfigInfo_t;
59 /* start of day code specific to RAID level 1 */
60 int
61 rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
62 RF_Config_t *cfgPtr)
64 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
65 RF_Raid1ConfigInfo_t *info;
66 RF_RowCol_t i;
68 /* create a RAID level 1 configuration structure */
69 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
70 if (info == NULL)
71 return (ENOMEM);
72 layoutPtr->layoutSpecificInfo = (void *) info;
74 /* ... and fill it in. */
75 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
76 if (info->stripeIdentifier == NULL)
77 return (ENOMEM);
78 for (i = 0; i < (raidPtr->numCol / 2); i++) {
79 info->stripeIdentifier[i][0] = (2 * i);
80 info->stripeIdentifier[i][1] = (2 * i) + 1;
83 /* this implementation of RAID level 1 uses one row of numCol disks
84 * and allows multiple (numCol / 2) stripes per row. A stripe
85 * consists of a single data unit and a single parity (mirror) unit.
86 * stripe id = raidAddr / stripeUnitSize */
87 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
88 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
89 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
90 layoutPtr->numDataCol = 1;
91 layoutPtr->numParityCol = 1;
92 return (0);
96 /* returns the physical disk location of the primary copy in the mirror pair */
97 void
98 rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
99 RF_RowCol_t *col, RF_SectorNum_t *diskSector,
100 int remap)
102 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
103 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
105 *col = 2 * mirrorPair;
106 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
110 /* Map Parity
112 * returns the physical disk location of the secondary copy in the mirror
113 * pair
115 void
116 rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
117 RF_RowCol_t *col, RF_SectorNum_t *diskSector,
118 int remap)
120 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
121 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
123 *col = (2 * mirrorPair) + 1;
125 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
129 /* IdentifyStripeRAID1
131 * returns a list of disks for a given redundancy group
133 void
134 rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
135 RF_RowCol_t **diskids)
137 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
138 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
139 RF_ASSERT(stripeID >= 0);
140 RF_ASSERT(addr >= 0);
141 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
142 RF_ASSERT(*diskids);
146 /* MapSIDToPSIDRAID1
148 * maps a logical stripe to a stripe in the redundant array
150 void
151 rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr,
152 RF_StripeNum_t stripeID,
153 RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
155 *which_ru = 0;
156 *psID = stripeID;
161 /******************************************************************************
162 * select a graph to perform a single-stripe access
164 * Parameters: raidPtr - description of the physical array
165 * type - type of operation (read or write) requested
166 * asmap - logical & physical addresses for this access
167 * createFunc - name of function to use to create the graph
168 *****************************************************************************/
170 void
171 rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
172 RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
174 RF_RowCol_t fcol, oc;
175 RF_PhysDiskAddr_t *failedPDA;
176 int prior_recon;
177 RF_RowStatus_t rstat;
178 RF_SectorNum_t oo;
181 RF_ASSERT(RF_IO_IS_R_OR_W(type));
183 if (asmap->numDataFailed + asmap->numParityFailed > 1) {
184 #if RF_DEBUG_DAG
185 if (rf_dagDebug)
186 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
187 #endif
188 *createFunc = NULL;
189 return;
191 if (asmap->numDataFailed + asmap->numParityFailed) {
193 * We've got a fault. Re-map to spare space, iff applicable.
194 * Shouldn't the arch-independent code do this for us?
195 * Anyway, it turns out if we don't do this here, then when
196 * we're reconstructing, writes go only to the surviving
197 * original disk, and aren't reflected on the reconstructed
198 * spare. Oops. --jimz
200 failedPDA = asmap->failedPDAs[0];
201 fcol = failedPDA->col;
202 rstat = raidPtr->status;
203 prior_recon = (rstat == rf_rs_reconfigured) || (
204 (rstat == rf_rs_reconstructing) ?
205 rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
207 if (prior_recon) {
208 oc = fcol;
209 oo = failedPDA->startSector;
211 * If we did distributed sparing, we'd monkey with that here.
212 * But we don't, so we'll
214 failedPDA->col = raidPtr->Disks[fcol].spareCol;
216 * Redirect other components, iff necessary. This looks
217 * pretty suspicious to me, but it's what the raid5
218 * DAG select does.
