No empty .Rs/.Re
[netbsd-mini2440.git] / sys / external / isc / atheros_hal / dist / ar5212 / ar2316.c
blob4d526d5bd08d0b0817e28a2e9fd3e0843b86d5b2
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar2316.c,v 1.2 2009/01/06 06:03:57 mrg Exp $
19 #include "opt_ah.h"
21 #include "ah.h"
22 #include "ah_internal.h"
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
28 #include "ah_eeprom_v3.h"
30 #define AH_5212_2316
31 #include "ar5212/ar5212.ini"
33 #define N(a) (sizeof(a)/sizeof(a[0]))
35 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316;
36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316;
37 #define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413
39 struct ar2316State {
40 RF_HAL_FUNCS base; /* public state, must be first */
41 uint16_t pcdacTable[PWR_TABLE_SIZE_2316];
43 uint32_t Bank1Data[N(ar5212Bank1_2316)];
44 uint32_t Bank2Data[N(ar5212Bank2_2316)];
45 uint32_t Bank3Data[N(ar5212Bank3_2316)];
46 uint32_t Bank6Data[N(ar5212Bank6_2316)];
47 uint32_t Bank7Data[N(ar5212Bank7_2316)];
50 * Private state for reduced stack usage.
52 /* filled out Vpd table for all pdGains (chanL) */
53 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54 [MAX_PWR_RANGE_IN_HALF_DB];
55 /* filled out Vpd table for all pdGains (chanR) */
56 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57 [MAX_PWR_RANGE_IN_HALF_DB];
58 /* filled out Vpd table for all pdGains (interpolated) */
59 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60 [MAX_PWR_RANGE_IN_HALF_DB];
62 #define AR2316(ah) ((struct ar2316State *) AH5212(ah)->ah_rfHal)
64 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65 uint32_t numBits, uint32_t firstBit, uint32_t column);
67 static void
68 ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69 int regWrites)
71 struct ath_hal_5212 *ahp = AH5212(ah);
73 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites);
74 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites);
75 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites);
77 /* For AP51 */
78 if (!ahp->ah_cwCalRequire) {
79 OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2));
80 } else {
81 ahp->ah_cwCalRequire = AH_FALSE;
86 * Take the MHz channel value and set the Channel value
88 * ASSUMES: Writes enabled to analog bus
90 static HAL_BOOL
91 ar2316SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
93 uint32_t channelSel = 0;
94 uint32_t bModeSynth = 0;
95 uint32_t aModeRefSel = 0;
96 uint32_t reg32 = 0;
98 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
100 if (chan->channel < 4800) {
101 uint32_t txctl;
103 if (((chan->channel - 2192) % 5) == 0) {
104 channelSel = ((chan->channel - 672) * 2 - 3040)/10;
105 bModeSynth = 0;
106 } else if (((chan->channel - 2224) % 5) == 0) {
107 channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
108 bModeSynth = 1;
109 } else {
110 HALDEBUG(ah, HAL_DEBUG_ANY,
111 "%s: invalid channel %u MHz\n",
112 __func__, chan->channel);
113 return AH_FALSE;
116 channelSel = (channelSel << 2) & 0xff;
117 channelSel = ath_hal_reverseBits(channelSel, 8);
119 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
120 if (chan->channel == 2484) {
121 /* Enable channel spreading for channel 14 */
122 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
123 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
124 } else {
125 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
126 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
128 } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
129 channelSel = ath_hal_reverseBits(
130 ((chan->channel - 4800) / 20 << 2), 8);
131 aModeRefSel = ath_hal_reverseBits(3, 2);
132 } else if ((chan->channel % 10) == 0) {
133 channelSel = ath_hal_reverseBits(
