No empty .Rs/.Re
[netbsd-mini2440.git] / sys / external / isc / atheros_hal / dist / ar5212 / ar5212_reset.c
blob82007827ba26da448c7b7138c89a1d9e2dd99102
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar5212_reset.c,v 1.2 2009/01/06 06:03:57 mrg Exp $
19 #include "opt_ah.h"
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
25 #include "ar5212/ar5212.h"
26 #include "ar5212/ar5212reg.h"
27 #include "ar5212/ar5212phy.h"
29 #include "ah_eeprom_v3.h"
31 /* Additional Time delay to wait after activiting the Base band */
32 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */
33 #define PLL_SETTLE_DELAY 300 /* 300 usec */
35 static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
36 /* NB: public for 5312 use */
37 HAL_BOOL ar5212IsSpurChannel(struct ath_hal *, HAL_CHANNEL *);
38 HAL_BOOL ar5212ChannelChange(struct ath_hal *, HAL_CHANNEL *);
39 int16_t ar5212GetNf(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
40 HAL_BOOL ar5212SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
41 void ar5212SetDeltaSlope(struct ath_hal *, HAL_CHANNEL *);
42 HAL_BOOL ar5212SetTransmitPower(struct ath_hal *ah,
43 HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
44 static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
45 HAL_CHANNEL *, int16_t tpcScaleReduction, int16_t powerLimit,
46 HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
47 static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
48 static void ar5212GetTargetPowers(struct ath_hal *, HAL_CHANNEL *,
49 const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
50 TRGT_POWER_INFO *pNewPower);
51 static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
52 const RD_EDGES_POWER *pRdEdgesPower);
53 void ar5212SetRateDurationTable(struct ath_hal *, HAL_CHANNEL *);
54 void ar5212SetIFSTiming(struct ath_hal *, HAL_CHANNEL *);
56 /* NB: public for RF backend use */
57 void ar5212GetLowerUpperValues(uint16_t value,
58 uint16_t *pList, uint16_t listSize,
59 uint16_t *pLowerValue, uint16_t *pUpperValue);
60 void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 uint32_t numBits, uint32_t firstBit, uint32_t column);
63 static int
64 write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
65 HAL_BOOL bChannelChange, int writes)
67 #define IS_NO_RESET_TIMER_ADDR(x) \
68 ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
69 (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
70 #define V(r, c) (ia)->data[((r)*(ia)->cols) + (c)]
71 int r;
73 /* Write Common Array Parameters */
74 for (r = 0; r < ia->rows; r++) {
75 uint32_t reg = V(r, 0);
76 /* XXX timer/beacon setup registers? */
77 /* On channel change, don't reset the PCU registers */
78 if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
79 OS_REG_WRITE(ah, reg, V(r, 1));
80 DMA_YIELD(writes);
83 return writes;
84 #undef IS_NO_RESET_TIMER_ADDR
85 #undef V
88 #define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
91 * Places the device in and out of reset and then places sane
92 * values in the registers based on EEPROM config, initialization
93 * vectors (as determined by the mode), and station configuration
95 * bChannelChange is used to preserve DMA/PCU registers across
96 * a HW Reset during channel change.
98 HAL_BOOL
99 ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
100 HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
102 #define N(a) (sizeof (a) / sizeof (a[0]))
103 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
104 struct ath_hal_5212 *ahp = AH5212(ah);
105 HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
106 const HAL_EEPROM *ee;
107 uint32_t softLedCfg, softLedState;
108 uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
109 uint32_t macStaId1, synthDelay, txFrm2TxDStart;
110 uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
111 int16_t cckOfdmPwrDelta = 0;
112 u_int modesIndex, freqIndex;
113 HAL_STATUS ecode;
114 int i, regWrites;
115 uint32_t testReg, powerVal;
116 int8_t twiceAntennaGain, twiceAntennaReduction;
117 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
118 HAL_BOOL isBmode = AH_FALSE;
119 HAL_BOOL ichan_isBmode = AH_FALSE;
121 HALASSERT(ah->ah_magic == AR5212_MAGIC);
122 ee = AH_PRIVATE(ah)->ah_eeprom;
124 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
125 #define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
126 if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
127 HALDEBUG(ah, HAL_DEBUG_ANY,
128 "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
129 __func__, chan->channel, chan->channelFlags);
130 FAIL(HAL_EINVAL);
132 if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
133 HALDEBUG(ah, HAL_DEBUG_ANY,
134 "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
135 __func__, chan->channel, chan->channelFlags);
136 FAIL(HAL_EINVAL);
138 #undef IS
140 /* Bring out of sleep mode */
141 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
142 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
143 __func__);
144 FAIL(HAL_EIO);
148 * Map public channel to private.
150 ichan = ath_hal_checkchannel(ah, chan);
151 if (ichan == AH_NULL) {
152 HALDEBUG(ah, HAL_DEBUG_ANY,
153 "%s: invalid channel %u/0x%x; no mapping\n",
154 __func__, chan->channel, chan->channelFlags);
155 FAIL(HAL_EINVAL);
157 switch (opmode) {
158 case HAL_M_STA:
159 case HAL_M_IBSS:
160 case HAL_M_HOSTAP:
161 case HAL_M_MONITOR:
162 break;
163 default:
164 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
165 __func__, opmode);
166 FAIL(HAL_EINVAL);
167 break;
169 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
171 SAVE_CCK(ah, ichan, ichan_isBmode);
172 SAVE_CCK(ah, chan, isBmode);
174 /* Preserve certain DMA hardware registers on a channel change */
175 if (bChannelChange) {
177 * On Venice, the TSF is almost preserved across a reset;
178 * it requires doubling writes to the RESET_TSF
179 * bit in the AR_BEACON register; it also has the quirk
180 * of the TSF going back in time on the station (station
181 * latches onto the last beacon's tsf during a reset 50%
182 * of the times); the latter is not a problem for adhoc
183 * stations since as long as the TSF is behind, it will
184 * get resynchronized on receiving the next beacon; the
185 * TSF going backwards in time could be a problem for the
186 * sleep operation (supported on infrastructure stations
187 * only) - the best and most general fix for this situation
188 * is to resynchronize the various sleep/beacon timers on
189 * the receipt of the next beacon i.e. when the TSF itself
190 * gets resynchronized to the AP's TSF - power save is
191 * needed to be temporarily disabled until that time
193 * Need to save the sequence number to restore it after
194 * the reset!
196 saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
197 } else
198 saveFrameSeqCount = 0; /* NB: silence compiler */
199 #if 0
201 * XXX disable for now; this appears to sometimes cause OFDM
202 * XXX timing error floods when ani is enabled and bg scanning
203 * XXX kicks in
205 /* If the channel change is across the same mode - perform a fast channel change */
206 if (IS_2413(ah) || IS_5413(ah)) {
208 * Fast channel change can only be used when:
209 * -channel change requested - so it's not the initial reset.
210 * -it's not a change to the current channel -
211 * often called when switching modes on a channel
212 * -the modes of the previous and requested channel are the
213 * same
214 * XXX opmode shouldn't change either?
216 if (bChannelChange &&
217 (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
218 (chan->channel != AH_PRIVATE(ah)->ah_curchan->channel) &&
219 ((chan->channelFlags & CHANNEL_ALL) ==
220 (AH_PRIVATE(ah)->ah_curchan->channelFlags & CHANNEL_ALL))) {
221 if (ar5212ChannelChange(ah, chan)) {
222 /* If ChannelChange completed - skip the rest of reset */
223 /* XXX ani? */
224 return AH_TRUE;
228 #endif
230 * Preserve the antenna on a channel change
232 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
233 if (saveDefAntenna == 0) /* XXX magic constants */
234 saveDefAntenna = 1;
236 /* Save hardware flag before chip reset clears the register */
237 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
238 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
240 /* Save led state from pci config register */
241 saveLedState = OS_REG_READ(ah, AR_PCICFG) &
242 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
243 AR_PCICFG_LEDSLOW);
244 softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
245 softLedState = OS_REG_READ(ah, AR_GPIODO);
247 ar5212RestoreClock(ah, opmode); /* move to refclk operation */
250 * Adjust gain parameters before reset if
251 * there's an outstanding gain updated.
253 (void) ar5212GetRfgain(ah);
255 if (!ar5212ChipReset(ah, chan)) {
256 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
257 FAIL(HAL_EIO);
260 /* Setup the indices for the next set of register array writes */
261 switch (chan->channelFlags & CHANNEL_ALL) {
262 case CHANNEL_A:
263 modesIndex = 1;
264 freqIndex = 1;
265 break;
266 case CHANNEL_T:
267 modesIndex = 2;
268 freqIndex = 1;
269 break;
270 case CHANNEL_B:
271 modesIndex = 3;
272 freqIndex = 2;
273 break;
274 case CHANNEL_PUREG:
275 modesIndex = 4;
276 freqIndex = 2;
277 break;
278 case CHANNEL_108G:
279 modesIndex = 5;
280 freqIndex = 2;
281 break;
282 default:
283 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
284 __func__, chan->channelFlags);
285 FAIL(HAL_EINVAL);
288 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
290 /* Set correct Baseband to analog shift setting to access analog chips. */
291 OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
293 regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
294 regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
295 regWrites);
296 ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
298 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
300 if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) {
301 ar5212SetIFSTiming(ah, chan);
302 if (IS_5413(ah)) {
304 * Force window_length for 1/2 and 1/4 rate channels,
305 * the ini file sets this to zero otherwise.