220 if (asmap->parityInfo->next) {
221 if (failedPDA == asmap->parityInfo) {
222 failedPDA->next->col = failedPDA->col;
223 } else {
224 if (failedPDA == asmap->parityInfo->next) {
225 asmap->parityInfo->col = failedPDA->col;
229 #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
230 if (rf_dagDebug || rf_mapDebug) {
231 printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
232 raidPtr->raidid, type, oc,
233 (long) oo,
234 failedPDA->col,
235 (long) failedPDA->startSector);
237 #endif
238 asmap->numDataFailed = asmap->numParityFailed = 0;
241 if (type == RF_IO_TYPE_READ) {
242 if (asmap->numDataFailed == 0)
243 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
244 else
245 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
246 } else {
247 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
252 rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
253 RF_PhysDiskAddr_t *parityPDA, int correct_it,
254 RF_RaidAccessFlags_t flags)
256 int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
257 RF_DagNode_t *blockNode, *wrBlock;
258 RF_DagHeader_t *rd_dag_h, *wr_dag_h;
259 RF_AccessStripeMapHeader_t *asm_h;
260 RF_AllocListElem_t *allocList;
261 #if RF_ACC_TRACE > 0
262 RF_AccTraceEntry_t tracerec;
263 #endif
264 RF_ReconUnitNum_t which_ru;
265 RF_RaidLayout_t *layoutPtr;
266 RF_AccessStripeMap_t *aasm;
267 RF_SectorCount_t nsector;
268 RF_RaidAddr_t startAddr;
269 char *bf, *buf1, *buf2;
270 RF_PhysDiskAddr_t *pda;
271 RF_StripeNum_t psID;
272 RF_MCPair_t *mcpair;
274 layoutPtr = &raidPtr->Layout;
275 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
276 nsector = parityPDA->numSector;
277 nbytes = rf_RaidAddressToByte(raidPtr, nsector);
278 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
280 asm_h = NULL;
281 rd_dag_h = wr_dag_h = NULL;
282 mcpair = NULL;
284 ret = RF_PARITY_COULD_NOT_VERIFY;
286 rf_MakeAllocList(allocList);
287 if (allocList == NULL)
288 return (RF_PARITY_COULD_NOT_VERIFY);
289 mcpair = rf_AllocMCPair();
290 if (mcpair == NULL)
291 goto done;
292 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
293 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
294 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
295 RF_MallocAndAdd(bf, bcount, (char *), allocList);
296 if (bf == NULL)
297 goto done;
298 #if RF_DEBUG_VERIFYPARITY
299 if (rf_verifyParityDebug) {
300 printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
301 raidPtr->raidid, (long) bf, bcount, (long) bf,
302 (long) bf + bcount);
304 #endif
306 * Generate a DAG which will read the entire stripe- then we can
307 * just compare data chunks versus "parity" chunks.
310 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, bf,
311 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
312 RF_IO_NORMAL_PRIORITY);
313 if (rd_dag_h == NULL)
314 goto done;
315 blockNode = rd_dag_h->succedents[0];
318 * Map the access to physical disk addresses (PDAs)- this will
319 * get us both a list of data addresses, and "parity" addresses
320 * (which are really mirror copies).
322 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
323 bf, RF_DONT_REMAP);
324 aasm = asm_h->stripeMap;
326 buf1 = bf;
328 * Loop through the data blocks, setting up read nodes for each.
330 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
331 RF_ASSERT(pda);
333 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
335 RF_ASSERT(pda->numSector != 0);
336 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
337 /* cannot verify parity with dead disk */
338 goto done;
340 pda->bufPtr = buf1;
341 blockNode->succedents[i]->params[0].p = pda;
342 blockNode->succedents[i]->params[1].p = buf1;
343 blockNode->succedents[i]->params[2].v = psID;
344 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
345 buf1 += nbytes;
347 RF_ASSERT(pda == NULL);
349 * keep i, buf1 running
351 * Loop through parity blocks, setting up read nodes for each.
353 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
354 RF_ASSERT(pda);
355 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
356 RF_ASSERT(pda->numSector != 0);
357 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
358 /* cannot verify parity with dead disk */
359 goto done;
361 pda->bufPtr = buf1;
362 blockNode->succedents[i]->params[0].p = pda;
363 blockNode->succedents[i]->params[1].p = buf1;
364 blockNode->succedents[i]->params[2].v = psID;
365 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
366 buf1 += nbytes;
368 RF_ASSERT(pda == NULL);
370 #if RF_ACC_TRACE > 0
371 memset((char *) &tracerec, 0, sizeof(tracerec));
372 rd_dag_h->tracerec = &tracerec;
373 #endif
374 #if 0
375 if (rf_verifyParityDebug > 1) {
376 printf("raid%d: RAID1 parity verify read dag:\n",
377 raidPtr->raidid);
378 rf_PrintDAGList(rd_dag_h);
380 #endif
381 RF_LOCK_MUTEX(mcpair->mutex);
382 mcpair->flag = 0;
383 RF_UNLOCK_MUTEX(mcpair->mutex);
385 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
386 (void *) mcpair);
388 RF_LOCK_MUTEX(mcpair->mutex);
389 while (mcpair->flag == 0) {
390 RF_WAIT_MCPAIR(mcpair);
392 RF_UNLOCK_MUTEX(mcpair->mutex);
394 if (rd_dag_h->status != rf_enable) {
395 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
396 ret = RF_PARITY_COULD_NOT_VERIFY;
397 goto done;
400 * buf1 is the beginning of the data blocks chunk
401 * buf2 is the beginning of the parity blocks chunk
403 buf1 = bf;
404 buf2 = bf + (nbytes * layoutPtr->numDataCol);
405 ret = RF_PARITY_OKAY;
407 * bbufs is "bad bufs"- an array whose entries are the data
408 * column numbers where we had miscompares. (That is, column 0
409 * and column 1 of the array are mirror copies, and are considered
410 * "data column 0" for this purpose).
