No empty .Rs/.Re
[netbsd-mini2440.git] / sys / external / isc / atheros_hal / dist / ar5416 / ar5416_reset.c
bloba954dff6b1aabedccc2f502476c10915e883ef60
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar5416_reset.c,v 1.2 2009/01/06 06:03:57 mrg Exp $
19 #include "opt_ah.h"
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
25 #include "ah_eeprom_v14.h"
27 #include "ar5416/ar5416.h"
28 #include "ar5416/ar5416reg.h"
29 #include "ar5416/ar5416phy.h"
30 #ifdef AH_SUPPORT_AR9280
31 #include "ar5416/ar9280.h"
32 #endif
34 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
35 #define EEP_MINOR(_ah) \
36 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
37 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
38 #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
40 /* Additional Time delay to wait after activiting the Base band */
41 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */
42 #define PLL_SETTLE_DELAY 300 /* 300 usec */
43 #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
45 static void ar5416InitDMA(struct ath_hal *ah);
46 static void ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan);
47 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
48 static void ar5416InitQoS(struct ath_hal *ah);
49 static void ar5416InitUserSettings(struct ath_hal *ah);
51 static HAL_BOOL ar5416SetTransmitPower(struct ath_hal *ah,
52 HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
54 #if 0
55 static HAL_BOOL ar5416ChannelChange(struct ath_hal *, HAL_CHANNEL *);
56 #endif
57 static void ar5416SetDeltaSlope(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
58 static void ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
59 #ifdef AH_SUPPORT_AR9280
60 static void ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
61 #endif
63 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
64 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
65 static void ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan);
66 static HAL_BOOL ar5416SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
67 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
68 struct ar5416eeprom *pEepData,
69 HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
70 uint16_t cfgCtl, uint16_t AntennaReduction,
71 uint16_t twiceMaxRegulatoryPower,
72 uint16_t powerLimit);
73 static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
74 struct ar5416eeprom *pEepData,
75 HAL_CHANNEL_INTERNAL *chan,
76 int16_t *pTxPowerIndexOffset);
77 static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
78 CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
79 static void ar5416GetTargetPowers(struct ath_hal *ah,
80 HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_HT *powInfo,
81 uint16_t numChannels, CAL_TARGET_POWER_HT *pNewPower,
82 uint16_t numRates, HAL_BOOL isHt40Target);
83 static void ar5416GetTargetPowersLeg(struct ath_hal *ah,
84 HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_LEG *powInfo,
85 uint16_t numChannels, CAL_TARGET_POWER_LEG *pNewPower,
86 uint16_t numRates, HAL_BOOL isExtTarget);
88 static int16_t interpolate(uint16_t target, uint16_t srcLeft,
89 uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
90 static void ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan);
91 static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
92 HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
93 uint8_t * bChans, uint16_t availPiers,
94 uint16_t tPdGainOverlap, int16_t *pMinCalPower,
95 uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
96 uint16_t numXpdGains);
97 static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
98 uint16_t listSize, uint16_t *indexL, uint16_t *indexR);
99 static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
100 uint8_t *pPwrList, uint8_t *pVpdList,
101 uint16_t numIntercepts, uint8_t *pRetVpdList);
104 * Places the device in and out of reset and then places sane
105 * values in the registers based on EEPROM config, initialization
106 * vectors (as determined by the mode), and station configuration
108 * bChannelChange is used to preserve DMA/PCU registers across
109 * a HW Reset during channel change.
111 HAL_BOOL
112 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
113 HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
115 #define N(a) (sizeof (a) / sizeof (a[0]))
116 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
117 struct ath_hal_5212 *ahp = AH5212(ah);
118 HAL_CHANNEL_INTERNAL *ichan;
119 uint32_t softLedCfg;
120 uint32_t saveDefAntenna, saveLedState;
121 uint32_t macStaId1;
122 uint16_t rfXpdGain[2];
123 u_int modesIndex, freqIndex;
124 HAL_STATUS ecode;
125 int i, regWrites = 0;
126 uint32_t powerVal, rssiThrReg;
127 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
129 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
130 #define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
131 if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
132 HALDEBUG(ah, HAL_DEBUG_ANY,
133 "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
134 __func__, chan->channel, chan->channelFlags);
135 FAIL(HAL_EINVAL);
137 if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
138 HALDEBUG(ah, HAL_DEBUG_ANY,
139 "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
140 __func__, chan->channel, chan->channelFlags);
141 FAIL(HAL_EINVAL);
143 #undef IS
145 /* Bring out of sleep mode */
146 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
147 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
148 __func__);
149 FAIL(HAL_EIO);
153 * Map public channel to private.