307 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
308 AR_PHY_FRAME_CTL_WINLEN, 3);
312 /* Overwrite INI values for revised chipsets */
313 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
314 /* ADC_CTL */
315 OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
316 SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
317 SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
318 AR_PHY_ADC_CTL_OFF_PWDDAC |
319 AR_PHY_ADC_CTL_OFF_PWDADC);
321 /* TX_PWR_ADJ */
322 if (chan->channel == 2484) {
323 cckOfdmPwrDelta = SCALE_OC_DELTA(
324 ee->ee_cckOfdmPwrDelta -
325 ee->ee_scaledCh14FilterCckDelta);
326 } else {
327 cckOfdmPwrDelta = SCALE_OC_DELTA(
328 ee->ee_cckOfdmPwrDelta);
331 if (IS_CHAN_G(chan)) {
332 OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
333 SM((ee->ee_cckOfdmPwrDelta*-1),
334 AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
335 SM((cckOfdmPwrDelta*-1),
336 AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
337 } else {
338 OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
341 /* Add barker RSSI thresh enable as disabled */
342 OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
343 AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
344 OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
345 AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
347 /* Set the mute mask to the correct default */
348 OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
351 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
352 /* Clear reg to alllow RX_CLEAR line debug */
353 OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
355 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
356 #ifdef notyet
357 /* Enable burst prefetch for the data queues */
358 OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
359 /* Enable double-buffering */
360 OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
361 #endif
364 /* Set ADC/DAC select values */
365 OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
367 if (IS_5413(ah) || IS_2417(ah)) {
368 uint32_t newReg=1;
369 if (IS_DISABLE_FAST_ADC_CHAN(chan->channel))
370 newReg = 0;
371 /* As it's a clock changing register, only write when the value needs to be changed */
372 if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
373 OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
376 /* Setup the transmit power values. */
377 if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
378 HALDEBUG(ah, HAL_DEBUG_ANY,
379 "%s: error init'ing transmit power\n", __func__);
380 FAIL(HAL_EIO);
383 /* Write the analog registers */
384 if (!ahp->ah_rfHal->setRfRegs(ah, ichan, modesIndex, rfXpdGain)) {
385 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
386 __func__);
387 FAIL(HAL_EIO);
390 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
391 if (IS_CHAN_OFDM(chan)) {
392 if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
393 (!IS_CHAN_B(chan)))
394 ar5212SetSpurMitigation(ah, ichan);
395 ar5212SetDeltaSlope(ah, chan);
398 /* Setup board specific options for EEPROM version 3 */
399 if (!ar5212SetBoardValues(ah, ichan)) {
400 HALDEBUG(ah, HAL_DEBUG_ANY,
401 "%s: error setting board options\n", __func__);
402 FAIL(HAL_EIO);
405 /* Restore certain DMA hardware registers on a channel change */
406 if (bChannelChange)
407 OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
409 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
411 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
412 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
413 | macStaId1
414 | AR_STA_ID1_RTS_USE_DEF
415 | ahp->ah_staId1Defaults
417 ar5212SetOperatingMode(ah, opmode);
419 /* Set Venice BSSID mask according to current state */
420 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
421 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
423 /* Restore previous led state */
424 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
426 /* Restore soft Led state to GPIO */
427 OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
428 OS_REG_WRITE(ah, AR_GPIODO, softLedState);
430 /* Restore previous antenna */
431 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
433 /* then our BSSID */
434 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
435 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
437 /* Restore bmiss rssi & count thresholds */
438 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
440 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
442 if (!ar5212SetChannel(ah, ichan))
443 FAIL(HAL_EIO);
445 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
447 ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
449 ar5212SetRateDurationTable(ah, chan);
451 /* Set Tx frame start to tx data start delay */
452 if (IS_RAD5112_ANY(ah) &&
453 (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan) ||
454 IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan))) {
455 txFrm2TxDStart =
456 (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) ?
457 TX_FRAME_D_START_HALF_RATE:
458 TX_FRAME_D_START_QUARTER_RATE;
459 OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
460 AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
464 * Setup fast diversity.
465 * Fast diversity can be enabled or disabled via regadd.txt.
466 * Default is enabled.
467 * For reference,
468 * Disable: reg val
469 * 0x00009860 0x00009d18 (if 11a / 11g, else no change)
470 * 0x00009970 0x192bb514
471 * 0x0000a208 0xd03e4648
473 * Enable: 0x00009860 0x00009d10 (if 11a / 11g, else no change)
474 * 0x00009970 0x192fb514
475 * 0x0000a208 0xd03e6788
478 /* XXX Setup pre PHY ENABLE EAR additions */
480 * Wait for the frequency synth to settle (synth goes on
481 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
482 * Value is in 100ns increments.
484 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
485 if (IS_CHAN_CCK(chan)) {
486 synthDelay = (4 * synthDelay) / 22;
487 } else {
488 synthDelay /= 10;
491 /* Activate the PHY (includes baseband activate and synthesizer on) */
492 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
495 * There is an issue if the AP starts the calibration before
496 * the base band timeout completes. This could result in the
497 * rx_clear false triggering. As a workaround we add delay an
498 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
499 * does not happen.
501 if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
502 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
503 } else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
504 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
505 } else {
506 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
510 * The udelay method is not reliable with notebooks.
511 * Need to check to see if the baseband is ready
513 testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
514 /* Selects the Tx hold */
515 OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
516 i = 0;
517 while ((i++ < 20) &&
518 (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */ OS_DELAY(200);
519 OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
521 /* Calibrate the AGC and start a NF calculation */
522 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
523 OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
524 | AR_PHY_AGC_CONTROL_CAL
525 | AR_PHY_AGC_CONTROL_NF);
527 if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
528 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
529 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
530 AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
531 INIT_IQCAL_LOG_COUNT_MAX);
532 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
533 AR_PHY_TIMING_CTRL4_DO_IQCAL);
534 ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
535 } else
536 ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
538 /* Setup compression registers */
539 ar5212SetCompRegs(ah);
541 /* Set 1:1 QCU to DCU mapping for all queues */
542 for (i = 0; i < AR_NUM_DCU; i++)
543 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
545 ahp->ah_intrTxqs = 0;
546 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
547 ar5212ResetTxQueue(ah, i);
550 * Setup interrupt handling. Note that ar5212ResetTxQueue
551 * manipulates the secondary IMR's as queues are enabled
552 * and disabled. This is done with RMW ops to insure the
553 * settings we make here are preserved.
555 ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
556 | AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
557 | AR_IMR_HIUERR
559 if (opmode == HAL_M_HOSTAP)
560 ahp->ah_maskReg |= AR_IMR_MIB;
561 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
562 /* Enable bus errors that are OR'd to set the HIUERR bit */
563 OS_REG_WRITE(ah, AR_IMR_S2,
564 OS_REG_READ(ah, AR_IMR_S2)
565 | AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
567 if (AH_PRIVATE(ah)->ah_rfkillEnabled)
568 ar5212EnableRfKill(ah);
570 if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
571 HALDEBUG(ah, HAL_DEBUG_ANY,
572 "%s: offset calibration failed to complete in 1ms;"
573 " noisy environment?\n", __func__);
577 * Set clocks back to 32kHz if they had been using refClk, then
578 * use an external 32kHz crystal when sleeping, if one exists.
580 ar5212SetupClock(ah, opmode);
583 * Writing to AR_BEACON will start timers. Hence it should
584 * be the last register to be written. Do not reset tsf, do
585 * not enable beacons at this point, but preserve other values
586 * like beaconInterval.
588 OS_REG_WRITE(ah, AR_BEACON,
589 (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
591 /* XXX Setup post reset EAR additions */
593 /* QoS support */
594 if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
595 (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
596 AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
597 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
598 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
601 /* Turn on NOACK Support for QoS packets */
602 OS_REG_WRITE(ah, AR_NOACK,
603 SM(2, AR_NOACK_2BIT_VALUE) |
604 SM(5, AR_NOACK_BIT_OFFSET) |
605 SM(0, AR_NOACK_BYTE_OFFSET));
607 /* Get Antenna Gain reduction */
608 if (IS_CHAN_5GHZ(chan)) {
609 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
610 } else {
611 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
613 twiceAntennaReduction =
614 ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
616 /* TPC for self-generated frames */
618 ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
619 if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
620 ackTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
622 if (ackTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
623 ackTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
624 + ahp->ah_txPowerIndexOffset;
626 ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
627 if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
628 ctsTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
630 if (ctsTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
631 ctsTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
632 + ahp->ah_txPowerIndexOffset;
634 chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
635 if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > ichan->maxTxPower)
636 chirpTpcPow = ichan->maxTxPower+ahp->ah_txPowerIndexOffset;
638 if (chirpTpcPow > (2*ichan->maxRegTxPower - twiceAntennaReduction))
639 chirpTpcPow = (2*ichan->maxRegTxPower - twiceAntennaReduction)
640 + ahp->ah_txPowerIndexOffset;
642 if (ackTpcPow > 63)
643 ackTpcPow = 63;
644 if (ctsTpcPow > 63)
645 ctsTpcPow = 63;
646 if (chirpTpcPow > 63)
647 chirpTpcPow = 63;
649 powerVal = SM(ackTpcPow, AR_TPC_ACK) |
650 SM(ctsTpcPow, AR_TPC_CTS) |
651 SM(chirpTpcPow, AR_TPC_CHIRP);
653 OS_REG_WRITE(ah, AR_TPC, powerVal);
655 /* Restore user-specified settings */
656 if (ahp->ah_miscMode != 0)
657 OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
658 if (ahp->ah_sifstime != (u_int) -1)
659 ar5212SetSifsTime(ah, ahp->ah_sifstime);
660 if (ahp->ah_slottime != (u_int) -1)
661 ar5212SetSlotTime(ah, ahp->ah_slottime);
662 if (ahp->ah_acktimeout != (u_int) -1)
663 ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
664 if (ahp->ah_ctstimeout != (u_int) -1)
665 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
666 if (AH_PRIVATE(ah)->ah_diagreg != 0)
667 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
669 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
671 if (bChannelChange) {
672 if (!(ichan->privFlags & CHANNEL_DFS))
673 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
674 chan->channelFlags = ichan->channelFlags;
675 chan->privFlags = ichan->privFlags;
676 chan->maxRegTxPower = ichan->maxRegTxPower;
677 chan->maxTxPower = ichan->maxTxPower;
678 chan->minTxPower = ichan->minTxPower;
681 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
683 RESTORE_CCK(ah, ichan, ichan_isBmode);
684 RESTORE_CCK(ah, chan, isBmode);
686 OS_MARK(ah, AH_MARK_RESET_DONE, 0);
688 return AH_TRUE;
689 bad:
690 if (ichan != AH_NULL)
691 RESTORE_CCK(ah, ichan, ichan_isBmode);
692 RESTORE_CCK(ah, chan, isBmode);
694 OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
695 if (*status)
696 *status = ecode;
697 return AH_FALSE;
698 #undef FAIL
699 #undef N
703 * Call the rf backend to change the channel.