412 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
413 allocList);
414 nbad = 0;
416 * Check data vs "parity" (mirror copy).
418 for (i = 0; i < layoutPtr->numDataCol; i++) {
419 #if RF_DEBUG_VERIFYPARITY
420 if (rf_verifyParityDebug) {
421 printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
422 raidPtr->raidid, nbytes, i, (long) buf1,
423 (long) buf2, (long) bf);
425 #endif
426 ret = memcmp(buf1, buf2, nbytes);
427 if (ret) {
428 #if RF_DEBUG_VERIFYPARITY
429 if (rf_verifyParityDebug > 1) {
430 for (j = 0; j < nbytes; j++) {
431 if (buf1[j] != buf2[j])
432 break;
434 printf("psid=%ld j=%d\n", (long) psID, j);
435 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
436 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
437 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
438 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
440 if (rf_verifyParityDebug) {
441 printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
443 #endif
445 * Parity is bad. Keep track of which columns were bad.
447 if (bbufs)
448 bbufs[nbad] = i;
449 nbad++;
450 ret = RF_PARITY_BAD;
452 buf1 += nbytes;
453 buf2 += nbytes;
456 if ((ret != RF_PARITY_OKAY) && correct_it) {
457 ret = RF_PARITY_COULD_NOT_CORRECT;
458 #if RF_DEBUG_VERIFYPARITY
459 if (rf_verifyParityDebug) {
460 printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
462 #endif
463 if (bbufs == NULL)
464 goto done;
466 * Make a DAG with one write node for each bad unit. We'll simply
467 * write the contents of the data unit onto the parity unit for
468 * correction. (It's possible that the mirror copy was the correct
469 * copy, and that we're spooging good data by writing bad over it,
470 * but there's no way we can know that.
472 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, bf,
473 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
474 RF_IO_NORMAL_PRIORITY);
475 if (wr_dag_h == NULL)
476 goto done;
477 wrBlock = wr_dag_h->succedents[0];
479 * Fill in a write node for each bad compare.
481 for (i = 0; i < nbad; i++) {
482 j = i + layoutPtr->numDataCol;
483 pda = blockNode->succedents[j]->params[0].p;
484 pda->bufPtr = blockNode->succedents[i]->params[1].p;
485 wrBlock->succedents[i]->params[0].p = pda;
486 wrBlock->succedents[i]->params[1].p = pda->bufPtr;
487 wrBlock->succedents[i]->params[2].v = psID;
488 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
490 #if RF_ACC_TRACE > 0
491 memset((char *) &tracerec, 0, sizeof(tracerec));
492 wr_dag_h->tracerec = &tracerec;
493 #endif
494 #if 0
495 if (rf_verifyParityDebug > 1) {
496 printf("Parity verify write dag:\n");
497 rf_PrintDAGList(wr_dag_h);
499 #endif
500 RF_LOCK_MUTEX(mcpair->mutex);
501 mcpair->flag = 0;
502 RF_UNLOCK_MUTEX(mcpair->mutex);
504 /* fire off the write DAG */
505 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
506 (void *) mcpair);
508 RF_LOCK_MUTEX(mcpair->mutex);
509 while (!mcpair->flag) {
510 RF_WAIT_COND(mcpair->cond, mcpair->mutex);
512 RF_UNLOCK_MUTEX(mcpair->mutex);
513 if (wr_dag_h->status != rf_enable) {
514 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
515 goto done;
517 ret = RF_PARITY_CORRECTED;
519 done:
521 * All done. We might've gotten here without doing part of the function,
522 * so cleanup what we have to and return our running status.