134 ((chan->channel - 4800) / 10 << 1), 8);
135 aModeRefSel = ath_hal_reverseBits(2, 2);
136 } else if ((chan->channel % 5) == 0) {
137 channelSel = ath_hal_reverseBits(
138 (chan->channel - 4800) / 5, 8);
139 aModeRefSel = ath_hal_reverseBits(1, 2);
140 } else {
141 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
142 __func__, chan->channel);
143 return AH_FALSE;
146 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
147 (1 << 12) | 0x1;
148 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
150 reg32 >>= 8;
151 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
153 AH_PRIVATE(ah)->ah_curchan = chan;
154 return AH_TRUE;
158 * Reads EEPROM header info from device structure and programs
159 * all rf registers
161 * REQUIRES: Access to the analog rf device
163 static HAL_BOOL
164 ar2316SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
166 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
167 int i; \
168 for (i = 0; i < N(ar5212Bank##_ix##_2316); i++) \
169 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
170 } while (0)
171 struct ath_hal_5212 *ahp = AH5212(ah);
172 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
173 uint16_t ob2GHz = 0, db2GHz = 0;
174 struct ar2316State *priv = AR2316(ah);
175 int regWrites = 0;
177 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
178 "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
179 __func__, chan->channel, chan->channelFlags, modesIndex);
181 HALASSERT(priv != AH_NULL);
183 /* Setup rf parameters */
184 switch (chan->channelFlags & CHANNEL_ALL) {
185 case CHANNEL_B:
186 ob2GHz = ee->ee_obFor24;
187 db2GHz = ee->ee_dbFor24;
188 break;
189 case CHANNEL_G:
190 case CHANNEL_108G:
191 ob2GHz = ee->ee_obFor24g;
192 db2GHz = ee->ee_dbFor24g;
193 break;
194 default:
195 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
196 __func__, chan->channelFlags);
197 return AH_FALSE;
200 /* Bank 1 Write */
201 RF_BANK_SETUP(priv, 1, 1);
203 /* Bank 2 Write */
204 RF_BANK_SETUP(priv, 2, modesIndex);
206 /* Bank 3 Write */
207 RF_BANK_SETUP(priv, 3, modesIndex);
209 /* Bank 6 Write */
210 RF_BANK_SETUP(priv, 6, modesIndex);
212 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 178, 0);
213 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 175, 0);
215 /* Bank 7 Setup */
216 RF_BANK_SETUP(priv, 7, modesIndex);
218 /* Write Analog registers */
219 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
220 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
221 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
222 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
223 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);
225 /* Now that we have reprogrammed rfgain value, clear the flag. */
226 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
228 return AH_TRUE;
229 #undef RF_BANK_SETUP
233 * Return a reference to the requested RF Bank.
235 static uint32_t *
236 ar2316GetRfBank(struct ath_hal *ah, int bank)
238 struct ar2316State *priv = AR2316(ah);
240 HALASSERT(priv != AH_NULL);
241 switch (bank) {
242 case 1: return priv->Bank1Data;
243 case 2: return priv->Bank2Data;
244 case 3: return priv->Bank3Data;
245 case 6: return priv->Bank6Data;
246 case 7: return priv->Bank7Data;
248 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
249 __func__, bank);
250 return AH_NULL;
254 * Return indices surrounding the value in sorted integer lists.
256 * NB: the input list is assumed to be sorted in ascending order
258 static void
259 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
260 uint32_t *vlo, uint32_t *vhi)
262 int16_t target = v;
263 const int16_t *ep = lp+listSize;
264 const int16_t *tp;
267 * Check first and last elements for out-of-bounds conditions.