705 HAL_BOOL
706 ar5212SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
708 struct ath_hal_5212 *ahp = AH5212(ah);
710 /* Change the synth */
711 if (!ahp->ah_rfHal->setChannel(ah, chan))
712 return AH_FALSE;
713 return AH_TRUE;
717 * This channel change evaluates whether the selected hardware can
718 * perform a synthesizer-only channel change (no reset). If the
719 * TX is not stopped, or the RFBus cannot be granted in the given
720 * time, the function returns false as a reset is necessary
722 HAL_BOOL
723 ar5212ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
725 uint32_t ulCount;
726 uint32_t data, synthDelay, qnum;
727 uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
728 HAL_BOOL txStopped = AH_TRUE;
729 HAL_CHANNEL_INTERNAL *ichan;
732 * Map public channel to private.
734 ichan = ath_hal_checkchannel(ah, chan);
736 /* TX must be stopped or RF Bus grant will not work */
737 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
738 if (ar5212NumTxPending(ah, qnum)) {
739 txStopped = AH_FALSE;
740 break;
743 if (!txStopped)
744 return AH_FALSE;
746 /* Kill last Baseband Rx Frame */
747 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
748 for (ulCount = 0; ulCount < 100; ulCount++) {
749 if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
750 break;
751 OS_DELAY(5);
753 if (ulCount >= 100)
754 return AH_FALSE;
756 /* Change the synth */
757 if (!ar5212SetChannel(ah, ichan))
758 return AH_FALSE;
761 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
762 * Read the phy active delay register. Value is in 100ns increments.
764 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
765 if (IS_CHAN_CCK(ichan)) {
766 synthDelay = (4 * data) / 22;
767 } else {
768 synthDelay = data / 10;
770 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
772 /* Setup the transmit power values. */
773 if (!ar5212SetTransmitPower(ah, ichan, rfXpdGain)) {
774 HALDEBUG(ah, HAL_DEBUG_ANY,
775 "%s: error init'ing transmit power\n", __func__);
776 return AH_FALSE;
779 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
780 if (IS_CHAN_OFDM(ichan)) {
781 if ((IS_5413(ah) || (AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)) &&
782 (!IS_CHAN_B(chan)))
783 ar5212SetSpurMitigation(ah, ichan);
784 ar5212SetDeltaSlope(ah, chan);
787 /* Release the RFBus Grant */
788 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
790 /* Start Noise Floor Cal */
791 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
793 if (!(ichan->privFlags & CHANNEL_DFS))
794 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
795 chan->channelFlags = ichan->channelFlags;
796 chan->privFlags = ichan->privFlags;
797 chan->maxRegTxPower = ichan->maxRegTxPower;
798 chan->maxTxPower = ichan->maxTxPower;
799 chan->minTxPower = ichan->minTxPower;
800 return AH_TRUE;
803 void
804 ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
806 uint32_t val;
808 val = OS_REG_READ(ah, AR_STA_ID1);
809 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
810 switch (opmode) {
811 case HAL_M_HOSTAP:
812 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
813 | AR_STA_ID1_KSRCH_MODE);
814 OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
815 break;
816 case HAL_M_IBSS:
817 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
818 | AR_STA_ID1_KSRCH_MODE);
819 OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
820 break;
821 case HAL_M_STA:
822 case HAL_M_MONITOR:
823 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
824 break;
829 * Places the PHY and Radio chips into reset. A full reset
830 * must be called to leave this state. The PCI/MAC/PCU are
831 * not placed into reset as we must receive interrupt to
832 * re-enable the hardware.
834 HAL_BOOL
835 ar5212PhyDisable(struct ath_hal *ah)
837 return ar5212SetResetReg(ah, AR_RC_BB);
841 * Places all of hardware into reset
843 HAL_BOOL
844 ar5212Disable(struct ath_hal *ah)
846 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
847 return AH_FALSE;
849 * Reset the HW - PCI must be reset after the rest of the
850 * device has been reset.
852 return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
856 * Places the hardware into reset and then pulls it out of reset
858 * TODO: Only write the PLL if we're changing to or from CCK mode
860 * WARNING: The order of the PLL and mode registers must be correct.
862 HAL_BOOL
863 ar5212ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
866 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
869 * Reset the HW - PCI must be reset after the rest of the
870 * device has been reset
872 if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
873 return AH_FALSE;
875 /* Bring out of sleep mode (AGAIN) */
876 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
877 return AH_FALSE;
879 /* Clear warm reset register */
880 if (!ar5212SetResetReg(ah, 0))
881 return AH_FALSE;
884 * Perform warm reset before the mode/PLL/turbo registers
885 * are changed in order to deactivate the radio. Mode changes
886 * with an active radio can result in corrupted shifts to the
887 * radio device.
891 * Set CCK and Turbo modes correctly.
893 if (chan != AH_NULL) { /* NB: can be null during attach */
894 uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
896 if (IS_5413(ah)) { /* NB: =>'s 5424 also */
897 rfMode = AR_PHY_MODE_AR5112;
898 if (IS_CHAN_HALF_RATE(chan))
899 rfMode |= AR_PHY_MODE_HALF;
900 else if (IS_CHAN_QUARTER_RATE(chan))
901 rfMode |= AR_PHY_MODE_QUARTER;
903 if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
904 phyPLL = AR_PHY_PLL_CTL_44_5112;
905 else
906 phyPLL = AR_PHY_PLL_CTL_40_5413;
907 } else if (IS_RAD5111(ah)) {
908 rfMode = AR_PHY_MODE_AR5111;
909 if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
910 phyPLL = AR_PHY_PLL_CTL_44;
911 else
912 phyPLL = AR_PHY_PLL_CTL_40;
913 if (IS_CHAN_HALF_RATE(chan))
914 phyPLL = AR_PHY_PLL_CTL_HALF;
915 else if (IS_CHAN_QUARTER_RATE(chan))
916 phyPLL = AR_PHY_PLL_CTL_QUARTER;
917 } else { /* 5112, 2413, 2316, 2317 */
918 rfMode = AR_PHY_MODE_AR5112;
919 if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan))
920 phyPLL = AR_PHY_PLL_CTL_44_5112;
921 else
922 phyPLL = AR_PHY_PLL_CTL_40_5112;
923 if (IS_CHAN_HALF_RATE(chan))
924 phyPLL |= AR_PHY_PLL_CTL_HALF;
925 else if (IS_CHAN_QUARTER_RATE(chan))
926 phyPLL |= AR_PHY_PLL_CTL_QUARTER;
928 if (IS_CHAN_OFDM(chan) && (IS_CHAN_CCK(chan) ||
929 IS_CHAN_G(chan)))
930 rfMode |= AR_PHY_MODE_DYNAMIC;
931 else if (IS_CHAN_OFDM(chan))
932 rfMode |= AR_PHY_MODE_OFDM;
933 else
934 rfMode |= AR_PHY_MODE_CCK;
935 if (IS_CHAN_5GHZ(chan))
936 rfMode |= AR_PHY_MODE_RF5GHZ;
937 else
938 rfMode |= AR_PHY_MODE_RF2GHZ;
939 turbo = IS_CHAN_TURBO(chan) ?
940 (AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
941 curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
943 * PLL, Mode, and Turbo values must be written in the correct
944 * order to ensure:
945 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
946 * mode bit is set
947 * - Turbo cannot be set at the same time as CCK or DYNAMIC
949 if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
950 OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
951 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
952 if (curPhyPLL != phyPLL) {
953 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
954 /* Wait for the PLL to settle */
955 OS_DELAY(PLL_SETTLE_DELAY);
957 } else {
958 if (curPhyPLL != phyPLL) {
959 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
960 /* Wait for the PLL to settle */
961 OS_DELAY(PLL_SETTLE_DELAY);
963 OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
964 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
967 return AH_TRUE;
971 * Recalibrate the lower PHY chips to account for temperature/environment
972 * changes.
974 HAL_BOOL
975 ar5212PerCalibrationN(struct ath_hal *ah, HAL_CHANNEL *chan, u_int chainMask,
976 HAL_BOOL longCal, HAL_BOOL *isCalDone)
978 #define IQ_CAL_TRIES 10
979 struct ath_hal_5212 *ahp = AH5212(ah);
980 HAL_CHANNEL_INTERNAL *ichan;
981 int32_t qCoff, qCoffDenom;
982 int32_t iqCorrMeas, iCoff, iCoffDenom;
983 uint32_t powerMeasQ, powerMeasI;
984 HAL_BOOL ichan_isBmode = AH_FALSE;
985 HAL_BOOL isBmode = AH_FALSE;
987 OS_MARK(ah, AH_MARK_PERCAL, chan->channel);
988 *isCalDone = AH_FALSE;
989 ichan = ath_hal_checkchannel(ah, chan);
990 if (ichan == AH_NULL) {
991 HALDEBUG(ah, HAL_DEBUG_ANY,
992 "%s: invalid channel %u/0x%x; no mapping\n",
993 __func__, chan->channel, chan->channelFlags);
994 return AH_FALSE;
996 SAVE_CCK(ah, ichan, ichan_isBmode);
997 SAVE_CCK(ah, chan, isBmode);
999 if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
1000 ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
1001 *isCalDone = AH_TRUE;
1003 /* IQ calibration in progress. Check to see if it has finished. */
1004 if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
1005 !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
1006 int i;
1008 /* IQ Calibration has finished. */
1009 ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
1010 *isCalDone = AH_TRUE;
1012 /* workaround for misgated IQ Cal results */
1013 i = 0;
1014 do {
1015 /* Read calibration results. */
1016 powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
1017 powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
1018 iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
1019 if (powerMeasI && powerMeasQ)
1020 break;
1021 /* Do we really need this??? */
1022 OS_REG_WRITE (ah, AR_PHY_TIMING_CTRL4,
1023 OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
1024 AR_PHY_TIMING_CTRL4_DO_IQCAL);
1025 } while (++i < IQ_CAL_TRIES);
1028 * Prescale these values to remove 64-bit operation
1029 * requirement at the loss of a little precision.
