No empty .Rs/.Re
[netbsd-mini2440.git] / sys / external / isc / atheros_hal / dist / ar5212 / ar2317.c
blobc0b988cd211e068e41552390e6c26389bfdc3a2d
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar2317.c,v 1.3 2009/01/06 06:03:57 mrg Exp $
19 #include "opt_ah.h"
21 #include "ah.h"
22 #include "ah_devid.h"
23 #include "ah_internal.h"
25 #include "ar5212/ar5212.h"
26 #include "ar5212/ar5212reg.h"
27 #include "ar5212/ar5212phy.h"
29 #include "ah_eeprom_v3.h"
31 #define AH_5212_2317
32 #include "ar5212/ar5212.ini"
34 #define N(a) (sizeof(a)/sizeof(a[0]))
36 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
37 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
38 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
40 struct ar2317State {
41 RF_HAL_FUNCS base; /* public state, must be first */
42 uint16_t pcdacTable[PWR_TABLE_SIZE_2317];
44 uint32_t Bank1Data[N(ar5212Bank1_2317)];
45 uint32_t Bank2Data[N(ar5212Bank2_2317)];
46 uint32_t Bank3Data[N(ar5212Bank3_2317)];
47 uint32_t Bank6Data[N(ar5212Bank6_2317)];
48 uint32_t Bank7Data[N(ar5212Bank7_2317)];
51 * Private state for reduced stack usage.
53 /* filled out Vpd table for all pdGains (chanL) */
54 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
55 [MAX_PWR_RANGE_IN_HALF_DB];
56 /* filled out Vpd table for all pdGains (chanR) */
57 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
58 [MAX_PWR_RANGE_IN_HALF_DB];
59 /* filled out Vpd table for all pdGains (interpolated) */
60 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
61 [MAX_PWR_RANGE_IN_HALF_DB];
63 #define AR2317(ah) ((struct ar2317State *) AH5212(ah)->ah_rfHal)
65 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
66 uint32_t numBits, uint32_t firstBit, uint32_t column);
68 static void
69 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
70 int writes)
72 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
73 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
74 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
78 * Take the MHz channel value and set the Channel value
80 * ASSUMES: Writes enabled to analog bus
82 static HAL_BOOL
83 ar2317SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
85 uint32_t channelSel = 0;
86 uint32_t bModeSynth = 0;
87 uint32_t aModeRefSel = 0;
88 uint32_t reg32 = 0;
90 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
92 if (chan->channel < 4800) {
93 uint32_t txctl;
94 channelSel = chan->channel - 2272 ;
95 channelSel = ath_hal_reverseBits(channelSel, 8);
97 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
98 if (chan->channel == 2484) {
99 /* Enable channel spreading for channel 14 */
100 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
101 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
102 } else {
103 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
104 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
106 } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
107 channelSel = ath_hal_reverseBits(
108 ((chan->channel - 4800) / 20 << 2), 8);
109 aModeRefSel = ath_hal_reverseBits(3, 2);
110 } else if ((chan->channel % 10) == 0) {
111 channelSel = ath_hal_reverseBits(
112 ((chan->channel - 4800) / 10 << 1), 8);
113 aModeRefSel = ath_hal_reverseBits(2, 2);
114 } else if ((chan->channel % 5) == 0) {
115 channelSel = ath_hal_reverseBits(
116 (chan->channel - 4800) / 5, 8);
117 aModeRefSel = ath_hal_reverseBits(1, 2);
118 } else {
119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
120 __func__, chan->channel);
121 return AH_FALSE;
124 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
125 (1 << 12) | 0x1;
126 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
128 reg32 >>= 8;
129 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
131 AH_PRIVATE(ah)->ah_curchan = chan;
132 return AH_TRUE;
136 * Reads EEPROM header info from device structure and programs
137 * all rf registers
139 * REQUIRES: Access to the analog rf device
141 static HAL_BOOL
142 ar2317SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
144 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
145 int i; \
146 for (i = 0; i < N(ar5212Bank##_ix##_2317); i++) \
147 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
148 } while (0)
149 struct ath_hal_5212 *ahp = AH5212(ah);
150 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
151 uint16_t ob2GHz = 0, db2GHz = 0;
152 struct ar2317State *priv = AR2317(ah);
153 int regWrites = 0;
155 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
156 "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
