2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar5210_misc.c,v 1.1.1.1 2008/12/11 04:46:27 alc Exp $
22 #include "ah_internal.h"
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
28 #include "ah_eeprom_v1.h"
30 #define AR_NUM_GPIO 6 /* 6 GPIO bits */
31 #define AR_GPIOD_MASK 0x2f /* 6-bit mask */
34 ar5210GetMacAddress(struct ath_hal
*ah
, uint8_t *mac
)
36 struct ath_hal_5210
*ahp
= AH5210(ah
);
38 OS_MEMCPY(mac
, ahp
->ah_macaddr
, IEEE80211_ADDR_LEN
);
42 ar5210SetMacAddress(struct ath_hal
*ah
, const uint8_t *mac
)
44 struct ath_hal_5210
*ahp
= AH5210(ah
);
46 OS_MEMCPY(ahp
->ah_macaddr
, mac
, IEEE80211_ADDR_LEN
);
51 ar5210GetBssIdMask(struct ath_hal
*ah
, uint8_t *mask
)
53 static const uint8_t ones
[IEEE80211_ADDR_LEN
] =
54 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55 OS_MEMCPY(mask
, ones
, IEEE80211_ADDR_LEN
);
59 ar5210SetBssIdMask(struct ath_hal
*ah
, const uint8_t *mask
)
65 * Read 16 bits of data from the specified EEPROM offset.
68 ar5210EepromRead(struct ath_hal
*ah
, u_int off
, uint16_t *data
)
70 (void) OS_REG_READ(ah
, AR_EP_AIR(off
)); /* activate read op */
71 if (!ath_hal_wait(ah
, AR_EP_STA
,
72 AR_EP_STA_RDCMPLT
| AR_EP_STA_RDERR
, AR_EP_STA_RDCMPLT
)) {
73 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: read failed for entry 0x%x\n",
74 __func__
, AR_EP_AIR(off
));
77 *data
= OS_REG_READ(ah
, AR_EP_RDATA
) & 0xffff;
81 #ifdef AH_SUPPORT_WRITE_EEPROM
83 * Write 16 bits of data to the specified EEPROM offset.
86 ar5210EepromWrite(struct ath_hal
*ah
, u_int off
, uint16_t data
)
90 #endif /* AH_SUPPORT_WRITE_EEPROM */
93 * Attempt to change the cards operating regulatory domain to the given value
96 ar5210SetRegulatoryDomain(struct ath_hal
*ah
,
97 uint16_t regDomain
, HAL_STATUS
*status
)
101 if (AH_PRIVATE(ah
)->ah_currentRD
== regDomain
) {
106 * Check if EEPROM is configured to allow this; must
107 * be a proper version and the protection bits must
108 * permit re-writing that segment of the EEPROM.
110 if (ath_hal_eepromGetFlag(ah
, AR_EEP_WRITEPROTECT
)) {
114 ecode
= HAL_EIO
; /* disallow all writes */
122 * Return the wireless modes (a,b,g,t) supported by hardware.
124 * This value is what is actually supported by the hardware
125 * and is unaffected by regulatory/country code settings.
129 ar5210GetWirelessModes(struct ath_hal
*ah
)
131 /* XXX could enable turbo mode but can't do all rates */
136 * Called if RfKill is supported (according to EEPROM). Set the interrupt and
137 * GPIO values so the ISR and can disable RF on a switch signal
140 ar5210EnableRfKill(struct ath_hal
*ah
)
142 uint16_t rfsilent
= AH_PRIVATE(ah
)->ah_rfsilent
;
143 int select
= MS(rfsilent
, AR_EEPROM_RFSILENT_GPIO_SEL
);
144 int polarity
= MS(rfsilent
, AR_EEPROM_RFSILENT_POLARITY
);
147 * If radio disable switch connection to GPIO bit 0 is enabled
148 * program GPIO interrupt.
149 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
150 * verified that it is a later version of eeprom, it has a place for
151 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
152 * connection is present.