1031 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
1032 qCoffDenom = powerMeasQ / 128;
1034 /* Protect against divide-by-0 and loss of sign bits. */
1035 if (iCoffDenom != 0 && qCoffDenom >= 2) {
1036 iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
1037 /* IQCORR_Q_I_COFF is a signed 6 bit number */
1038 if (iCoff < -32) {
1039 iCoff = -32;
1040 } else if (iCoff > 31) {
1041 iCoff = 31;
1044 /* IQCORR_Q_Q_COFF is a signed 5 bit number */
1045 qCoff = (powerMeasI / qCoffDenom) - 128;
1046 if (qCoff < -16) {
1047 qCoff = -16;
1048 } else if (qCoff > 15) {
1049 qCoff = 15;
1052 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1053 "****************** MISGATED IQ CAL! *******************\n");
1054 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1055 "time = %d, i = %d, \n", OS_GETUPTIME(ah), i);
1056 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1057 "powerMeasI = 0x%08x\n", powerMeasI);
1058 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1059 "powerMeasQ = 0x%08x\n", powerMeasQ);
1060 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1061 "iqCorrMeas = 0x%08x\n", iqCorrMeas);
1062 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1063 "iCoff = %d\n", iCoff);
1064 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1065 "qCoff = %d\n", qCoff);
1067 /* Write values and enable correction */
1068 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1069 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1070 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1071 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1072 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1073 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1075 ahp->ah_bIQCalibration = IQ_CAL_DONE;
1076 ichan->iqCalValid = AH_TRUE;
1077 ichan->iCoff = iCoff;
1078 ichan->qCoff = qCoff;
1080 } else if (!IS_CHAN_B(chan) && ahp->ah_bIQCalibration == IQ_CAL_DONE &&
1081 !ichan->iqCalValid) {
1083 * Start IQ calibration if configured channel has changed.
1084 * Use a magic number of 15 based on default value.
1086 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1087 AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
1088 INIT_IQCAL_LOG_COUNT_MAX);
1089 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1090 AR_PHY_TIMING_CTRL4_DO_IQCAL);
1091 ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
1093 /* XXX EAR */
1095 if (longCal) {
1096 /* Check noise floor results */
1097 ar5212GetNf(ah, ichan);
1099 if ((ichan->channelFlags & CHANNEL_CW_INT) == 0) {
1100 /* Perform cal for 5Ghz channels and any OFDM on 5112 */
1101 if (IS_CHAN_5GHZ(chan) ||
1102 (IS_RAD5112(ah) && IS_CHAN_OFDM(chan)))
1103 ar5212RequestRfgain(ah);
1104 } else {
1105 /* report up and clear internal state */
1106 chan->channelFlags |= CHANNEL_CW_INT;
1107 ichan->channelFlags &= ~CHANNEL_CW_INT;
1110 RESTORE_CCK(ah, ichan, ichan_isBmode);
1111 RESTORE_CCK(ah, chan, isBmode);
1113 return AH_TRUE;
1114 #undef IQ_CAL_TRIES
1117 HAL_BOOL
1118 ar5212PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
1120 return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
1123 HAL_BOOL
1124 ar5212ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
1126 /* XXX */
1127 return AH_TRUE;
1131 * Write the given reset bit mask into the reset register
1133 static HAL_BOOL
1134 ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
1136 uint32_t mask = resetMask ? resetMask : ~0;
1137 HAL_BOOL rt;
1139 /* XXX ar5212MacStop & co. */
1141 if (IS_PCIE(ah)) {
1142 resetMask &= ~AR_RC_PCI;
1145 (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
1146 OS_REG_WRITE(ah, AR_RC, resetMask);
1147 OS_DELAY(15); /* need to wait at least 128 clocks
1148 when reseting PCI before read */
1149 mask &= (AR_RC_MAC | AR_RC_BB);
1150 resetMask &= (AR_RC_MAC | AR_RC_BB);
1151 rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
1152 if ((resetMask & AR_RC_MAC) == 0) {
1153 if (isBigEndian()) {
1155 * Set CFG, little-endian for register
1156 * and descriptor accesses.
1158 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1159 #ifndef AH_NEED_DESC_SWAP
1160 mask |= AR_CFG_SWTD;
1161 #endif
1162 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1163 } else
1164 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1165 if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1166 (void) OS_REG_READ(ah, AR_ISR_RAC);
1169 /* track PHY power state so we don't try to r/w BB registers */
1170 AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
1171 return rt;
1174 int16_t
1175 ar5212GetNoiseFloor(struct ath_hal *ah)
1177 int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
1178 if (nf & 0x100)
1179 nf = 0 - ((nf ^ 0x1ff) + 1);
1180 return nf;
1183 static HAL_BOOL
1184 getNoiseFloorThresh(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *chan,
1185 int16_t *nft)
1187 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1189 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1191 switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1192 case CHANNEL_A:
1193 *nft = ee->ee_noiseFloorThresh[headerInfo11A];
1194 break;
1195 case CHANNEL_B:
1196 *nft = ee->ee_noiseFloorThresh[headerInfo11B];
1197 break;
1198 case CHANNEL_PUREG:
1199 *nft = ee->ee_noiseFloorThresh[headerInfo11G];
1200 break;
1201 default:
1202 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1203 __func__, chan->channelFlags);
1204 return AH_FALSE;
1206 return AH_TRUE;
1210 * Setup the noise floor cal history buffer.
1212 void
1213 ar5212InitNfCalHistBuffer(struct ath_hal *ah)
1215 struct ath_hal_5212 *ahp = AH5212(ah);
1216 int i;
1218 ahp->ah_nfCalHist.first_run = 1;
1219 ahp->ah_nfCalHist.currIndex = 0;
1220 ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
1221 ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
1222 for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
1223 ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
1227 * Add a noise floor value to the ring buffer.
1229 static __inline void
1230 updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
1232 h->nfCalBuffer[h->currIndex] = nf;
1233 if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
1234 h->currIndex = 0;
1238 * Return the median noise floor value in the ring buffer.
1240 int16_t
1241 ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
1243 int16_t sort[AR512_NF_CAL_HIST_MAX];
1244 int i, j;
1246 OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
1247 for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
1248 for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
1249 if (sort[j] > sort[j-1]) {
1250 int16_t nf = sort[j];
1251 sort[j] = sort[j-1];
1252 sort[j-1] = nf;
1256 return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
1260 * Read the NF and check it against the noise floor threshhold
1262 int16_t
1263 ar5212GetNf(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
1265 struct ath_hal_5212 *ahp = AH5212(ah);
1266 struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
1267 int16_t nf, nfThresh;
1268 int32_t val;
1270 if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1271 HALDEBUG(ah, HAL_DEBUG_ANY,
1272 "%s: NF did not complete in calibration window\n", __func__);
1273 chan->rawNoiseFloor = h->privNF; /* most recent value */
1274 return chan->rawNoiseFloor;
1278 * Finished NF cal, check against threshold.
1280 nf = ar5212GetNoiseFloor(ah);
1281 if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
1282 if (nf > nfThresh) {
1283 HALDEBUG(ah, HAL_DEBUG_ANY,
1284 "%s: noise floor failed detected; detected %u, "
1285 "threshold %u\n", __func__, nf, nfThresh);
1287 * NB: Don't discriminate 2.4 vs 5Ghz, if this
1288 * happens it indicates a problem regardless
1289 * of the band.
1291 chan->channelFlags |= CHANNEL_CW_INT;
1292 nf = 0;
1294 } else
1295 nf = 0;
1298 * Pass through histogram and write median value as
1299 * calculated from the accrued window. We require a
1300 * full window of in-range values to be seen before we
1301 * start using the history.