157 __func__, chan->channel, chan->channelFlags, modesIndex);
159 HALASSERT(priv);
161 /* Setup rf parameters */
162 switch (chan->channelFlags & CHANNEL_ALL) {
163 case CHANNEL_B:
164 ob2GHz = ee->ee_obFor24;
165 db2GHz = ee->ee_dbFor24;
166 break;
167 case CHANNEL_G:
168 case CHANNEL_108G:
169 ob2GHz = ee->ee_obFor24g;
170 db2GHz = ee->ee_dbFor24g;
171 break;
172 default:
173 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
174 __func__, chan->channelFlags);
175 return AH_FALSE;
178 /* Bank 1 Write */
179 RF_BANK_SETUP(priv, 1, 1);
181 /* Bank 2 Write */
182 RF_BANK_SETUP(priv, 2, modesIndex);
184 /* Bank 3 Write */
185 RF_BANK_SETUP(priv, 3, modesIndex);
187 /* Bank 6 Write */
188 RF_BANK_SETUP(priv, 6, modesIndex);
190 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
191 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
193 /* Bank 7 Setup */
194 RF_BANK_SETUP(priv, 7, modesIndex);
196 /* Write Analog registers */
197 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
198 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
199 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
200 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
201 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
202 /* Now that we have reprogrammed rfgain value, clear the flag. */
203 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
205 return AH_TRUE;
206 #undef RF_BANK_SETUP
210 * Return a reference to the requested RF Bank.
212 static uint32_t *
213 ar2317GetRfBank(struct ath_hal *ah, int bank)
215 struct ar2317State *priv = AR2317(ah);
217 HALASSERT(priv != AH_NULL);
218 switch (bank) {
219 case 1: return priv->Bank1Data;
220 case 2: return priv->Bank2Data;
221 case 3: return priv->Bank3Data;
222 case 6: return priv->Bank6Data;
223 case 7: return priv->Bank7Data;
225 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
226 __func__, bank);
227 return AH_NULL;
231 * Return indices surrounding the value in sorted integer lists.
233 * NB: the input list is assumed to be sorted in ascending order
235 static void
236 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
237 uint32_t *vlo, uint32_t *vhi)
239 int16_t target = v;
240 const int16_t *ep = lp+listSize;
241 const int16_t *tp;
244 * Check first and last elements for out-of-bounds conditions.
246 if (target < lp[0]) {
247 *vlo = *vhi = 0;
248 return;
250 if (target >= ep[-1]) {
251 *vlo = *vhi = listSize - 1;
252 return;
255 /* look for value being near or between 2 values in list */
256 for (tp = lp; tp < ep; tp++) {
258 * If value is close to the current value of the list
259 * then target is not between values, it is one of the values
261 if (*tp == target) {
262 *vlo = *vhi = tp - (const int16_t *) lp;
263 return;
266 * Look for value being between current value and next value
267 * if so return these 2 values
269 if (target < tp[1]) {
270 *vlo = tp - (const int16_t *) lp;
271 *vhi = *vlo + 1;
272 return;
278 * Fill the Vpdlist for indices Pmax-Pmin
280 static HAL_BOOL
281 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
282 const int16_t *pwrList, const int16_t *VpdList,
283 uint16_t numIntercepts, uint16_t retVpdList[][64])
285 uint16_t ii, jj, kk;
286 int16_t currPwr = (int16_t)(2*Pmin);
287 /* since Pmin is pwr*2 and pwrList is 4*pwr */
288 uint32_t idxL = 0, idxR = 0;
290 ii = 0;
291 jj = 0;
293 if (numIntercepts < 2)
294 return AH_FALSE;
296 while (ii <= (uint16_t)(Pmax - Pmin)) {
297 GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
298 &(idxL), &(idxR));
299 if (idxR < 1)
300 idxR = 1; /* extrapolate below */
301 if (idxL == (uint32_t)(numIntercepts - 1))
302 idxL = numIntercepts - 2; /* extrapolate above */
303 if (pwrList[idxL] == pwrList[idxR])
304 kk = VpdList[idxL];
305 else
306 kk = (uint16_t)
307 (((currPwr - pwrList[idxL])*VpdList[idxR]+
308 (pwrList[idxR] - currPwr)*VpdList[idxL])/
309 (pwrList[idxR] - pwrList[idxL]));
310 retVpdList[pdGainIdx][ii] = kk;
311 ii++;
312 currPwr += 2; /* half dB steps */
315 return AH_TRUE;
319 * Returns interpolated or the scaled up interpolated value
321 static int16_t
322 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
323 int16_t targetLeft, int16_t targetRight)
325 int16_t rv;
327 if (srcRight != srcLeft) {
328 rv = ((target - srcLeft)*targetRight +
329 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
330 } else {
331 rv = targetLeft;
333 return rv;
337 * Uses the data points read from EEPROM to reconstruct the pdadc power table
338 * Called by ar2317SetPowerTable()
340 static int
341 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