269 if (target < lp[0]) {
270 *vlo = *vhi = 0;
271 return;
273 if (target >= ep[-1]) {
274 *vlo = *vhi = listSize - 1;
275 return;
278 /* look for value being near or between 2 values in list */
279 for (tp = lp; tp < ep; tp++) {
281 * If value is close to the current value of the list
282 * then target is not between values, it is one of the values
284 if (*tp == target) {
285 *vlo = *vhi = tp - (const int16_t *) lp;
286 return;
289 * Look for value being between current value and next value
290 * if so return these 2 values
292 if (target < tp[1]) {
293 *vlo = tp - (const int16_t *) lp;
294 *vhi = *vlo + 1;
295 return;
301 * Fill the Vpdlist for indices Pmax-Pmin
303 static HAL_BOOL
304 ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
305 const int16_t *pwrList, const int16_t *VpdList,
306 uint16_t numIntercepts, uint16_t retVpdList[][64])
308 uint16_t ii, jj, kk;
309 int16_t currPwr = (int16_t)(2*Pmin);
310 /* since Pmin is pwr*2 and pwrList is 4*pwr */
311 uint32_t idxL = 0, idxR = 0;
313 ii = 0;
314 jj = 0;
316 if (numIntercepts < 2)
317 return AH_FALSE;
319 while (ii <= (uint16_t)(Pmax - Pmin)) {
320 GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
321 &(idxL), &(idxR));
322 if (idxR < 1)
323 idxR = 1; /* extrapolate below */
324 if (idxL == (uint32_t)(numIntercepts - 1))
325 idxL = numIntercepts - 2; /* extrapolate above */
326 if (pwrList[idxL] == pwrList[idxR])
327 kk = VpdList[idxL];
328 else
329 kk = (uint16_t)
330 (((currPwr - pwrList[idxL])*VpdList[idxR]+
331 (pwrList[idxR] - currPwr)*VpdList[idxL])/
332 (pwrList[idxR] - pwrList[idxL]));
333 retVpdList[pdGainIdx][ii] = kk;
334 ii++;
335 currPwr += 2; /* half dB steps */
338 return AH_TRUE;
342 * Returns interpolated or the scaled up interpolated value
344 static int16_t
345 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
346 int16_t targetLeft, int16_t targetRight)
348 int16_t rv;
350 if (srcRight != srcLeft) {
351 rv = ((target - srcLeft)*targetRight +
352 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
353 } else {
354 rv = targetLeft;
356 return rv;
360 * Uses the data points read from EEPROM to reconstruct the pdadc power table
361 * Called by ar2316SetPowerTable()
363 static int
364 ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
365 const RAW_DATA_STRUCT_2316 *pRawDataset,
366 uint16_t pdGainOverlap_t2,
367 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
368 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
370 struct ar2316State *priv = AR2316(ah);
371 #define VpdTable_L priv->vpdTable_L
372 #define VpdTable_R priv->vpdTable_R
373 #define VpdTable_I priv->vpdTable_I
374 uint32_t ii, jj, kk;
375 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
376 uint32_t idxL = 0, idxR = 0;
377 uint32_t numPdGainsUsed = 0;
379 * If desired to support -ve power levels in future, just
380 * change pwr_I_0 to signed 5-bits.
382 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
383 /* to accomodate -ve power levels later on. */
384 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
385 /* to accomodate -ve power levels later on */
386 uint16_t numVpd = 0;
387 uint16_t Vpd_step;
388 int16_t tmpVal ;
389 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
391 /* Get upper lower index */
392 GetLowerUpperIndex(channel, pRawDataset->pChannels,
393 pRawDataset->numChannels, &(idxL), &(idxR));
395 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
396 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
397 /* work backwards 'cause highest pdGain for lowest power */
398 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
399 if (numVpd > 0) {
400 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
401 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
402 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
403 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
405 Pmin_t2[numPdGainsUsed] = (int16_t)
406 (Pmin_t2[numPdGainsUsed] / 2);
407 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
408 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
409 Pmax_t2[numPdGainsUsed] =
410 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
411 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
412 ar2316FillVpdTable(
413 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
414 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
415 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
417 ar2316FillVpdTable(
418 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
419 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
420 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
422 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
423 VpdTable_I[numPdGainsUsed][kk] =
424 interpolate_signed(
425 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
426 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
428 /* fill VpdTable_I for this pdGain */
429 numPdGainsUsed++;
431 /* if this pdGain is used */
434 *pMinCalPower = Pmin_t2[0];
435 kk = 0; /* index for the final table */
436 for (ii = 0; ii < numPdGainsUsed; ii++) {
437 if (ii == (numPdGainsUsed - 1))
438 pPdGainBoundaries[ii] = Pmax_t2[ii] +
439 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
440 else
441 pPdGainBoundaries[ii] = (uint16_t)
442 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
443 if (pPdGainBoundaries[ii] > 63) {
444 HALDEBUG(ah, HAL_DEBUG_ANY,
445 "%s: clamp pPdGainBoundaries[%d] %d\n",
446 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
447 pPdGainBoundaries[ii] = 63;
450 /* Find starting index for this pdGain */
451 if (ii == 0)
452 ss = 0; /* for the first pdGain, start from index 0 */
453 else
454 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
455 pdGainOverlap_t2;
456 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
457 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
459 *-ve ss indicates need to extrapolate data below for this pdGain
461 while (ss < 0) {
462 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
463 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
464 ss++;
467 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
468 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
469 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
471 while (ss < (int16_t)maxIndex)
472 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
474 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
475 VpdTable_I[ii][sizeCurrVpdTable-2]);
476 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
478 * for last gain, pdGainBoundary == Pmax_t2, so will
479 * have to extrapolate
481 if (tgtIndex > maxIndex) { /* need to extrapolate above */
482 while(ss < (int16_t)tgtIndex) {
483 tmpVal = (uint16_t)
484 (VpdTable_I[ii][sizeCurrVpdTable-1] +
485 (ss-maxIndex)*Vpd_step);
486 pPDADCValues[kk++] = (tmpVal > 127) ?