1303 updateNFHistBuff(h, nf);
1304 if (h->first_run) {
1305 if (nf < AR5212_CCA_MIN_BAD_VALUE ||
1306 nf > AR5212_CCA_MAX_HIGH_VALUE) {
1307 nf = AR5212_CCA_MAX_GOOD_VALUE;
1308 h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
1309 } else if (--(h->invalidNFcount) == 0) {
1310 h->first_run = 0;
1311 h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1312 } else {
1313 nf = AR5212_CCA_MAX_GOOD_VALUE;
1315 } else {
1316 h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1319 val = OS_REG_READ(ah, AR_PHY(25));
1320 val &= 0xFFFFFE00;
1321 val |= (((uint32_t)nf << 1) & 0x1FF);
1322 OS_REG_WRITE(ah, AR_PHY(25), val);
1323 OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1324 OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1325 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1327 if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
1328 #ifdef AH_DEBUG
1329 ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
1330 __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
1331 #endif
1335 * Now load a high maxCCAPower value again so that we're
1336 * not capped by the median we just loaded
1338 val &= 0xFFFFFE00;
1339 val |= (((uint32_t)(-50) << 1) & 0x1FF);
1340 OS_REG_WRITE(ah, AR_PHY(25), val);
1341 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1342 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1343 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1345 return (chan->rawNoiseFloor = nf);
1349 * Set up compression configuration registers
1351 void
1352 ar5212SetCompRegs(struct ath_hal *ah)
1354 struct ath_hal_5212 *ahp = AH5212(ah);
1355 int i;
1357 /* Check if h/w supports compression */
1358 if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
1359 return;
1361 OS_REG_WRITE(ah, AR_DCCFG, 1);
1363 OS_REG_WRITE(ah, AR_CCFG,
1364 (AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
1366 OS_REG_WRITE(ah, AR_CCFG,
1367 OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
1368 OS_REG_WRITE(ah, AR_CCUCFG,
1369 AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
1371 OS_REG_WRITE(ah, AR_CPCOVF, 0);
1373 /* reset decompression mask */
1374 for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
1375 OS_REG_WRITE(ah, AR_DCM_A, i);
1376 OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
1380 HAL_BOOL
1381 ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1382 const HAL_CHANNEL_INTERNAL *chan)
1384 #define ANT_SWITCH_TABLE1 AR_PHY(88)
1385 #define ANT_SWITCH_TABLE2 AR_PHY(89)
1386 struct ath_hal_5212 *ahp = AH5212(ah);
1387 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1388 uint32_t antSwitchA, antSwitchB;
1389 int ix;
1390 HAL_BOOL isBmode = AH_FALSE;
1391 /* NB: need local copy for SAVE/RESTORE 'cuz chan is const */
1392 HAL_CHANNEL_INTERNAL ichan = *chan;
1394 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1395 HALASSERT(ahp->ah_phyPowerOn);
1397 SAVE_CCK(ah, &ichan, isBmode);
1398 switch (ichan.channelFlags & CHANNEL_ALL_NOTURBO) {
1399 case CHANNEL_A: ix = 0; break;
1400 case CHANNEL_B: ix = 1; break;
1401 case CHANNEL_PUREG: ix = 2; break;
1402 default:
1403 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1404 __func__, ichan.channelFlags);
1405 RESTORE_CCK(ah, &ichan, isBmode);
1406 return AH_FALSE;
1408 RESTORE_CCK(ah, &ichan, isBmode);
1410 antSwitchA = ee->ee_antennaControl[1][ix]
1411 | (ee->ee_antennaControl[2][ix] << 6)
1412 | (ee->ee_antennaControl[3][ix] << 12)
1413 | (ee->ee_antennaControl[4][ix] << 18)
1414 | (ee->ee_antennaControl[5][ix] << 24)
1416 antSwitchB = ee->ee_antennaControl[6][ix]
1417 | (ee->ee_antennaControl[7][ix] << 6)
1418 | (ee->ee_antennaControl[8][ix] << 12)
1419 | (ee->ee_antennaControl[9][ix] << 18)
1420 | (ee->ee_antennaControl[10][ix] << 24)
1423 * For fixed antenna, give the same setting for both switch banks
1425 switch (settings) {
1426 case HAL_ANT_FIXED_A:
1427 antSwitchB = antSwitchA;
1428 break;
1429 case HAL_ANT_FIXED_B:
1430 antSwitchA = antSwitchB;
1431 break;
1432 case HAL_ANT_VARIABLE:
1433 break;
1434 default:
1435 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1436 __func__, settings);
1437 return AH_FALSE;
1439 if (antSwitchB == antSwitchA) {
1440 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1441 "%s: Setting fast diversity off.\n", __func__);
1442 OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
1443 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1444 ahp->ah_diversity = AH_FALSE;
1445 } else {
1446 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1447 "%s: Setting fast diversity on.\n", __func__);
1448 OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
1449 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1450 ahp->ah_diversity = AH_TRUE;
1452 ahp->ah_antControl = settings;
1454 OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1455 OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1457 return AH_TRUE;
1458 #undef ANT_SWITCH_TABLE2
1459 #undef ANT_SWITCH_TABLE1
1462 HAL_BOOL
1463 ar5212IsSpurChannel(struct ath_hal *ah, HAL_CHANNEL *chan)
1465 uint32_t clockFreq =
1466 ((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
1467 return ( ((chan->channel % clockFreq) != 0)
1468 && (((chan->channel % clockFreq) < 10)
1469 || (((chan->channel) % clockFreq) > 22)) );
1473 * Read EEPROM header info and program the device for correct operation
1474 * given the channel value.
1476 HAL_BOOL
1477 ar5212SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
1479 #define NO_FALSE_DETECT_BACKOFF 2
1480 #define CB22_FALSE_DETECT_BACKOFF 6
1481 #define AR_PHY_BIS(_ah, _reg, _mask, _val) \
1482 OS_REG_WRITE(_ah, AR_PHY(_reg), \
1483 (OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
1484 struct ath_hal_5212 *ahp = AH5212(ah);
1485 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1486 int arrayMode, falseDectectBackoff;
1487 int is2GHz = IS_CHAN_2GHZ(chan);
1488 int8_t adcDesiredSize, pgaDesiredSize;
1489 uint16_t switchSettling, txrxAtten, rxtxMargin;
1490 int iCoff, qCoff;
1492 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1494 switch (chan->channelFlags & CHANNEL_ALL) {
1495 case CHANNEL_A:
1496 case CHANNEL_T:
1497 arrayMode = headerInfo11A;
1498 if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
1499 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1500 AR_PHY_FRAME_CTL_TX_CLIP,
1501 ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
1502 break;
1503 case CHANNEL_B:
1504 arrayMode = headerInfo11B;
1505 break;
1506 case CHANNEL_G:
1507 case CHANNEL_108G:
1508 arrayMode = headerInfo11G;
1509 break;
1510 default:
1511 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1512 __func__, chan->channelFlags);
1513 return AH_FALSE;
1516 /* Set the antenna register(s) correctly for the chip revision */
1517 AR_PHY_BIS(ah, 68, 0xFFFFFC06,
1518 (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1520 ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
1522 /* Set the Noise Floor Thresh on ar5211 devices */
1523 OS_REG_WRITE(ah, AR_PHY(90),
1524 (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
1525 | (1 << 9));
1527 if (ee->ee_version >= AR_EEPROM_VER5_0 && IS_CHAN_TURBO(chan)) {
1528 switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
1529 adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
1530 pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
1531 txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
1532 rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
1533 } else {
1534 switchSettling = ee->ee_switchSettling[arrayMode];
1535 adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
1536 pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
1537 txrxAtten = ee->ee_txrxAtten[is2GHz];
1538 rxtxMargin = ee->ee_rxtxMargin[is2GHz];
1541 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1542 AR_PHY_SETTLING_SWITCH, switchSettling);
1543 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1544 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
1545 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1546 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
1547 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
1548 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
1549 OS_REG_WRITE(ah, AR_PHY(13),
1550 (ee->ee_txEndToXPAOff[arrayMode] << 24)
1551 | (ee->ee_txEndToXPAOff[arrayMode] << 16)
1552 | (ee->ee_txFrameToXPAOn[arrayMode] << 8)
1553 | ee->ee_txFrameToXPAOn[arrayMode]);
1554 AR_PHY_BIS(ah, 10, 0xFFFF00FF,
1555 ee->ee_txEndToXLNAOn[arrayMode] << 8);
1556 AR_PHY_BIS(ah, 25, 0xFFF80FFF,
1557 (ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
1560 * False detect backoff - suspected 32 MHz spur causes false
1561 * detects in OFDM, causing Tx Hangs. Decrease weak signal
1562 * sensitivity for this card.
1564 falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1565 if (ee->ee_version < AR_EEPROM_VER3_3) {
1566 /* XXX magic number */
1567 if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1568 IS_CHAN_OFDM(chan))
1569 falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1570 } else {
1571 if (ar5212IsSpurChannel(ah, (HAL_CHANNEL *)chan)) {
1572 falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1575 AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
1577 if (chan->iqCalValid) {
1578 iCoff = chan->iCoff;
1579 qCoff = chan->qCoff;
1580 } else {
1581 iCoff = ee->ee_iqCalI[is2GHz];
1582 qCoff = ee->ee_iqCalQ[is2GHz];
1585 /* write previous IQ results */
1586 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1587 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1588 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1589 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1590 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1591 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1593 if (ee->ee_version >= AR_EEPROM_VER4_1) {
1594 if (!IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
1595 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
1596 AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
1598 if (ee->ee_version >= AR_EEPROM_VER5_1) {
1599 /* for now always disabled */
1600 OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_ENABLE, 0);
1603 return AH_TRUE;
1604 #undef AR_PHY_BIS
1605 #undef NO_FALSE_DETECT_BACKOFF
1606 #undef CB22_FALSE_DETECT_BACKOFF
1610 * Apply Spur Immunity to Boards that require it.
1611 * Applies only to OFDM RX operation.