154 ar5210Gpio0SetIntr(ah
, select
, (ar5210GpioGet(ah
, select
) == polarity
));
158 * Configure GPIO Output lines
161 ar5210GpioCfgOutput(struct ath_hal
*ah
, uint32_t gpio
)
163 HALASSERT(gpio
< AR_NUM_GPIO
);
165 OS_REG_WRITE(ah
, AR_GPIOCR
,
166 (OS_REG_READ(ah
, AR_GPIOCR
) &~ AR_GPIOCR_ALL(gpio
))
167 | AR_GPIOCR_OUT1(gpio
));
173 * Configure GPIO Input lines
176 ar5210GpioCfgInput(struct ath_hal
*ah
, uint32_t gpio
)
178 HALASSERT(gpio
< AR_NUM_GPIO
);
180 OS_REG_WRITE(ah
, AR_GPIOCR
,
181 (OS_REG_READ(ah
, AR_GPIOCR
) &~ AR_GPIOCR_ALL(gpio
))
182 | AR_GPIOCR_IN(gpio
));
188 * Once configured for I/O - set output lines
191 ar5210GpioSet(struct ath_hal
*ah
, uint32_t gpio
, uint32_t val
)
195 HALASSERT(gpio
< AR_NUM_GPIO
);
197 reg
= OS_REG_READ(ah
, AR_GPIODO
);
199 reg
|= (val
&1) << gpio
;
201 OS_REG_WRITE(ah
, AR_GPIODO
, reg
);
206 * Once configured for I/O - get input lines
209 ar5210GpioGet(struct ath_hal
*ah
, uint32_t gpio
)
211 if (gpio
< AR_NUM_GPIO
) {
212 uint32_t val
= OS_REG_READ(ah
, AR_GPIODI
);
213 val
= ((val
& AR_GPIOD_MASK
) >> gpio
) & 0x1;
221 * Set the GPIO 0 Interrupt
224 ar5210Gpio0SetIntr(struct ath_hal
*ah
, u_int gpio
, uint32_t ilevel
)
226 uint32_t val
= OS_REG_READ(ah
, AR_GPIOCR
);
228 /* Clear the bits that we will modify. */
229 val
&= ~(AR_GPIOCR_INT_SEL(gpio
) | AR_GPIOCR_INT_SELH
| AR_GPIOCR_INT_ENA
|
230 AR_GPIOCR_ALL(gpio
));
232 val
|= AR_GPIOCR_INT_SEL(gpio
) | AR_GPIOCR_INT_ENA
;
234 val
|= AR_GPIOCR_INT_SELH
;
236 /* Don't need to change anything for low level interrupt. */
237 OS_REG_WRITE(ah
, AR_GPIOCR
, val
);
239 /* Change the interrupt mask. */
240 ar5210SetInterrupts(ah
, AH5210(ah
)->ah_maskReg
| HAL_INT_GPIO
);
244 * Change the LED blinking pattern to correspond to the connectivity
247 ar5210SetLedState(struct ath_hal
*ah
, HAL_LED_STATE state
)
251 val
= OS_REG_READ(ah
, AR_PCICFG
);
254 val
&= ~(AR_PCICFG_LED_PEND
| AR_PCICFG_LED_ACT
);
257 /* normal blink when connected */
258 val
&= ~AR_PCICFG_LED_PEND
;
259 val
|= AR_PCICFG_LED_ACT
;
262 val
|= AR_PCICFG_LED_PEND
;
263 val
&= ~AR_PCICFG_LED_ACT
;
266 OS_REG_WRITE(ah
, AR_PCICFG
, val
);
270 * Return 1 or 2 for the corresponding antenna that is in use
273 ar5210GetDefAntenna(struct ath_hal
*ah
)
275 uint32_t val
= OS_REG_READ(ah
, AR_STA_ID1
);
276 return (val
& AR_STA_ID1_DEFAULT_ANTENNA
? 2 : 1);
280 ar5210SetDefAntenna(struct ath_hal
*ah
, u_int antenna
)
282 uint32_t val
= OS_REG_READ(ah
, AR_STA_ID1
);
284 if (antenna
!= (val
& AR_STA_ID1_DEFAULT_ANTENNA
? 2 : 1)) {
286 * Antenna change requested, force a toggle of the default.