155 ichan = ath_hal_checkchannel(ah, chan);
156 if (ichan == AH_NULL) {
157 HALDEBUG(ah, HAL_DEBUG_ANY,
158 "%s: invalid channel %u/0x%x; no mapping\n",
159 __func__, chan->channel, chan->channelFlags);
160 FAIL(HAL_EINVAL);
161 } else {
162 HALDEBUG(ah, HAL_DEBUG_RESET,
163 "%s: Ch=%u Max=%d Min=%d\n",__func__,
164 ichan->channel, ichan->maxTxPower, ichan->minTxPower);
166 switch (opmode) {
167 case HAL_M_STA:
168 case HAL_M_IBSS:
169 case HAL_M_HOSTAP:
170 case HAL_M_MONITOR:
171 break;
172 default:
173 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
174 __func__, opmode);
175 FAIL(HAL_EINVAL);
176 break;
178 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
180 /* XXX Turn on fast channel change for 5416 */
182 * Preserve the bmiss rssi threshold and count threshold
183 * across resets
185 rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
186 /* If reg is zero, first time thru set to default val */
187 if (rssiThrReg == 0)
188 rssiThrReg = INIT_RSSI_THR;
191 * Preserve the antenna on a channel change
193 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
194 if (saveDefAntenna == 0) /* XXX magic constants */
195 saveDefAntenna = 1;
197 /* Save hardware flag before chip reset clears the register */
198 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
199 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
201 /* Save led state from pci config register */
202 saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
203 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
204 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
205 softLedCfg = OS_REG_READ(ah, AR_GPIO_INTR_OUT);
208 * Adjust gain parameters before reset if
209 * there's an outstanding gain updated.
211 (void) ar5416GetRfgain(ah);
213 if (!ar5416ChipReset(ah, chan)) {
214 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
215 FAIL(HAL_EIO);
218 /* Restore bmiss rssi & count thresholds */
219 OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
221 /* Setup the indices for the next set of register array writes */
222 /* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
223 switch (chan->channelFlags & CHANNEL_ALL) {
224 case CHANNEL_A:
225 case CHANNEL_A_HT20:
226 modesIndex = 1;
227 freqIndex = 1;
228 break;
229 case CHANNEL_T:
230 case CHANNEL_A_HT40PLUS:
231 case CHANNEL_A_HT40MINUS:
232 modesIndex = 2;
233 freqIndex = 1;
234 break;
235 case CHANNEL_PUREG:
236 case CHANNEL_G_HT20:
237 case CHANNEL_B: /* treat as channel G , no B mode suport in owl */
238 modesIndex = 4;
239 freqIndex = 2;
240 break;
241 case CHANNEL_G_HT40PLUS:
242 case CHANNEL_G_HT40MINUS:
243 modesIndex = 3;
244 freqIndex = 2;
245 break;
246 case CHANNEL_108G:
247 modesIndex = 5;
248 freqIndex = 2;
249 break;
250 default:
251 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
252 __func__, chan->channelFlags);
253 FAIL(HAL_EINVAL);
256 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
258 /* Set correct Baseband to analog shift setting to access analog chips. */
259 OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
262 * Write addac shifts
264 OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
265 #if 0
266 /* NB: only required for Sowl */
267 ar5416EepromSetAddac(ah, ichan);
268 #endif
269 regWrites = ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_addac, 1,
270 regWrites);
271 OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
273 /* XXX Merlin ini fixups */
274 /* XXX Merlin 100us delay for shift registers */
275 regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex,
276 regWrites);
277 #ifdef AH_SUPPORT_AR9280
278 if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
279 regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain,
280 modesIndex, regWrites);
281 regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain,
282 modesIndex, regWrites);
284 #endif
285 /* XXX Merlin 100us delay for shift registers */
286 regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_common, 1, regWrites);
287 /* Setup 11n MAC/Phy mode registers */
288 ar5416Set11nRegs(ah,chan);
289 /* XXX updated regWrites? */
290 ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
291 #ifdef AH_SUPPORT_AR9280
292 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
293 /* 5GHz channels w/ Fast Clock use different modal values */
294 regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes,
295 modesIndex, regWrites);
297 #endif
299 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
301 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
302 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
303 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
304 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
306 /* Set the mute mask to the correct default */
307 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