487 127 : tmpVal;
488 ss++;
490 } /* extrapolated above */
491 } /* for all pdGainUsed */
493 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
494 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
495 ii++;
497 while (kk < 128) {
498 pPDADCValues[kk] = pPDADCValues[kk-1];
499 kk++;
502 return numPdGainsUsed;
503 #undef VpdTable_L
504 #undef VpdTable_R
505 #undef VpdTable_I
508 static HAL_BOOL
509 ar2316SetPowerTable(struct ath_hal *ah,
510 int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
511 uint16_t *rfXpdGain)
513 struct ath_hal_5212 *ahp = AH5212(ah);
514 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
515 const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
516 uint16_t pdGainOverlap_t2;
517 int16_t minCalPower2316_t2;
518 uint16_t *pdadcValues = ahp->ah_pcdacTable;
519 uint16_t gainBoundaries[4];
520 uint32_t reg32, regoffset;
521 int i, numPdGainsUsed;
522 #ifndef AH_USE_INIPDGAIN
523 uint32_t tpcrg1;
524 #endif
526 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
527 __func__, chan->channel,chan->channelFlags);
529 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
530 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
531 else if (IS_CHAN_B(chan))
532 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
533 else {
534 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
535 return AH_FALSE;
538 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
539 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
541 numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
542 chan->channel, pRawDataset, pdGainOverlap_t2,
543 &minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
544 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
546 #ifdef AH_USE_INIPDGAIN
548 * Use pd_gains curve from eeprom; Atheros always uses
549 * the default curve from the ini file but some vendors
550 * (e.g. Zcomax) want to override this curve and not
551 * honoring their settings results in tx power 5dBm low.
553 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
554 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
555 #else
556 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
557 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
558 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
559 switch (numPdGainsUsed) {
560 case 3:
561 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
562 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
563 /* fall thru... */
564 case 2:
565 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
566 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
567 /* fall thru... */
568 case 1:
569 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
570 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
571 break;
573 #ifdef AH_DEBUG
574 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
575 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
576 "pd_gains (default 0x%x, calculated 0x%x)\n",
577 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
578 #endif
579 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
580 #endif
583 * Note the pdadc table may not start at 0 dBm power, could be
584 * negative or greater than 0. Need to offset the power
585 * values by the amount of minPower for griffin
587 if (minCalPower2316_t2 != 0)
588 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
589 else
590 ahp->ah_txPowerIndexOffset = 0;
592 /* Finally, write the power values into the baseband power table */
593 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
594 for (i = 0; i < 32; i++) {
595 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
596 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
597 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
598 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
599 OS_REG_WRITE(ah, regoffset, reg32);
600 regoffset += 4;
603 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
604 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
605 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
606 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
607 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
608 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
610 return AH_TRUE;
613 static int16_t
614 ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
616 uint32_t ii,jj;
617 uint16_t Pmin=0,numVpd;
619 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
