No empty .Rs/.Re
[netbsd-mini2440.git] / sys / external / isc / atheros_hal / dist / ar5212 / ar5111.c
blob6877eac3e9c75fd8969d20204605e29d31ecf0ee
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar5111.c,v 1.3 2009/01/06 06:03:57 mrg Exp $
19 #include "opt_ah.h"
21 #include "ah.h"
22 #include "ah_internal.h"
24 #include "ah_eeprom_v3.h"
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
30 #define AH_5212_5111
31 #include "ar5212/ar5212.ini"
33 #define N(a) (sizeof(a)/sizeof(a[0]))
35 struct ar5111State {
36 RF_HAL_FUNCS base; /* public state, must be first */
37 uint16_t pcdacTable[PWR_TABLE_SIZE];
39 uint32_t Bank0Data[N(ar5212Bank0_5111)];
40 uint32_t Bank1Data[N(ar5212Bank1_5111)];
41 uint32_t Bank2Data[N(ar5212Bank2_5111)];
42 uint32_t Bank3Data[N(ar5212Bank3_5111)];
43 uint32_t Bank6Data[N(ar5212Bank6_5111)];
44 uint32_t Bank7Data[N(ar5212Bank7_5111)];
46 #define AR5111(ah) ((struct ar5111State *) AH5212(ah)->ah_rfHal)
48 static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
49 const PCDACS_EEPROM *pSrcStruct);
50 static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
51 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
52 static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
53 const PCDACS_EEPROM *pSrcStruct,
54 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
56 extern void ar5212GetLowerUpperValues(uint16_t value,
57 const uint16_t *pList, uint16_t listSize,
58 uint16_t *pLowerValue, uint16_t *pUpperValue);
59 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
60 uint32_t numBits, uint32_t firstBit, uint32_t column);
62 static void
63 ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
64 int writes)
66 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
67 HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
68 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
72 * Take the MHz channel value and set the Channel value
74 * ASSUMES: Writes enabled to analog bus
76 static HAL_BOOL
77 ar5111SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
79 #define CI_2GHZ_INDEX_CORRECTION 19
80 uint32_t refClk, reg32, data2111;
81 int16_t chan5111, chanIEEE;
84 * Structure to hold 11b tuning information for 5111/2111
85 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
87 typedef struct {
88 uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
89 uint32_t channelSelect; /* P[7:4]S[3:0] bits */
90 uint16_t channel5111; /* 11a channel for 5111 */
91 } CHAN_INFO_2GHZ;
93 static const CHAN_INFO_2GHZ chan2GHzData[] = {
94 { 1, 0x46, 96 }, /* 2312 -19 */
95 { 1, 0x46, 97 }, /* 2317 -18 */
96 { 1, 0x46, 98 }, /* 2322 -17 */
97 { 1, 0x46, 99 }, /* 2327 -16 */
98 { 1, 0x46, 100 }, /* 2332 -15 */
99 { 1, 0x46, 101 }, /* 2337 -14 */
100 { 1, 0x46, 102 }, /* 2342 -13 */
101 { 1, 0x46, 103 }, /* 2347 -12 */
102 { 1, 0x46, 104 }, /* 2352 -11 */
103 { 1, 0x46, 105 }, /* 2357 -10 */
104 { 1, 0x46, 106 }, /* 2362 -9 */
105 { 1, 0x46, 107 }, /* 2367 -8 */
106 { 1, 0x46, 108 }, /* 2372 -7 */
107 /* index -6 to 0 are pad to make this a nolookup table */
108 { 1, 0x46, 116 }, /* -6 */
109 { 1, 0x46, 116 }, /* -5 */
110 { 1, 0x46, 116 }, /* -4 */
111 { 1, 0x46, 116 }, /* -3 */
112 { 1, 0x46, 116 }, /* -2 */
113 { 1, 0x46, 116 }, /* -1 */
114 { 1, 0x46, 116 }, /* 0 */
115 { 1, 0x46, 116 }, /* 2412 1 */
116 { 1, 0x46, 117 }, /* 2417 2 */
117 { 1, 0x46, 118 }, /* 2422 3 */
118 { 1, 0x46, 119 }, /* 2427 4 */
119 { 1, 0x46, 120 }, /* 2432 5 */
120 { 1, 0x46, 121 }, /* 2437 6 */
121 { 1, 0x46, 122 }, /* 2442 7 */
122 { 1, 0x46, 123 }, /* 2447 8 */
123 { 1, 0x46, 124 }, /* 2452 9 */
124 { 1, 0x46, 125 }, /* 2457 10 */