288 OS_REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_DEFAULT_ANTENNA
);
293 ar5210GetAntennaSwitch(struct ath_hal
*ah
)
295 return HAL_ANT_VARIABLE
;
299 ar5210SetAntennaSwitch(struct ath_hal
*ah
, HAL_ANT_SETTING settings
)
301 /* XXX not sure how to fix antenna */
302 return (settings
== HAL_ANT_VARIABLE
);
306 * Change association related fields programmed into the hardware.
307 * Writing a valid BSSID to the hardware effectively enables the hardware
308 * to synchronize its TSF to the correct beacons and receive frames coming
309 * from that BSSID. It is called by the SME JOIN operation.
312 ar5210WriteAssocid(struct ath_hal
*ah
, const uint8_t *bssid
, uint16_t assocId
)
314 struct ath_hal_5210
*ahp
= AH5210(ah
);
316 /* XXX save bssid for possible re-use on reset */
317 OS_MEMCPY(ahp
->ah_bssid
, bssid
, IEEE80211_ADDR_LEN
);
318 OS_REG_WRITE(ah
, AR_BSS_ID0
, LE_READ_4(ahp
->ah_bssid
));
319 OS_REG_WRITE(ah
, AR_BSS_ID1
, LE_READ_2(ahp
->ah_bssid
+4) |
320 ((assocId
& 0x3fff)<<AR_BSS_ID1_AID_S
));
322 OS_REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_NO_PSPOLL
);
324 OS_REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_NO_PSPOLL
);
328 * Get the current hardware tsf for stamlme.
331 ar5210GetTsf64(struct ath_hal
*ah
)
333 uint32_t low1
, low2
, u32
;
335 /* sync multi-word read */
336 low1
= OS_REG_READ(ah
, AR_TSF_L32
);
337 u32
= OS_REG_READ(ah
, AR_TSF_U32
);
338 low2
= OS_REG_READ(ah
, AR_TSF_L32
);
339 if (low2
< low1
) { /* roll over */
341 * If we are not preempted this will work. If we are
342 * then we re-reading AR_TSF_U32 does no good as the
343 * low bits will be meaningless. Likewise reading
344 * L32, U32, U32, then comparing the last two reads
345 * to check for rollover doesn't help if preempted--so
346 * we take this approach as it costs one less PCI
347 * read which can be noticeable when doing things
348 * like timestamping packets in monitor mode.
352 return (((uint64_t) u32
) << 32) | ((uint64_t) low2
);
356 * Get the current hardware tsf for stamlme.
359 ar5210GetTsf32(struct ath_hal
*ah
)
361 return OS_REG_READ(ah
, AR_TSF_L32
);
365 * Reset the current hardware tsf for stamlme
368 ar5210ResetTsf(struct ath_hal
*ah
)
370 uint32_t val
= OS_REG_READ(ah
, AR_BEACON
);
372 OS_REG_WRITE(ah
, AR_BEACON
, val
| AR_BEACON_RESET_TSF
);
376 * Grab a semi-random value from hardware registers - may not
380 ar5210GetRandomSeed(struct ath_hal
*ah
)
384 nf
= (OS_REG_READ(ah
, AR_PHY_BASE
+ (25 << 2)) >> 19) & 0x1ff;
386 nf
= 0 - ((nf
^ 0x1ff) + 1);
387 return (OS_REG_READ(ah
, AR_TSF_U32
) ^
388 OS_REG_READ(ah
, AR_TSF_L32
) ^ nf
);
392 * Detect if our card is present
395 ar5210DetectCardPresent(struct ath_hal
*ah
)
398 * Read the Silicon Revision register and compare that
399 * to what we read at attach time. If the same, we say
400 * a card/device is present.