1614 void
1615 ar5212SetSpurMitigation(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
1617 uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
1618 uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
1619 int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
1620 int16_t numBinOffsets;
1621 static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
1622 static const uint16_t magMapFor3[3] = {1, 2, 1};
1623 const uint16_t *pMagMap;
1624 HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
1625 uint32_t val;
1627 #define CHAN_TO_SPUR(_f, _freq) ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
1628 if (IS_2417(ah)) {
1629 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
1630 __func__);
1631 return;
1634 curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
1636 if (ichan->mainSpur) {
1637 /* Pull out the saved spur value */
1638 finalSpur = ichan->mainSpur;
1639 } else {
1641 * Check if spur immunity should be performed for this channel
1642 * Should only be performed once per channel and then saved
1644 finalSpur = AR_NO_SPUR;
1645 spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
1646 if (IS_CHAN_TURBO(ichan))
1647 spurDetectWidth *= 2;
1649 /* Decide if any spur affects the current channel */
1650 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1651 spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
1652 if (spurChan == AR_NO_SPUR) {
1653 break;
1655 if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
1656 (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
1657 finalSpur = spurChan & HAL_SPUR_VAL_MASK;
1658 break;
1661 /* Save detected spur (or no spur) for this channel */
1662 ichan->mainSpur = finalSpur;
1665 /* Write spur immunity data */
1666 if (finalSpur == AR_NO_SPUR) {
1667 /* Disable Spur Immunity Regs if they appear set */
1668 if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
1669 /* Clear Spur Delta Phase, Spur Freq, and enable bits */
1670 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
1671 val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1672 val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1673 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1674 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1675 OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
1676 OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
1678 /* Clear pilot masks */
1679 OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
1680 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
1681 OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
1682 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
1684 /* Clear magnitude masks */
1685 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
1686 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
1687 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
1688 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
1689 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
1690 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
1691 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
1692 OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
1694 } else {
1695 spurOffset = finalSpur - curChanAsSpur;
1697 * Spur calculations:
1698 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
1699 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
1701 switch (ichan->channelFlags & CHANNEL_ALL) {
1702 case CHANNEL_A: /* Chip Frequency & sampleFrequency are 40 MHz */
1703 spurDeltaPhase = (spurOffset << 17) / 25;
1704 spurFreqSd = spurDeltaPhase >> 10;
1705 binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1706 break;
1707 case CHANNEL_G: /* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
1708 spurFreqSd = (spurOffset << 8) / 55;
1709 spurDeltaPhase = (spurOffset << 17) / 25;
1710 binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1711 break;
1712 case CHANNEL_T: /* Chip Frequency & sampleFrequency are 80 MHz */
1713 case CHANNEL_108G:
1714 spurDeltaPhase = (spurOffset << 16) / 25;
1715 spurFreqSd = spurDeltaPhase >> 10;
1716 binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
1717 break;
1720 /* Compute Pilot Mask */
1721 binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
1722 /* The spur is on a bin if it's remainder at times 16 is 0 */
1723 if (binOffsetNumT16 & 0xF) {
1724 numBinOffsets = 4;
1725 pMagMap = magMapFor4;
1726 } else {
1727 numBinOffsets = 3;
1728 pMagMap = magMapFor3;
1730 for (i = 0; i < numBinOffsets; i++) {
1731 if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
1732 HALDEBUG(ah, HAL_DEBUG_ANY,
1733 "Too man bins in spur mitigation\n");
1734 return;
1737 /* Get Pilot Mask values */
1738 curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
1739 if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
1740 if (curBinOffset <= 25)
1741 pilotMask[0] |= 1 << curBinOffset;
1742 else if (curBinOffset >= 27)
1743 pilotMask[0] |= 1 << (curBinOffset - 1);
1744 } else if ((curBinOffset >= 33) && (curBinOffset <= 52))
1745 pilotMask[1] |= 1 << (curBinOffset - 33);
1747 /* Get viterbi values */
1748 if ((curBinOffset >= -1) && (curBinOffset <= 14))
1749 binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
1750 else if ((curBinOffset >= 15) && (curBinOffset <= 30))
1751 binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
1752 else if ((curBinOffset >= 31) && (curBinOffset <= 46))
1753 binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
1754 else if((curBinOffset >= 47) && (curBinOffset <= 53))
1755 binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
1758 /* Write Spur Delta Phase, Spur Freq, and enable bits */
1759 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
1760 val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1761 val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1762 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1763 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1764 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
1765 OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1766 SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1767 SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1769 /* Write pilot masks */
1770 OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
1771 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
1772 OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
1773 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
1775 /* Write magnitude masks */
1776 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
1777 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
1778 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
1779 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
1780 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
1781 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
1782 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
1783 OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
1785 #undef CHAN_TO_SPUR
1790 * Delta slope coefficient computation.
1791 * Required for OFDM operation.
1793 void
1794 ar5212SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL *chan)
1796 #define COEF_SCALE_S 24
1797 #define INIT_CLOCKMHZSCALED 0x64000000
1798 unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
1799 unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
1801 if (IS_CHAN_TURBO(chan))
1802 clockMhzScaled *= 2;
1803 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
1804 /* scale for selected channel bandwidth */
1805 if (IS_CHAN_HALF_RATE(chan)) {
1806 clockMhzScaled = clockMhzScaled >> 1;
1807 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1808 clockMhzScaled = clockMhzScaled >> 2;
1812 * ALGO -> coef = 1e8/fcarrier*fclock/40;
1813 * scaled coef to provide precision for this floating calculation
1815 coef_scaled = clockMhzScaled / chan->channel;
1818 * ALGO -> coef_exp = 14-floor(log2(coef));
1819 * floor(log2(x)) is the highest set bit position
1821 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1822 if ((coef_scaled >> coef_exp) & 0x1)
1823 break;
1824 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
1825 HALASSERT(coef_exp);
1826 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1829 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
1830 * The coefficient is already shifted up for scaling
1832 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1833 ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
1834 ds_coef_exp = coef_exp - 16;
1836 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1837 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1838 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1839 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1840 #undef INIT_CLOCKMHZSCALED
1841 #undef COEF_SCALE_S
1845 * Set a limit on the overall output power. Used for dynamic
1846 * transmit power control and the like.
1848 * NB: limit is in units of 0.5 dbM.
1850 HAL_BOOL
1851 ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1853 uint16_t dummyXpdGains[2];
1854 HAL_BOOL ret, isBmode = AH_FALSE;
1856 SAVE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
1857 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1858 ret = ar5212SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
1859 dummyXpdGains);
1860 RESTORE_CCK(ah, AH_PRIVATE(ah)->ah_curchan, isBmode);
1861 return ret;
1865 * Set the transmit power in the baseband for the given
1866 * operating channel and mode.
1868 HAL_BOOL
1869 ar5212SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
1870 uint16_t *rfXpdGain)
1872 #define POW_OFDM(_r, _s) (((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
1873 #define POW_CCK(_r, _s) (((_r) & 0x3f) << (_s))
1874 #define N(a) (sizeof (a) / sizeof (a[0]))
1875 static const uint16_t tpcScaleReductionTable[5] =
1876 { 0, 3, 6, 9, MAX_RATE_POWER };
1877 struct ath_hal_5212 *ahp = AH5212(ah);
1878 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1879 int16_t minPower, maxPower, tpcInDb, powerLimit;
1880 int i;
1882 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1884 OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
1885 OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
1887 powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1888 if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
1889 tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
1890 else
1891 tpcInDb = 0;
1892 if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
1893 AH_TRUE, &minPower, &maxPower)) {
1894 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
1895 __func__);
1896 return AH_FALSE;
1898 if (!ahp->ah_rfHal->setPowerTable(ah,
1899 &minPower, &maxPower, chan, rfXpdGain)) {
1900 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1901 __func__);
1902 return AH_FALSE;
1906 * Adjust XR power/rate up by 2 dB to account for greater peak
1907 * to avg ratio - except in newer avg power designs
1909 if (!IS_2413(ah) && !IS_5413(ah))
1910 ahp->ah_ratesArray[15] += 4;
1912 * txPowerIndexOffset is set by the SetPowerTable() call -
1913 * adjust the rate table
1915 for (i = 0; i < N(ahp->ah_ratesArray); i++) {
1916 ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
1917 if (ahp->ah_ratesArray[i] > 63)
1918 ahp->ah_ratesArray[i] = 63;
1921 if (ee->ee_eepMap < 2) {
1923 * Correct gain deltas for 5212 G operation -
1924 * Removed with revised chipset
1926 if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
1927 IS_CHAN_G(chan)) {
1928 uint16_t cckOfdmPwrDelta;
1930 if (chan->channel == 2484)
1931 cckOfdmPwrDelta = SCALE_OC_DELTA(
1932 ee->ee_cckOfdmPwrDelta -
1933 ee->ee_scaledCh14FilterCckDelta);
1934 else
1935 cckOfdmPwrDelta = SCALE_OC_DELTA(
1936 ee->ee_cckOfdmPwrDelta);
1937 ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
1940 * Finally, write the power values into the
1941 * baseband power table
1943 for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
1944 OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
1945 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
1946 | (((ahp->ah_pcdacTable[2*i] << 8) | 0xff) & 0xffff)
1951 /* Write the OFDM power per rate set */
1952 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1953 POW_OFDM(ahp->ah_ratesArray[3], 24)
1954 | POW_OFDM(ahp->ah_ratesArray[2], 16)
1955 | POW_OFDM(ahp->ah_ratesArray[1], 8)
1956 | POW_OFDM(ahp->ah_ratesArray[0], 0)
1958 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1959 POW_OFDM(ahp->ah_ratesArray[7], 24)
1960 | POW_OFDM(ahp->ah_ratesArray[6], 16)
1961 | POW_OFDM(ahp->ah_ratesArray[5], 8)
1962 | POW_OFDM(ahp->ah_ratesArray[4], 0)
1965 /* Write the CCK power per rate set */
1966 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1967 POW_CCK(ahp->ah_ratesArray[10], 24)
1968 | POW_CCK(ahp->ah_ratesArray[9], 16)
1969 | POW_CCK(ahp->ah_ratesArray[15], 8) /* XR target power */
1970 | POW_CCK(ahp->ah_ratesArray[8], 0)
1972 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1973 POW_CCK(ahp->ah_ratesArray[14], 24)
1974 | POW_CCK(ahp->ah_ratesArray[13], 16)
1975 | POW_CCK(ahp->ah_ratesArray[12], 8)
1976 | POW_CCK(ahp->ah_ratesArray[11], 0)
1980 * Set max power to 30 dBm and, optionally,
1981 * enable TPC in tx descriptors.
1983 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1984 (ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1986 return AH_TRUE;
1987 #undef N
1988 #undef POW_CCK
1989 #undef POW_OFDM
1993 * Sets the transmit power in the baseband for the given
1994 * operating channel and mode.