125 { 1, 0x46, 126 }, /* 2462 11 */
126 { 1, 0x46, 127 }, /* 2467 12 */
127 { 1, 0x46, 128 }, /* 2472 13 */
128 { 1, 0x44, 124 }, /* 2484 14 */
129 { 1, 0x46, 136 }, /* 2512 15 */
130 { 1, 0x46, 140 }, /* 2532 16 */
131 { 1, 0x46, 144 }, /* 2552 17 */
132 { 1, 0x46, 148 }, /* 2572 18 */
133 { 1, 0x46, 152 }, /* 2592 19 */
134 { 1, 0x46, 156 }, /* 2612 20 */
135 { 1, 0x46, 160 }, /* 2632 21 */
136 { 1, 0x46, 164 }, /* 2652 22 */
137 { 1, 0x46, 168 }, /* 2672 23 */
138 { 1, 0x46, 172 }, /* 2692 24 */
139 { 1, 0x46, 176 }, /* 2712 25 */
140 { 1, 0x46, 180 } /* 2732 26 */
143 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
145 chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags);
146 if (IS_CHAN_2GHZ(chan)) {
147 const CHAN_INFO_2GHZ* ci =
148 &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
149 uint32_t txctl;
151 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
152 << 5)
153 | (ci->refClkSel << 4);
154 chan5111 = ci->channel5111;
155 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
156 if (chan->channel == 2484) {
157 /* Enable channel spreading for channel 14 */
158 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
159 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
160 } else {
161 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
162 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
164 } else {
165 chan5111 = chanIEEE; /* no conversion needed */
166 data2111 = 0;
169 /* Rest of the code is common for 5 GHz and 2.4 GHz. */
170 if (chan5111 >= 145 || (chan5111 & 0x1)) {
171 reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
172 refClk = 1;
173 } else {
174 reg32 = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
175 refClk = 0;
178 reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
179 OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
180 reg32 >>= 8;
181 OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
183 AH_PRIVATE(ah)->ah_curchan = chan;
184 return AH_TRUE;
185 #undef CI_2GHZ_INDEX_CORRECTION
189 * Return a reference to the requested RF Bank.
191 static uint32_t *
192 ar5111GetRfBank(struct ath_hal *ah, int bank)
194 struct ar5111State *priv = AR5111(ah);
196 HALASSERT(priv != AH_NULL);
197 switch (bank) {
198 case 0: return priv->Bank0Data;
199 case 1: return priv->Bank1Data;
200 case 2: return priv->Bank2Data;
201 case 3: return priv->Bank3Data;
202 case 6: return priv->Bank6Data;
203 case 7: return priv->Bank7Data;
205 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
206 __func__, bank);
207 return AH_NULL;
211 * Reads EEPROM header info from device structure and programs
212 * all rf registers
214 * REQUIRES: Access to the analog rf device
216 static HAL_BOOL
217 ar5111SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
218 uint16_t modesIndex, uint16_t *rfXpdGain)
220 struct ath_hal_5212 *ahp = AH5212(ah);
221 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
222 uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
223 uint16_t tempOB, tempDB;
224 uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
225 int i, regWrites = 0;
227 /* Setup rf parameters */
228 switch (chan->channelFlags & CHANNEL_ALL) {
229 case CHANNEL_A:
230 case CHANNEL_T:
231 if (4000 < chan->channel && chan->channel < 5260) {
232 tempOB = ee->ee_ob1;
233 tempDB = ee->ee_db1;
234 } else if (5260 <= chan->channel && chan->channel < 5500) {
235 tempOB = ee->ee_ob2;
236 tempDB = ee->ee_db2;
237 } else if (5500 <= chan->channel && chan->channel < 5725) {
238 tempOB = ee->ee_ob3;
239 tempDB = ee->ee_db3;
240 } else if (chan->channel >= 5725) {
241 tempOB = ee->ee_ob4;
242 tempDB = ee->ee_db4;
243 } else {