524 if (asm_h)
525 rf_FreeAccessStripeMap(asm_h);
526 if (rd_dag_h)
527 rf_FreeDAG(rd_dag_h);
528 if (wr_dag_h)
529 rf_FreeDAG(wr_dag_h);
530 if (mcpair)
531 rf_FreeMCPair(mcpair);
532 rf_FreeAllocList(allocList);
533 #if RF_DEBUG_VERIFYPARITY
534 if (rf_verifyParityDebug) {
535 printf("raid%d: RAID1 parity verify, returning %d\n",
536 raidPtr->raidid, ret);
538 #endif
539 return (ret);
542 /* rbuf - the recon buffer to submit
543 * keep_it - whether we can keep this buffer or we have to return it
544 * use_committed - whether to use a committed or an available recon buffer
548 rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
549 int use_committed)
551 RF_ReconParityStripeStatus_t *pssPtr;
552 RF_ReconCtrl_t *reconCtrlPtr;
553 int retcode;
554 RF_CallbackDesc_t *cb, *p;
555 RF_ReconBuffer_t *t;
556 RF_Raid_t *raidPtr;
557 void *ta;
559 retcode = 0;
561 raidPtr = rbuf->raidPtr;
562 reconCtrlPtr = raidPtr->reconControl;
564 RF_ASSERT(rbuf);
565 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
567 #if RF_DEBUG_RECON
568 if (rf_reconbufferDebug) {
569 printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
570 raidPtr->raidid, rbuf->col,
571 (long) rbuf->parityStripeID, rbuf->which_ru,
572 (long) rbuf->failedDiskSectorOffset);
574 #endif
575 if (rf_reconDebug) {
576 unsigned char *b = rbuf->buffer;
577 printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
578 (long) rbuf->parityStripeID, (long) rbuf->buffer);
579 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
580 (long)rbuf->parityStripeID, b[0], b[1], b[2], b[3], b[4]);
582 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
584 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
585 while(reconCtrlPtr->rb_lock) {
586 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
588 reconCtrlPtr->rb_lock = 1;
589 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
591 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
592 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL);
593 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
594 * an rbuf for it */
597 * Since this is simple mirroring, the first submission for a stripe is also
598 * treated as the last.
601 t = NULL;
602 if (keep_it) {
603 #if RF_DEBUG_RECON
604 if (rf_reconbufferDebug) {
605 printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
606 raidPtr->raidid);
608 #endif
609 t = rbuf;
610 } else {
611 if (use_committed) {
612 #if RF_DEBUG_RECON
613 if (rf_reconbufferDebug) {
614 printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
616 #endif
617 t = reconCtrlPtr->committedRbufs;
618 RF_ASSERT(t);
619 reconCtrlPtr->committedRbufs = t->next;
620 t->next = NULL;
621 } else
622 if (reconCtrlPtr->floatingRbufs) {
623 #if RF_DEBUG_RECON
624 if (rf_reconbufferDebug) {
625 printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
627 #endif
628 t = reconCtrlPtr->floatingRbufs;
629 reconCtrlPtr->floatingRbufs = t->next;
630 t->next = NULL;
633 if (t == NULL) {
634 #if RF_DEBUG_RECON
635 if (rf_reconbufferDebug) {
636 printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
638 #endif
639 RF_ASSERT((keep_it == 0) && (use_committed == 0));
640 raidPtr->procsInBufWait++;
641 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
642 && (raidPtr->numFullReconBuffers == 0)) {
643 /* ruh-ro */
644 RF_ERRORMSG("Buffer wait deadlock\n");
645 rf_PrintPSStatusTable(raidPtr);
646 RF_PANIC();
648 pssPtr->flags |= RF_PSS_BUFFERWAIT;
649 cb = rf_AllocCallbackDesc();
650 cb->col = rbuf->col;
651 cb->callbackArg.v = rbuf->parityStripeID;
652 cb->next = NULL;
653 if (reconCtrlPtr->bufferWaitList == NULL) {
654 /* we are the wait list- lucky us */
655 reconCtrlPtr->bufferWaitList = cb;
656 } else {
657 /* append to wait list */
658 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
659 p->next = cb;
661 retcode = 1;
662 goto out;
664 if (t != rbuf) {
665 t->col = reconCtrlPtr->fcol;
666 t->parityStripeID = rbuf->parityStripeID;
667 t->which_ru = rbuf->which_ru;
668 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
669 t->spCol = rbuf->spCol;
670 t->spOffset = rbuf->spOffset;
671 /* Swap buffers. DANCE! */
672 ta = t->buffer;
673 t->buffer = rbuf->buffer;
674 rbuf->buffer = ta;
677 * Use the rbuf we've been given as the target.
679 RF_ASSERT(pssPtr->rbuf == NULL);
680 pssPtr->rbuf = t;
682 t->count = 1;
684 * Below, we use 1 for numDataCol (which is equal to the count in the
685 * previous line), so we'll always be done.
687 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
689 out:
690 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
691 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
692 reconCtrlPtr->rb_lock = 0;
693 wakeup(&reconCtrlPtr->rb_lock);
694 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
695 #if RF_DEBUG_RECON
696 if (rf_reconbufferDebug) {
697 printf("raid%d: RAID1 rbuf submission: returning %d\n",
698 raidPtr->raidid, retcode);
700 #endif
701 return (retcode);
704 RF_HeadSepLimit_t
705 rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t *raidPtr)
707 return (10);