342 const RAW_DATA_STRUCT_2317 *pRawDataset,
343 uint16_t pdGainOverlap_t2,
344 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
345 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
347 struct ar2317State *priv = AR2317(ah);
348 #define VpdTable_L priv->vpdTable_L
349 #define VpdTable_R priv->vpdTable_R
350 #define VpdTable_I priv->vpdTable_I
351 /* XXX excessive stack usage? */
352 uint32_t ii, jj, kk;
353 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
354 uint32_t idxL = 0, idxR = 0;
355 uint32_t numPdGainsUsed = 0;
357 * If desired to support -ve power levels in future, just
358 * change pwr_I_0 to signed 5-bits.
360 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
361 /* to accomodate -ve power levels later on. */
362 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
363 /* to accomodate -ve power levels later on */
364 uint16_t numVpd = 0;
365 uint16_t Vpd_step;
366 int16_t tmpVal ;
367 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
369 /* Get upper lower index */
370 GetLowerUpperIndex(channel, pRawDataset->pChannels,
371 pRawDataset->numChannels, &(idxL), &(idxR));
373 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
374 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
375 /* work backwards 'cause highest pdGain for lowest power */
376 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
377 if (numVpd > 0) {
378 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
379 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
380 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
381 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
383 Pmin_t2[numPdGainsUsed] = (int16_t)
384 (Pmin_t2[numPdGainsUsed] / 2);
385 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
386 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
387 Pmax_t2[numPdGainsUsed] =
388 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
389 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
390 ar2317FillVpdTable(
391 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
392 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
393 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
395 ar2317FillVpdTable(
396 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
397 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
398 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
400 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
401 VpdTable_I[numPdGainsUsed][kk] =
402 interpolate_signed(
403 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
404 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
406 /* fill VpdTable_I for this pdGain */
407 numPdGainsUsed++;
409 /* if this pdGain is used */
412 *pMinCalPower = Pmin_t2[0];
413 kk = 0; /* index for the final table */
414 for (ii = 0; ii < numPdGainsUsed; ii++) {
415 if (ii == (numPdGainsUsed - 1))
416 pPdGainBoundaries[ii] = Pmax_t2[ii] +
417 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
418 else
419 pPdGainBoundaries[ii] = (uint16_t)
420 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
421 if (pPdGainBoundaries[ii] > 63) {
422 HALDEBUG(ah, HAL_DEBUG_ANY,
423 "%s: clamp pPdGainBoundaries[%d] %d\n",
424 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
425 pPdGainBoundaries[ii] = 63;
428 /* Find starting index for this pdGain */
429 if (ii == 0)
430 ss = 0; /* for the first pdGain, start from index 0 */
431 else
432 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
433 pdGainOverlap_t2;
434 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
435 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
437 *-ve ss indicates need to extrapolate data below for this pdGain
439 while (ss < 0) {
440 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
441 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
442 ss++;
445 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
446 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
447 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
449 while (ss < (int16_t)maxIndex)
450 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
452 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
453 VpdTable_I[ii][sizeCurrVpdTable-2]);
454 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
456 * for last gain, pdGainBoundary == Pmax_t2, so will
457 * have to extrapolate
459 if (tgtIndex > maxIndex) { /* need to extrapolate above */
460 while(ss < (int16_t)tgtIndex) {
461 tmpVal = (uint16_t)
462 (VpdTable_I[ii][sizeCurrVpdTable-1] +
463 (ss-maxIndex)*Vpd_step);
464 pPDADCValues[kk++] = (tmpVal > 127) ?