244 /* XXX when does this happen??? */
245 tempOB = tempDB = 0;
247 ob2GHz = db2GHz = 0;
249 rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
250 rfPloSel = ee->ee_xpd[headerInfo11A];
251 rfPwdXpd = !ee->ee_xpd[headerInfo11A];
252 gainI = ee->ee_gainI[headerInfo11A];
253 break;
254 case CHANNEL_B:
255 tempOB = ee->ee_obFor24;
256 tempDB = ee->ee_dbFor24;
257 ob2GHz = ee->ee_ob2GHz[0];
258 db2GHz = ee->ee_db2GHz[0];
260 rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
261 rfPloSel = ee->ee_xpd[headerInfo11B];
262 rfPwdXpd = !ee->ee_xpd[headerInfo11B];
263 gainI = ee->ee_gainI[headerInfo11B];
264 break;
265 case CHANNEL_G:
266 tempOB = ee->ee_obFor24g;
267 tempDB = ee->ee_dbFor24g;
268 ob2GHz = ee->ee_ob2GHz[1];
269 db2GHz = ee->ee_db2GHz[1];
271 rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
272 rfPloSel = ee->ee_xpd[headerInfo11G];
273 rfPwdXpd = !ee->ee_xpd[headerInfo11G];
274 gainI = ee->ee_gainI[headerInfo11G];
275 break;
276 default:
277 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
278 __func__, chan->channelFlags);
279 return AH_FALSE;
282 HALASSERT(1 <= tempOB && tempOB <= 5);
283 HALASSERT(1 <= tempDB && tempDB <= 5);
285 /* Bank 0 Write */
286 for (i = 0; i < N(ar5212Bank0_5111); i++)
287 rfReg[i] = ar5212Bank0_5111[i][modesIndex];
288 if (IS_CHAN_2GHZ(chan)) {
289 ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
290 ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
292 HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
294 /* Bank 1 Write */
295 HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
297 /* Bank 2 Write */
298 HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
300 /* Bank 3 Write */
301 HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
303 /* Bank 6 Write */
304 for (i = 0; i < N(ar5212Bank6_5111); i++)
305 rfReg[i] = ar5212Bank6_5111[i][modesIndex];
306 if (IS_CHAN_A(chan)) { /* NB: CHANNEL_A | CHANNEL_T */
307 ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
308 ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
310 ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
311 ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
312 /* Set 5212 OB & DB */
313 ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
314 ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
315 HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
317 /* Bank 7 Write */
318 for (i = 0; i < N(ar5212Bank7_5111); i++)
319 rfReg[i] = ar5212Bank7_5111[i][modesIndex];
320 ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
321 ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
323 if (IS_CHAN_QUARTER_RATE(chan) || IS_CHAN_HALF_RATE(chan)) {
324 uint32_t rfWaitI, rfWaitS, rfMaxTime;
326 rfWaitS = 0x1f;
327 rfWaitI = (IS_CHAN_HALF_RATE(chan)) ? 0x10 : 0x1f;
328 rfMaxTime = 3;
329 ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
330 ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
331 ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
335 HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
337 /* Now that we have reprogrammed rfgain value, clear the flag. */
338 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
340 return AH_TRUE;
344 * Returns interpolated or the scaled up interpolated value
346 static uint16_t
347 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
348 uint16_t targetLeft, uint16_t targetRight)
350 uint16_t rv;
351 int16_t lRatio;
353 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
354 if ((targetLeft * targetRight) == 0)
355 return 0;
357 if (srcRight != srcLeft) {
359 * Note the ratio always need to be scaled,
360 * since it will be a fraction.