620 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
621 /* work backwards 'cause highest pdGain for lowest power */
622 numVpd = data->pDataPerPDGain[jj].numVpd;
623 if (numVpd > 0) {
624 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
625 return(Pmin);
628 return(Pmin);
631 static int16_t
632 ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
634 uint32_t ii;
635 uint16_t Pmax=0,numVpd;
637 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
638 /* work forwards cuase lowest pdGain for highest power */
639 numVpd = data->pDataPerPDGain[ii].numVpd;
640 if (numVpd > 0) {
641 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
642 return(Pmax);
645 return(Pmax);
648 static HAL_BOOL
649 ar2316GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
650 int16_t *maxPow, int16_t *minPow)
652 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
653 const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
654 const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL;
655 uint16_t numChannels;
656 int totalD,totalF, totalMin,last, i;
658 *maxPow = 0;
660 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
661 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
662 else if (IS_CHAN_B(chan))
663 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
664 else
665 return(AH_FALSE);
667 numChannels = pRawDataset->numChannels;
668 data = pRawDataset->pDataPerChannel;
670 /* Make sure the channel is in the range of the TP values
671 * (freq piers)
673 if (numChannels < 1)
674 return(AH_FALSE);
676 if ((chan->channel < data[0].channelValue) ||
677 (chan->channel > data[numChannels-1].channelValue)) {
678 if (chan->channel < data[0].channelValue) {
679 *maxPow = ar2316GetMaxPower(ah, &data[0]);
680 *minPow = ar2316GetMinPower(ah, &data[0]);
681 return(AH_TRUE);
682 } else {
683 *maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]);
684 *minPow = ar2316GetMinPower(ah, &data[numChannels - 1]);
685 return(AH_TRUE);
689 /* Linearly interpolate the power value now */
690 for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
691 last = i++);
692 totalD = data[i].channelValue - data[last].channelValue;
693 if (totalD > 0) {
694 totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]);
695 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
696 ar2316GetMaxPower(ah, &data[last])*totalD)/totalD);
697 totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]);
698 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
699 ar2316GetMinPower(ah, &data[last])*totalD)/totalD);
700 return(AH_TRUE);
701 } else {
702 if (chan->channel == data[i].channelValue) {
703 *maxPow = ar2316GetMaxPower(ah, &data[i]);
704 *minPow = ar2316GetMinPower(ah, &data[i]);
705 return(AH_TRUE);
706 } else
707 return(AH_FALSE);
712 * Free memory for analog bank scratch buffers
714 static void
715 ar2316RfDetach(struct ath_hal *ah)
717 struct ath_hal_5212 *ahp = AH5212(ah);
719 HALASSERT(ahp->ah_rfHal != AH_NULL);
720 ath_hal_free(ahp->ah_rfHal);
721 ahp->ah_rfHal = AH_NULL;
725 * Allocate memory for private state.
726 * Scratch Buffer will be reinitialized every reset so no need to zero now
728 static HAL_BOOL
729 ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status)
731 struct ath_hal_5212 *ahp = AH5212(ah);
732 struct ar2316State *priv;
734 HALASSERT(ah->ah_magic == AR5212_MAGIC);
736 HALASSERT(ahp->ah_rfHal == AH_NULL);
737 priv = ath_hal_malloc(sizeof(struct ar2316State));
738 if (priv == AH_NULL) {
739 HALDEBUG(ah, HAL_DEBUG_ANY,
740 "%s: cannot allocate private state\n", __func__);
741 *status = HAL_ENOMEM; /* XXX */
742 return AH_FALSE;
744 priv->base.rfDetach = ar2316RfDetach;
745 priv->base.writeRegs = ar2316WriteRegs;
746 priv->base.getRfBank = ar2316GetRfBank;
747 priv->base.setChannel = ar2316SetChannel;
748 priv->base.setRfRegs = ar2316SetRfRegs;
749 priv->base.setPowerTable = ar2316SetPowerTable;
750 priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower;
751 priv->base.getNfAdjust = ar5212GetNfAdjust;
753 ahp->ah_pcdacTable = priv->pcdacTable;
754 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
755 ahp->ah_rfHal = &priv->base;
757 ahp->ah_cwCalRequire = AH_TRUE; /* force initial cal */
759 return AH_TRUE;
762 static HAL_BOOL
763 ar2316Probe(struct ath_hal *ah)
765 return IS_2316(ah);
767 AH_RF(RF2316, ar2316Probe, ar2316RfAttach);