465 127 : tmpVal;
466 ss++;
468 } /* extrapolated above */
469 } /* for all pdGainUsed */
471 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
472 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
473 ii++;
475 while (kk < 128) {
476 pPDADCValues[kk] = pPDADCValues[kk-1];
477 kk++;
480 return numPdGainsUsed;
481 #undef VpdTable_L
482 #undef VpdTable_R
483 #undef VpdTable_I
486 static HAL_BOOL
487 ar2317SetPowerTable(struct ath_hal *ah,
488 int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
489 uint16_t *rfXpdGain)
491 struct ath_hal_5212 *ahp = AH5212(ah);
492 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
493 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
494 uint16_t pdGainOverlap_t2;
495 int16_t minCalPower2317_t2;
496 uint16_t *pdadcValues = ahp->ah_pcdacTable;
497 uint16_t gainBoundaries[4];
498 uint32_t reg32, regoffset;
499 int i, numPdGainsUsed;
500 #ifndef AH_USE_INIPDGAIN
501 uint32_t tpcrg1;
502 #endif
504 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
505 __func__, chan->channel,chan->channelFlags);
507 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
508 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
509 else if (IS_CHAN_B(chan))
510 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
511 else {
512 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
513 return AH_FALSE;
516 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
517 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
519 numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
520 chan->channel, pRawDataset, pdGainOverlap_t2,
521 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
522 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
524 #ifdef AH_USE_INIPDGAIN
526 * Use pd_gains curve from eeprom; Atheros always uses
527 * the default curve from the ini file but some vendors
528 * (e.g. Zcomax) want to override this curve and not
529 * honoring their settings results in tx power 5dBm low.
531 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
532 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
533 #else
534 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
535 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
536 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
537 switch (numPdGainsUsed) {
538 case 3:
539 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
540 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
541 /* fall thru... */
542 case 2:
543 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
544 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
545 /* fall thru... */
546 case 1:
547 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
548 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
549 break;
551 #ifdef AH_DEBUG
552 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
553 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
554 "pd_gains (default 0x%x, calculated 0x%x)\n",
555 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
556 #endif
557 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
558 #endif
561 * Note the pdadc table may not start at 0 dBm power, could be
562 * negative or greater than 0. Need to offset the power
563 * values by the amount of minPower for griffin
565 if (minCalPower2317_t2 != 0)
566 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
567 else
568 ahp->ah_txPowerIndexOffset = 0;
570 /* Finally, write the power values into the baseband power table */
571 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
572 for (i = 0; i < 32; i++) {
573 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
574 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
575 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
576 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
577 OS_REG_WRITE(ah, regoffset, reg32);
578 regoffset += 4;
581 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
582 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
583 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
584 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
585 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
586 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
588 return AH_TRUE;
591 static int16_t
592 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
594 uint32_t ii,jj;
595 uint16_t Pmin=0,numVpd;
597 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