362 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
363 if (lRatio < 0) {
364 /* Return as Left target if value would be negative */
365 rv = targetLeft;
366 } else if (lRatio > EEP_SCALE) {
367 /* Return as Right target if Ratio is greater than 100% (SCALE) */
368 rv = targetRight;
369 } else {
370 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
371 targetLeft) / EEP_SCALE;
373 } else {
374 rv = targetLeft;
376 return rv;
380 * Read the transmit power levels from the structures taken from EEPROM
381 * Interpolate read transmit power values for this channel
382 * Organize the transmit power values into a table for writing into the hardware
384 static HAL_BOOL
385 ar5111SetPowerTable(struct ath_hal *ah,
386 int16_t *pMinPower, int16_t *pMaxPower, HAL_CHANNEL_INTERNAL *chan,
387 uint16_t *rfXpdGain)
389 struct ath_hal_5212 *ahp = AH5212(ah);
390 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
391 FULL_PCDAC_STRUCT pcdacStruct;
392 int i, j;
394 uint16_t *pPcdacValues;
395 int16_t *pScaledUpDbm;
396 int16_t minScaledPwr;
397 int16_t maxScaledPwr;
398 int16_t pwr;
399 uint16_t pcdacMin = 0;
400 uint16_t pcdacMax = PCDAC_STOP;
401 uint16_t pcdacTableIndex;
402 uint16_t scaledPcdac;
403 PCDACS_EEPROM *pSrcStruct;
404 PCDACS_EEPROM eepromPcdacs;
406 /* setup the pcdac struct to point to the correct info, based on mode */
407 switch (chan->channelFlags & CHANNEL_ALL) {
408 case CHANNEL_A:
409 case CHANNEL_T:
410 eepromPcdacs.numChannels = ee->ee_numChannels11a;
411 eepromPcdacs.pChannelList = ee->ee_channels11a;
412 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
413 break;
414 case CHANNEL_B:
415 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
416 eepromPcdacs.pChannelList = ee->ee_channels11b;
417 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
418 break;
419 case CHANNEL_G:
420 case CHANNEL_108G:
421 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
422 eepromPcdacs.pChannelList = ee->ee_channels11g;
423 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
424 break;
425 default:
426 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
427 __func__, chan->channelFlags);
428 return AH_FALSE;
431 pSrcStruct = &eepromPcdacs;
433 OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
434 pPcdacValues = pcdacStruct.PcdacValues;
435 pScaledUpDbm = pcdacStruct.PwrValues;
437 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
438 for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
439 pPcdacValues[j] = i;
441 pcdacStruct.numPcdacValues = j;
442 pcdacStruct.pcdacMin = PCDAC_START;
443 pcdacStruct.pcdacMax = PCDAC_STOP;
445 /* Fill out the power values for this channel */
446 for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
447 pScaledUpDbm[j] = ar5212GetScaledPower(chan->channel,
448 pPcdacValues[j], pSrcStruct);
450 /* Now scale the pcdac values to fit in the 64 entry power table */
451 minScaledPwr = pScaledUpDbm[0];
452 maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
454 /* find minimum and make monotonic */
455 for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
456 if (minScaledPwr >= pScaledUpDbm[j]) {
457 minScaledPwr = pScaledUpDbm[j];
458 pcdacMin = j;
461 * Make the full_hsh monotonically increasing otherwise
462 * interpolation algorithm will get fooled gotta start
463 * working from the top, hence i = 63 - j.
465 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
466 if (i == 0)
467 break;
468 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
470 * It could be a glitch, so make the power for
471 * this pcdac the same as the power from the
472 * next highest pcdac.
474 pScaledUpDbm[i - 1] = pScaledUpDbm[i];
478 for (j = 0; j < pcdacStruct.numPcdacValues; j++)
479 if (maxScaledPwr < pScaledUpDbm[j]) {
480 maxScaledPwr = pScaledUpDbm[j];
481 pcdacMax = j;
484 /* Find the first power level with a pcdac */
485 pwr = (uint16_t)(PWR_STEP *
486 ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
488 /* Write all the first pcdac entries based off the pcdacMin */
489 pcdacTableIndex = 0;
490 for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
491 HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
492 ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
495 i = 0;
496 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
497 pcdacTableIndex < PWR_TABLE_SIZE) {
498 pwr += PWR_STEP;
499 /* stop if dbM > max_power_possible */
500 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
501 (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
502 i++;
503 /* scale by 2 and add 1 to enable round up or down as needed */
504 scaledPcdac = (uint16_t)(interpolate(pwr,
505 pScaledUpDbm[i], pScaledUpDbm[i + 1],
506 (uint16_t)(pPcdacValues[i] * 2),
507 (uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
509 HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
510 ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
511 if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
512 ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
513 pcdacTableIndex++;
516 /* Write all the last pcdac entries based off the last valid pcdac */
517 while (pcdacTableIndex < PWR_TABLE_SIZE) {
518 ahp->ah_pcdacTable[pcdacTableIndex] =
519 ahp->ah_pcdacTable[pcdacTableIndex - 1];
520 pcdacTableIndex++;
523 /* No power table adjustment for 5111 */
524 ahp->ah_txPowerIndexOffset = 0;
526 return AH_TRUE;
530 * Get or interpolate the pcdac value from the calibrated data.