1996 static HAL_BOOL
1997 ar5212SetRateTable(struct ath_hal *ah, HAL_CHANNEL *chan,
1998 int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
1999 int16_t *pMinPower, int16_t *pMaxPower)
2001 struct ath_hal_5212 *ahp = AH5212(ah);
2002 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2003 uint16_t *rpow = ahp->ah_ratesArray;
2004 uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
2005 uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
2006 uint16_t twiceMaxRDPower = MAX_RATE_POWER;
2007 int i;
2008 uint8_t cfgCtl;
2009 int8_t twiceAntennaGain, twiceAntennaReduction;
2010 const RD_EDGES_POWER *rep;
2011 TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
2012 int16_t scaledPower, maxAvailPower = 0;
2013 int16_t r13, r9, r7, r0;
2015 HALASSERT(ah->ah_magic == AR5212_MAGIC);
2017 twiceMaxRDPower = chan->maxRegTxPower * 2;
2018 *pMaxPower = -MAX_RATE_POWER;
2019 *pMinPower = MAX_RATE_POWER;
2021 /* Get conformance test limit maximum for this channel */
2022 cfgCtl = ath_hal_getctl(ah, chan);
2023 for (i = 0; i < ee->ee_numCtls; i++) {
2024 uint16_t twiceMinEdgePower;
2026 if (ee->ee_ctl[i] == 0)
2027 continue;
2028 if (ee->ee_ctl[i] == cfgCtl ||
2029 cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2030 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2031 twiceMinEdgePower = ar5212GetMaxEdgePower(chan->channel, rep);
2032 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2033 /* Find the minimum of all CTL edge powers that apply to this channel */
2034 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2035 } else {
2036 twiceMaxEdgePower = twiceMinEdgePower;
2037 break;
2042 if (IS_CHAN_G(chan)) {
2043 /* Check for a CCK CTL for 11G CCK powers */
2044 cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
2045 for (i = 0; i < ee->ee_numCtls; i++) {
2046 uint16_t twiceMinEdgePowerCck;
2048 if (ee->ee_ctl[i] == 0)
2049 continue;
2050 if (ee->ee_ctl[i] == cfgCtl ||
2051 cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2052 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2053 twiceMinEdgePowerCck = ar5212GetMaxEdgePower(chan->channel, rep);
2054 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2055 /* Find the minimum of all CTL edge powers that apply to this channel */
2056 twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
2057 } else {
2058 twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
2059 break;
2063 } else {
2064 /* Set the 11B cck edge power to the one found before */
2065 twiceMaxEdgePowerCck = twiceMaxEdgePower;
2068 /* Get Antenna Gain reduction */
2069 if (IS_CHAN_5GHZ(chan)) {
2070 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
2071 } else {
2072 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
2074 twiceAntennaReduction =
2075 ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
2077 if (IS_CHAN_OFDM(chan)) {
2078 /* Get final OFDM target powers */
2079 if (IS_CHAN_2GHZ(chan)) {
2080 ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
2081 ee->ee_numTargetPwr_11g, &targetPowerOfdm);
2082 } else {
2083 ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
2084 ee->ee_numTargetPwr_11a, &targetPowerOfdm);
2087 /* Get Maximum OFDM power */
2088 /* Minimum of target and edge powers */
2089 scaledPower = AH_MIN(twiceMaxEdgePower,
2090 twiceMaxRDPower - twiceAntennaReduction);
2093 * If turbo is set, reduce power to keep power
2094 * consumption under 2 Watts. Note that we always do
2095 * this unless specially configured. Then we limit
2096 * power only for non-AP operation.
2098 if (IS_CHAN_TURBO(chan)
2099 #ifdef AH_ENABLE_AP_SUPPORT
2100 && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
2101 #endif
2104 * If turbo is set, reduce power to keep power
2105 * consumption under 2 Watts
2107 if (ee->ee_version >= AR_EEPROM_VER3_1)
2108 scaledPower = AH_MIN(scaledPower,
2109 ee->ee_turbo2WMaxPower5);
2111 * EEPROM version 4.0 added an additional
2112 * constraint on 2.4GHz channels.
2114 if (ee->ee_version >= AR_EEPROM_VER4_0 &&
2115 IS_CHAN_2GHZ(chan))
2116 scaledPower = AH_MIN(scaledPower,
2117 ee->ee_turbo2WMaxPower2);
2120 maxAvailPower = AH_MIN(scaledPower,
2121 targetPowerOfdm.twicePwr6_24);
2123 /* Reduce power by max regulatory domain allowed restrictions */
2124 scaledPower = maxAvailPower - (tpcScaleReduction * 2);
2125 scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2126 scaledPower = AH_MIN(scaledPower, powerLimit);
2128 if (commit) {
2129 /* Set OFDM rates 9, 12, 18, 24 */
2130 r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
2132 /* Set OFDM rates 36, 48, 54, XR */
2133 rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
2134 rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
2135 r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
2137 if (ee->ee_version >= AR_EEPROM_VER4_0) {
2138 /* Setup XR target power from EEPROM */
2139 rpow[15] = AH_MIN(scaledPower, IS_CHAN_2GHZ(chan) ?
2140 ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
2141 } else {
2142 /* XR uses 6mb power */
2143 rpow[15] = rpow[0];
2145 ahp->ah_ofdmTxPower = *pMaxPower;
2147 } else {
2148 r0 = scaledPower;
2149 r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
2151 *pMinPower = r7;
2152 *pMaxPower = r0;
2154 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2155 "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
2156 "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2157 __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
2158 twiceMaxEdgePower, tpcScaleReduction * 2,
2159 chan->channel, chan->channelFlags,
2160 maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
2163 if (IS_CHAN_CCK(chan) || IS_CHAN_G(chan)) {
2164 /* Get final CCK target powers */
2165 ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
2166 ee->ee_numTargetPwr_11b, &targetPowerCck);
2168 /* Reduce power by max regulatory domain allowed restrictions */
2169 scaledPower = AH_MIN(twiceMaxEdgePowerCck,
2170 twiceMaxRDPower - twiceAntennaReduction);
2171 if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
2172 maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2174 /* Reduce power by user selection */
2175 scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
2176 scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2177 scaledPower = AH_MIN(scaledPower, powerLimit);
2179 if (commit) {
2180 /* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
2181 rpow[8] = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2182 r9 = rpow[9] = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2183 rpow[10] = rpow[9];
2184 rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
2185 rpow[12] = rpow[11];
2186 r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2187 rpow[14] = rpow[13];
2188 } else {
2189 r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2190 r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2193 /* Set min/max power based off OFDM values or initialization */
2194 if (r13 < *pMinPower)
2195 *pMinPower = r13;
2196 if (r9 > *pMaxPower)
2197 *pMaxPower = r9;
2199 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2200 "%s: cck: MaxRD: %d MaxCTL: %d "
2201 "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2202 __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
2203 tpcScaleReduction * 2, chan->channel, chan->channelFlags,
2204 maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
2206 if (commit) {
2207 ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
2208 AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
2210 return AH_TRUE;
2213 HAL_BOOL
2214 ar5212GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
2216 struct ath_hal_5212 *ahp = AH5212(ah);
2217 static const uint16_t tpcScaleReductionTable[5] =
2218 { 0, 3, 6, 9, MAX_RATE_POWER };
2219 int16_t minPower, maxPower, tpcInDb, powerLimit;
2220 HAL_CHANNEL *chan;
2221 int i;
2224 * Get Pier table max and min powers.
2226 for (i = 0; i < nchans; i++) {
2227 chan = &chans[i];
2228 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
2229 /* NB: rf code returns 1/4 dBm units, convert */
2230 chan->maxTxPower = maxPower / 2;
2231 chan->minTxPower = minPower / 2;
2232 } else {
2233 HALDEBUG(ah, HAL_DEBUG_ANY,
2234 "%s: no min/max power for %u/0x%x\n",
2235 __func__, chan->channel, chan->channelFlags);
2236 chan->maxTxPower = MAX_RATE_POWER;
2237 chan->minTxPower = 0;
2241 * Now adjust to reflect any global scale and/or CTL's.
2242 * (XXX is that correct?)
2244 powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2245 if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2246 tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2247 else
2248 tpcInDb = 0;
2249 for (i=0; i<nchans; i++) {
2250 chan = &chans[i];
2251 if (!ar5212SetRateTable(ah, (HAL_CHANNEL *) chan, tpcInDb, powerLimit,
2252 AH_FALSE, &minPower, &maxPower)) {
2253 HALDEBUG(ah, HAL_DEBUG_ANY,
2254 "%s: unable to find max/min power\n",__func__);
2255 return AH_FALSE;
2257 if (maxPower < chan->maxTxPower)
2258 chan->maxTxPower = maxPower;
2259 if (minPower < chan->minTxPower)
2260 chan->minTxPower = minPower;
2262 #ifdef AH_DEBUG
2263 for (i=0; i<nchans; i++) {
2264 HALDEBUG(ah, HAL_DEBUG_RESET,
2265 "Chan %d: MaxPow = %d MinPow = %d\n",
2266 chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
2268 #endif
2269 return AH_TRUE;
2273 * Correct for the gain-delta between ofdm and cck mode target
2274 * powers. Write the results to the rate table and the power table.
2276 * Conventions :
2277 * 1. rpow[ii] is the integer value of 2*(desired power
2278 * for the rate ii in dBm) to provide 0.5dB resolution. rate
2279 * mapping is as following :
2280 * [0..7] --> ofdm 6, 9, .. 48, 54
2281 * [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
2282 * [15] --> XR (all rates get the same power)
2283 * 2. powv[ii] is the pcdac corresponding to ii/2 dBm.
2285 static void
2286 ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
2288 #define N(_a) (sizeof(_a) / sizeof(_a[0]))
2289 struct ath_hal_5212 *ahp = AH5212(ah);
2290 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2291 int16_t ratesIndex[N(ahp->ah_ratesArray)];
2292 uint16_t ii, jj, iter;
2293 int32_t cckIndex;
2294 int16_t gainDeltaAdjust;
2296 HALASSERT(ah->ah_magic == AR5212_MAGIC);
2298 gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
2300 /* make a local copy of desired powers as initial indices */
2301 OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
2303 /* fix only the CCK indices */
2304 for (ii = 8; ii < 15; ii++) {
2305 /* apply a gain_delta correction of -15 for CCK */
2306 ratesIndex[ii] -= gainDeltaAdjust;
2308 /* Now check for contention with all ofdm target powers */
2309 jj = 0;
2310 iter = 0;
2311 /* indicates not all ofdm rates checked forcontention yet */
2312 while (jj < 16) {
2313 if (ratesIndex[ii] < 0)
2314 ratesIndex[ii] = 0;
2315 if (jj == 8) { /* skip CCK rates */
2316 jj = 15;
2317 continue;
2319 if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
2320 if (ahp->ah_ratesArray[jj] == 0)
2321 ratesIndex[ii]++;
2322 else if (iter > 50) {
2324 * To avoid pathological case of of
2325 * dm target powers 0 and 0.5dBm
2327 ratesIndex[ii]++;
2328 } else
2329 ratesIndex[ii]--;
2330 /* check with all rates again */
2331 jj = 0;
2332 iter++;
2333 } else
2334 jj++;
2336 if (ratesIndex[ii] >= PWR_TABLE_SIZE)
2337 ratesIndex[ii] = PWR_TABLE_SIZE -1;
2338 cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
2339 if (cckIndex < 0)
2340 cckIndex = 0;
2343 * Validate that the indexes for the powv are not
2344 * out of bounds.