598 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
599 /* work backwards 'cause highest pdGain for lowest power */
600 numVpd = data->pDataPerPDGain[jj].numVpd;
601 if (numVpd > 0) {
602 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
603 return(Pmin);
606 return(Pmin);
609 static int16_t
610 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
612 uint32_t ii;
613 uint16_t Pmax=0,numVpd;
614 uint16_t vpdmax;
616 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
617 /* work forwards cuase lowest pdGain for highest power */
618 numVpd = data->pDataPerPDGain[ii].numVpd;
619 if (numVpd > 0) {
620 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
621 vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
622 return(Pmax);
625 return(Pmax);
628 static HAL_BOOL
629 ar2317GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
630 int16_t *maxPow, int16_t *minPow)
632 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
633 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
634 const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
635 uint16_t numChannels;
636 int totalD,totalF, totalMin,last, i;
638 *maxPow = 0;
640 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
641 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
642 else if (IS_CHAN_B(chan))
643 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
644 else
645 return(AH_FALSE);
647 numChannels = pRawDataset->numChannels;
648 data = pRawDataset->pDataPerChannel;
650 /* Make sure the channel is in the range of the TP values
651 * (freq piers)
653 if (numChannels < 1)
654 return(AH_FALSE);
656 if ((chan->channel < data[0].channelValue) ||
657 (chan->channel > data[numChannels-1].channelValue)) {
658 if (chan->channel < data[0].channelValue) {
659 *maxPow = ar2317GetMaxPower(ah, &data[0]);
660 *minPow = ar2317GetMinPower(ah, &data[0]);
661 return(AH_TRUE);
662 } else {
663 *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
664 *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
665 return(AH_TRUE);
669 /* Linearly interpolate the power value now */
670 for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
671 last = i++);
672 totalD = data[i].channelValue - data[last].channelValue;
673 if (totalD > 0) {
674 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
675 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
676 ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
677 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
678 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
679 ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
680 return(AH_TRUE);
681 } else {
682 if (chan->channel == data[i].channelValue) {
683 *maxPow = ar2317GetMaxPower(ah, &data[i]);
684 *minPow = ar2317GetMinPower(ah, &data[i]);
685 return(AH_TRUE);
686 } else
687 return(AH_FALSE);
692 * Free memory for analog bank scratch buffers
694 static void
695 ar2317RfDetach(struct ath_hal *ah)
697 struct ath_hal_5212 *ahp = AH5212(ah);
699 HALASSERT(ahp->ah_rfHal != AH_NULL);
700 ath_hal_free(ahp->ah_rfHal);
701 ahp->ah_rfHal = AH_NULL;
705 * Allocate memory for analog bank scratch buffers
706 * Scratch Buffer will be reinitialized every reset so no need to zero now
708 static HAL_BOOL
709 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
711 struct ath_hal_5212 *ahp = AH5212(ah);
712 struct ar2317State *priv;
714 HALASSERT(ah->ah_magic == AR5212_MAGIC);
716 HALASSERT(ahp->ah_rfHal == AH_NULL);
717 priv = ath_hal_malloc(sizeof(struct ar2317State));
718 if (priv == AH_NULL) {
719 HALDEBUG(ah, HAL_DEBUG_ANY,
720 "%s: cannot allocate private state\n", __func__);
721 *status = HAL_ENOMEM; /* XXX */
722 return AH_FALSE;
724 priv->base.rfDetach = ar2317RfDetach;
725 priv->base.writeRegs = ar2317WriteRegs;
726 priv->base.getRfBank = ar2317GetRfBank;
727 priv->base.setChannel = ar2317SetChannel;
728 priv->base.setRfRegs = ar2317SetRfRegs;
729 priv->base.setPowerTable = ar2317SetPowerTable;
730 priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
731 priv->base.getNfAdjust = ar5212GetNfAdjust;
733 ahp->ah_pcdacTable = priv->pcdacTable;
734 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
735 ahp->ah_rfHal = &priv->base;
737 return AH_TRUE;
740 static HAL_BOOL
741 ar2317Probe(struct ath_hal *ah)
743 return IS_2317(ah);
745 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);