532 static uint16_t
533 ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
534 const PCDACS_EEPROM *pSrcStruct)
536 uint16_t powerValue;
537 uint16_t lFreq, rFreq; /* left and right frequency values */
538 uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
539 uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
540 uint16_t lPwr = 0, uPwr = 0; /* lower and upper temp pwr values */
541 uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
543 if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
544 /* value was copied from srcStruct */
545 return powerValue;
548 ar5212GetLowerUpperValues(channel,
549 pSrcStruct->pChannelList, pSrcStruct->numChannels,
550 &lFreq, &rFreq);
551 ar5212GetLowerUpperPcdacs(pcdacValue,
552 lFreq, pSrcStruct, &llPcdac, &ulPcdac);
553 ar5212GetLowerUpperPcdacs(pcdacValue,
554 rFreq, pSrcStruct, &lrPcdac, &urPcdac);
556 /* get the power index for the pcdac value */
557 ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
558 ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
559 lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
561 ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
562 ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
563 rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
565 return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
569 * Find the value from the calibrated source data struct
571 static HAL_BOOL
572 ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
573 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
575 const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
576 int i;
578 for (i = 0; i < pSrcStruct->numChannels; i++ ) {
579 if (pChannelData->channelValue == channel) {
580 const uint16_t* pPcdac = pChannelData->PcdacValues;
581 int j;
583 for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
584 if (*pPcdac == pcdacValue) {
585 *powerValue = pChannelData->PwrValues[j];
586 return AH_TRUE;
588 pPcdac++;
591 pChannelData++;
593 return AH_FALSE;
597 * Get the upper and lower pcdac given the channel and the pcdac
598 * used in the search
600 static void
601 ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
602 const PCDACS_EEPROM *pSrcStruct,
603 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
605 const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
606 int i;
608 /* Find the channel information */
609 for (i = 0; i < pSrcStruct->numChannels; i++) {
610 if (pChannelData->channelValue == channel)
611 break;
612 pChannelData++;
614 ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
615 pChannelData->numPcdacValues,
616 pLowerPcdac, pUpperPcdac);
619 static HAL_BOOL
620 ar5111GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
621 int16_t *maxPow, int16_t *minPow)
623 /* XXX - Get 5111 power limits! */
624 /* NB: caller will cope */
625 return AH_FALSE;
629 * Adjust NF based on statistical values for 5GHz frequencies.
631 static int16_t
632 ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
634 static const struct {
635 uint16_t freqLow;
636 int16_t adjust;
637 } adjust5111[] = {
638 { 5790, 6 }, /* NB: ordered high -> low */
639 { 5730, 4 },
640 { 5690, 3 },
641 { 5660, 2 },
642 { 5610, 1 },
643 { 5530, 0 },
644 { 5450, 0 },
645 { 5379, 1 },
646 { 5209, 3 },
647 { 3000, 5 },
648 { 0, 0 },
650 int i;
652 for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
654 return adjust5111[i].adjust;
658 * Free memory for analog bank scratch buffers
660 static void
661 ar5111RfDetach(struct ath_hal *ah)
663 struct ath_hal_5212 *ahp = AH5212(ah);
665 HALASSERT(ahp->ah_rfHal != AH_NULL);
666 ath_hal_free(ahp->ah_rfHal);
667 ahp->ah_rfHal = AH_NULL;
671 * Allocate memory for analog bank scratch buffers
672 * Scratch Buffer will be reinitialized every reset so no need to zero now
674 static HAL_BOOL
675 ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
677 struct ath_hal_5212 *ahp = AH5212(ah);
678 struct ar5111State *priv;
680 HALASSERT(ah->ah_magic == AR5212_MAGIC);
682 HALASSERT(ahp->ah_rfHal == AH_NULL);
683 priv = ath_hal_malloc(sizeof(struct ar5111State));
684 if (priv == AH_NULL) {
685 HALDEBUG(ah, HAL_DEBUG_ANY,
686 "%s: cannot allocate private state\n", __func__);
687 *status = HAL_ENOMEM; /* XXX */
688 return AH_FALSE;
690 priv->base.rfDetach = ar5111RfDetach;
691 priv->base.writeRegs = ar5111WriteRegs;
692 priv->base.getRfBank = ar5111GetRfBank;
693 priv->base.setChannel = ar5111SetChannel;
694 priv->base.setRfRegs = ar5111SetRfRegs;
695 priv->base.setPowerTable = ar5111SetPowerTable;
696 priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
697 priv->base.getNfAdjust = ar5111GetNfAdjust;
699 ahp->ah_pcdacTable = priv->pcdacTable;
700 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
701 ahp->ah_rfHal = &priv->base;
703 return AH_TRUE;
706 static HAL_BOOL
707 ar5111Probe(struct ath_hal *ah)
709 return IS_RAD5111(ah);
711 AH_RF(RF5111, ar5111Probe, ar5111RfAttach);