402 return (AH_PRIVATE(ah
)->ah_macRev
== (OS_REG_READ(ah
, AR_SREV
) & 0xff));
406 * Update MIB Counters
409 ar5210UpdateMibCounters(struct ath_hal
*ah
, HAL_MIB_STATS
*stats
)
411 stats
->ackrcv_bad
+= OS_REG_READ(ah
, AR_ACK_FAIL
);
412 stats
->rts_bad
+= OS_REG_READ(ah
, AR_RTS_FAIL
);
413 stats
->fcs_bad
+= OS_REG_READ(ah
, AR_FCS_FAIL
);
414 stats
->rts_good
+= OS_REG_READ(ah
, AR_RTS_OK
);
415 stats
->beacons
+= OS_REG_READ(ah
, AR_BEACON_CNT
);
419 ar5210SetSifsTime(struct ath_hal
*ah
, u_int us
)
421 struct ath_hal_5210
*ahp
= AH5210(ah
);
423 if (us
> ath_hal_mac_usec(ah
, 0x7ff)) {
424 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: bad SIFS time %u\n",
426 ahp
->ah_sifstime
= (u_int
) -1; /* restore default handling */
429 /* convert to system clocks */
430 OS_REG_RMW_FIELD(ah
, AR_IFS0
, AR_IFS0_SIFS
,
431 ath_hal_mac_clks(ah
, us
));
432 ahp
->ah_sifstime
= us
;
438 ar5210GetSifsTime(struct ath_hal
*ah
)
440 u_int clks
= OS_REG_READ(ah
, AR_IFS0
) & 0x7ff;
441 return ath_hal_mac_usec(ah
, clks
); /* convert from system clocks */
445 ar5210SetSlotTime(struct ath_hal
*ah
, u_int us
)
447 struct ath_hal_5210
*ahp
= AH5210(ah
);
449 if (us
< HAL_SLOT_TIME_9
|| us
> ath_hal_mac_usec(ah
, 0xffff)) {
450 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: bad slot time %u\n",
452 ahp
->ah_slottime
= (u_int
) -1; /* restore default handling */
455 /* convert to system clocks */
456 OS_REG_WRITE(ah
, AR_SLOT_TIME
, ath_hal_mac_clks(ah
, us
));
457 ahp
->ah_slottime
= us
;
463 ar5210GetSlotTime(struct ath_hal
*ah
)
465 u_int clks
= OS_REG_READ(ah
, AR_SLOT_TIME
) & 0xffff;
466 return ath_hal_mac_usec(ah
, clks
); /* convert from system clocks */
470 ar5210SetAckTimeout(struct ath_hal
*ah
, u_int us
)
472 struct ath_hal_5210
*ahp
= AH5210(ah
);
474 if (us
> ath_hal_mac_usec(ah
, MS(0xffffffff, AR_TIME_OUT_ACK
))) {
475 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: bad ack timeout %u\n",
477 ahp
->ah_acktimeout
= (u_int
) -1; /* restore default handling */
480 /* convert to system clocks */
481 OS_REG_RMW_FIELD(ah
, AR_TIME_OUT
,
482 AR_TIME_OUT_ACK
, ath_hal_mac_clks(ah
, us
));
483 ahp
->ah_acktimeout
= us
;
489 ar5210GetAckTimeout(struct ath_hal
*ah
)
491 u_int clks
= MS(OS_REG_READ(ah
, AR_TIME_OUT
), AR_TIME_OUT_ACK
);
492 return ath_hal_mac_usec(ah
, clks
); /* convert from system clocks */
496 ar5210GetAckCTSRate(struct ath_hal
*ah
)
498 return ((AH5210(ah
)->ah_staId1Defaults
& AR_STA_ID1_ACKCTS_6MB
) == 0);
502 ar5210SetAckCTSRate(struct ath_hal
*ah
, u_int high
)
504 struct ath_hal_5210
*ahp
= AH5210(ah
);
507 OS_REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_ACKCTS_6MB
);
508 ahp
->ah_staId1Defaults
&= ~AR_STA_ID1_ACKCTS_6MB
;
510 OS_REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_ACKCTS_6MB
);
511 ahp
->ah_staId1Defaults