2346 HALASSERT(cckIndex < PWR_TABLE_SIZE);
2347 HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
2348 ahp->ah_pcdacTable[ratesIndex[ii]] =
2349 ahp->ah_pcdacTable[cckIndex];
2351 /* Override rate per power table with new values */
2352 for (ii = 8; ii < 15; ii++)
2353 ahp->ah_ratesArray[ii] = ratesIndex[ii];
2354 #undef N
2358 * Find the maximum conformance test limit for the given channel and CTL info
2360 static uint16_t
2361 ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
2363 /* temp array for holding edge channels */
2364 uint16_t tempChannelList[NUM_EDGES];
2365 uint16_t clo = 0, chi = 0, twiceMaxEdgePower;
2366 int i, numEdges;
2368 /* Get the edge power */
2369 for (i = 0; i < NUM_EDGES; i++) {
2370 if (pRdEdgesPower[i].rdEdge == 0)
2371 break;
2372 tempChannelList[i] = pRdEdgesPower[i].rdEdge;
2374 numEdges = i;
2376 ar5212GetLowerUpperValues(channel, tempChannelList,
2377 numEdges, &clo, &chi);
2378 /* Get the index for the lower channel */
2379 for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
2381 /* Is lower channel ever outside the rdEdge? */
2382 HALASSERT(i != numEdges);
2384 if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
2386 * If there's an exact channel match or an inband flag set
2387 * on the lower channel use the given rdEdgePower
2389 twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
2390 HALASSERT(twiceMaxEdgePower > 0);
2391 } else
2392 twiceMaxEdgePower = MAX_RATE_POWER;
2393 return twiceMaxEdgePower;
2397 * Returns interpolated or the scaled up interpolated value
2399 static uint16_t
2400 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2401 uint16_t targetLeft, uint16_t targetRight)
2403 uint16_t rv;
2404 int16_t lRatio;
2406 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
2407 if ((targetLeft * targetRight) == 0)
2408 return 0;
2410 if (srcRight != srcLeft) {
2412 * Note the ratio always need to be scaled,
2413 * since it will be a fraction.
2415 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
2416 if (lRatio < 0) {
2417 /* Return as Left target if value would be negative */
2418 rv = targetLeft;
2419 } else if (lRatio > EEP_SCALE) {
2420 /* Return as Right target if Ratio is greater than 100% (SCALE) */
2421 rv = targetRight;
2422 } else {
2423 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
2424 targetLeft) / EEP_SCALE;
2426 } else {
2427 rv = targetLeft;
2429 return rv;
2433 * Return the four rates of target power for the given target power table
2434 * channel, and number of channels
2436 static void
2437 ar5212GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL *chan,
2438 const TRGT_POWER_INFO *powInfo,
2439 uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
2441 /* temp array for holding target power channels */
2442 uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
2443 uint16_t clo = 0, chi = 0, ixlo, ixhi;
2444 int i;
2446 /* Copy the target powers into the temp channel list */
2447 for (i = 0; i < numChannels; i++)
2448 tempChannelList[i] = powInfo[i].testChannel;
2450 ar5212GetLowerUpperValues(chan->channel, tempChannelList,
2451 numChannels, &clo, &chi);
2453 /* Get the indices for the channel */
2454 ixlo = ixhi = 0;
2455 for (i = 0; i < numChannels; i++) {
2456 if (clo == tempChannelList[i]) {
2457 ixlo = i;
2459 if (chi == tempChannelList[i]) {
2460 ixhi = i;
2461 break;
2466 * Get the lower and upper channels, target powers,
2467 * and interpolate between them.
2469 pNewPower->twicePwr6_24 = interpolate(chan->channel, clo, chi,
2470 powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
2471 pNewPower->twicePwr36 = interpolate(chan->channel, clo, chi,
2472 powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
2473 pNewPower->twicePwr48 = interpolate(chan->channel, clo, chi,
2474 powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
2475 pNewPower->twicePwr54 = interpolate(chan->channel, clo, chi,
2476 powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
2480 * Search a list for a specified value v that is within
2481 * EEP_DELTA of the search values. Return the closest
2482 * values in the list above and below the desired value.
2483 * EEP_DELTA is a factional value; everything is scaled
2484 * so only integer arithmetic is used.
2486 * NB: the input list is assumed to be sorted in ascending order
2488 void
2489 ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
2490 uint16_t *vlo, uint16_t *vhi)
2492 uint32_t target = v * EEP_SCALE;
2493 uint16_t *ep = lp+listSize;
2496 * Check first and last elements for out-of-bounds conditions.
2498 if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
2499 *vlo = *vhi = lp[0];
2500 return;
2502 if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
2503 *vlo = *vhi = ep[-1];
2504 return;
2507 /* look for value being near or between 2 values in list */
2508 for (; lp < ep; lp++) {
2510 * If value is close to the current value of the list
2511 * then target is not between values, it is one of the values
2513 if (abs(lp[0] * EEP_SCALE - target) < EEP_DELTA) {
2514 *vlo = *vhi = lp[0];
2515 return;
2518 * Look for value being between current value and next value
2519 * if so return these 2 values
2521 if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
2522 *vlo = lp[0];
2523 *vhi = lp[1];
2524 return;
2527 HALASSERT(AH_FALSE); /* should not reach here */
2531 * Perform analog "swizzling" of parameters into their location
2533 * NB: used by RF backends
2535 void
2536 ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
2537 uint32_t firstBit, uint32_t column)
2539 #define MAX_ANALOG_START 319 /* XXX */
2540 uint32_t tmp32, mask, arrayEntry, lastBit;
2541 int32_t bitPosition, bitsLeft;
2543 HALASSERT(column <= 3);
2544 HALASSERT(numBits <= 32);
2545 HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
2547 tmp32 = ath_hal_reverseBits(reg32, numBits);
2548 arrayEntry = (firstBit - 1) / 8;
2549 bitPosition = (firstBit - 1) % 8;
2550 bitsLeft = numBits;
2551 while (bitsLeft > 0) {
2552 lastBit = (bitPosition + bitsLeft > 8) ?
2553 8 : bitPosition + bitsLeft;
2554 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
2555 (column * 8);
2556 rfBuf[arrayEntry] &= ~mask;
2557 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
2558 (column * 8)) & mask;
2559 bitsLeft -= 8 - bitPosition;
2560 tmp32 = tmp32 >> (8 - bitPosition);
2561 bitPosition = 0;
2562 arrayEntry++;
2564 #undef MAX_ANALOG_START
2568 * Sets the rate to duration values in MAC - used for multi-
2569 * rate retry.
2570 * The rate duration table needs to cover all valid rate codes;
2571 * the 11g table covers all ofdm rates, while the 11b table
2572 * covers all cck rates => all valid rates get covered between
2573 * these two mode's ratetables!
2574 * But if we're turbo, the ofdm phy is replaced by the turbo phy
2575 * and cck is not valid with turbo => all rates get covered
2576 * by the turbo ratetable only
2578 void
2579 ar5212SetRateDurationTable(struct ath_hal *ah, HAL_CHANNEL *chan)
2581 const HAL_RATE_TABLE *rt;
2582 int i;
2584 /* NB: band doesn't matter for 1/2 and 1/4 rate */
2585 if (IS_CHAN_HALF_RATE(chan)) {
2586 rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
2587 } else if (IS_CHAN_QUARTER_RATE(chan)) {
2588 rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
2589 } else {
2590 rt = ar5212GetRateTable(ah,
2591 IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
2594 for (i = 0; i < rt->rateCount; ++i)
2595 OS_REG_WRITE(ah,
2596 AR_RATE_DURATION(rt->info[i].rateCode),
2597 ath_hal_computetxtime(ah, rt,
2598 WLAN_CTRL_FRAME_SIZE,
2599 rt->info[i].controlRate, AH_FALSE));
2600 if (!IS_CHAN_TURBO(chan)) {
2601 /* 11g Table is used to cover the CCK rates. */
2602 rt = ar5212GetRateTable(ah, HAL_MODE_11G);
2603 for (i = 0; i < rt->rateCount; ++i) {
2604 uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
2606 if (rt->info[i].phy != IEEE80211_T_CCK)
2607 continue;
2609 OS_REG_WRITE(ah, reg,
2610 ath_hal_computetxtime(ah, rt,
2611 WLAN_CTRL_FRAME_SIZE,
2612 rt->info[i].controlRate, AH_FALSE));
2613 /* cck rates have short preamble option also */
2614 if (rt->info[i].shortPreamble) {
2615 reg += rt->info[i].shortPreamble << 2;
2616 OS_REG_WRITE(ah, reg,
2617 ath_hal_computetxtime(ah, rt,
2618 WLAN_CTRL_FRAME_SIZE,
2619 rt->info[i].controlRate,
2620 AH_TRUE));
2626 /* Adjust various register settings based on half/quarter rate clock setting.
2627 * This includes: +USEC, TX/RX latency,
2628 * + IFS params: slot, eifs, misc etc.
2630 void
2631 ar5212SetIFSTiming(struct ath_hal *ah, HAL_CHANNEL *chan)
2633 uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2635 HALASSERT(IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan));
2637 refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2638 if (IS_CHAN_HALF_RATE(chan)) {
2639 slot = IFS_SLOT_HALF_RATE;
2640 rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2641 txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2642 usec = HALF_RATE_USEC;
2643 eifs = IFS_EIFS_HALF_RATE;
2644 init_usec = INIT_USEC >> 1;
2645 } else { /* quarter rate */
2646 slot = IFS_SLOT_QUARTER_RATE;
2647 rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2648 txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2649 usec = QUARTER_RATE_USEC;
2650 eifs = IFS_EIFS_QUARTER_RATE;
2651 init_usec = INIT_USEC >> 2;
2654 OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2655 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2656 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2657 OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2658 AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);