|= AR_STA_ID1_ACKCTS_6MB
;
517 ar5210SetCTSTimeout(struct ath_hal
*ah
, u_int us
)
519 struct ath_hal_5210
*ahp
= AH5210(ah
);
521 if (us
> ath_hal_mac_usec(ah
, MS(0xffffffff, AR_TIME_OUT_CTS
))) {
522 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: bad cts timeout %u\n",
524 ahp
->ah_ctstimeout
= (u_int
) -1; /* restore default handling */
527 /* convert to system clocks */
528 OS_REG_RMW_FIELD(ah
, AR_TIME_OUT
,
529 AR_TIME_OUT_CTS
, ath_hal_mac_clks(ah
, us
));
530 ahp
->ah_ctstimeout
= us
;
536 ar5210GetCTSTimeout(struct ath_hal
*ah
)
538 u_int clks
= MS(OS_REG_READ(ah
, AR_TIME_OUT
), AR_TIME_OUT_CTS
);
539 return ath_hal_mac_usec(ah
, clks
); /* convert from system clocks */
543 ar5210SetDecompMask(struct ath_hal
*ah
, uint16_t keyidx
, int en
)
550 ar5210SetCoverageClass(struct ath_hal
*ah
, uint8_t coverageclass
, int now
)
555 * Control Adaptive Noise Immunity Parameters
558 ar5210AniControl(struct ath_hal
*ah
, HAL_ANI_CMD cmd
, int param
)
564 ar5210AniPoll(struct ath_hal
*ah
, const HAL_NODE_STATS
*stats
, HAL_CHANNEL
*chan
)
569 ar5210MibEvent(struct ath_hal
*ah
, const HAL_NODE_STATS
*stats
)
573 #define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC)
576 ar5210GetCapability(struct ath_hal
*ah
, HAL_CAPABILITY_TYPE type
,
577 uint32_t capability
, uint32_t *result
)
581 case HAL_CAP_CIPHER
: /* cipher handled in hardware */
582 return (capability
== HAL_CIPHER_WEP
? HAL_OK
: HAL_ENOTSUPP
);
584 return ath_hal_getcapability(ah
, type
, capability
, result
);
589 ar5210SetCapability(struct ath_hal
*ah
, HAL_CAPABILITY_TYPE type
,
590 uint32_t capability
, uint32_t setting
, HAL_STATUS
*status
)
594 case HAL_CAP_DIAG
: /* hardware diagnostic support */
596 * NB: could split this up into virtual capabilities,
597 * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
598 * seems worth the additional complexity.
601 AH_PRIVATE(ah
)->ah_diagreg
= setting
;
603 AH_PRIVATE(ah
)->ah_diagreg
= setting
& 0x6; /* ACK+CTS */
605 OS_REG_WRITE(ah
, AR_DIAG_SW
, AH_PRIVATE(ah
)->ah_diagreg
);
607 case HAL_CAP_RXORN_FATAL
: /* HAL_INT_RXORN treated as fatal */
608 return AH_FALSE
; /* NB: disallow */
610 return ath_hal_setcapability(ah
, type
, capability
,
616 ar5210GetDiagState(struct ath_hal
*ah
, int request
,
617 const void *args
, uint32_t argsize
,
618 void **result
, uint32_t *resultsize
)
620 #ifdef AH_PRIVATE_DIAG
625 case HAL_DIAG_EEPROM
:
628 case HAL_DIAG_EEREAD
:
629 if (argsize
!= sizeof(uint16_t))
631 pcicfg
= OS_REG_READ(ah
, AR_PCICFG
);
632 OS_REG_WRITE(ah
, AR_PCICFG
, pcicfg
| AR_PCICFG_EEPROMSEL
);
633 ok
= ath_hal_eepromRead(ah
, *(const uint16_t *)args
, *result
);
634 OS_REG_WRITE(ah
, AR_PCICFG
, pcicfg
);
636 *resultsize
= sizeof(uint16_t);
640 return ath_hal_getdiagstate(ah
, request
,
641 args
, argsize
, result
, resultsize
);