308 OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
310 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
311 /* Clear reg to alllow RX_CLEAR line debug */
312 OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
314 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
315 #ifdef notyet
316 /* Enable burst prefetch for the data queues */
317 OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
318 /* Enable double-buffering */
319 OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
320 #endif
323 /* Set ADC/DAC select values */
324 OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
326 if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
327 AH5416(ah)->ah_tx_chainmask == 0x5)
328 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
329 /* Setup Chain Masks */
330 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
331 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
332 OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
334 /* Setup the transmit power values. */
335 if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
336 HALDEBUG(ah, HAL_DEBUG_ANY,
337 "%s: error init'ing transmit power\n", __func__);
338 FAIL(HAL_EIO);
341 /* Write the analog registers */
342 if (!ahp->ah_rfHal->setRfRegs(ah, ichan, freqIndex, rfXpdGain)) {
343 HALDEBUG(ah, HAL_DEBUG_ANY,
344 "%s: ar5212SetRfRegs failed\n", __func__);
345 FAIL(HAL_EIO);
348 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
349 if (IS_CHAN_OFDM(chan)|| IS_CHAN_HT(chan))
350 ar5416SetDeltaSlope(ah, ichan);
352 #ifdef AH_SUPPORT_AR9280
353 if (AR_SREV_MERLIN_10_OR_LATER(ah))
354 ar9280SpurMitigate(ah, ichan);
355 else
356 #endif
357 ar5416SpurMitigate(ah, ichan);
359 /* Setup board specific options for EEPROM version 3 */
360 if (!ar5416SetBoardValues(ah, ichan)) {
361 HALDEBUG(ah, HAL_DEBUG_ANY,
362 "%s: error setting board options\n", __func__);
363 FAIL(HAL_EIO);
366 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
368 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
369 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
370 | macStaId1
371 | AR_STA_ID1_RTS_USE_DEF
372 | ahp->ah_staId1Defaults
374 ar5212SetOperatingMode(ah, opmode);
376 /* Set Venice BSSID mask according to current state */
377 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
378 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
380 /* Restore previous led state */
381 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
382 /* Restore soft Led state to GPIO */
383 OS_REG_WRITE(ah, AR_GPIO_INTR_OUT, softLedCfg);
385 /* Restore previous antenna */
386 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
388 /* then our BSSID */
389 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
390 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
392 /* Restore bmiss rssi & count thresholds */
393 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
395 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
397 if (!ar5212SetChannel(ah, ichan))
398 FAIL(HAL_EIO);
400 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
402 /* Set 1:1 QCU to DCU mapping for all queues */
403 for (i = 0; i < AR_NUM_DCU; i++)
404 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
406 ahp->ah_intrTxqs = 0;
407 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
408 ar5212ResetTxQueue(ah, i);
410 ar5416InitIMR(ah, opmode);
411 ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
412 ar5416InitQoS(ah);
413 ar5416InitUserSettings(ah);
416 * disable seq number generation in hw
418 OS_REG_WRITE(ah, AR_STA_ID1,
419 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
421 ar5416InitDMA(ah);
424 * program OBS bus to see MAC interrupts
426 OS_REG_WRITE(ah, AR_OBS, 8);
428 #ifdef AR5416_INT_MITIGATION
429 OS_REG_WRITE(ah, AR_MIRT, 0);
430 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
431 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
432 #endif
434 ar5416InitBB(ah, chan);
436 /* Setup compression registers */
437 ar5212SetCompRegs(ah); /* XXX not needed? */
440 * 5416 baseband will check the per rate power table
441 * and select the lower of the two
443 ackTpcPow = 63;
444 ctsTpcPow = 63;
445 chirpTpcPow = 63;
446 powerVal = SM(ackTpcPow, AR_TPC_ACK) |
447 SM(ctsTpcPow, AR_TPC_CTS) |
448 SM(chirpTpcPow, AR_TPC_CHIRP);
449 OS_REG_WRITE(ah, AR_TPC, powerVal);
451 if (!ar5416InitCal(ah, chan))
452 FAIL(HAL_ESELFTEST);
454 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
456 if (bChannelChange) {
457 if (!(ichan->privFlags & CHANNEL_DFS))
458 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
459 chan->channelFlags = ichan->channelFlags;
460 chan->privFlags = ichan->privFlags;
461 chan->maxRegTxPower = ichan->maxRegTxPower;
462 chan->maxTxPower = ichan->maxTxPower;
463 chan->minTxPower = ichan->minTxPower;
466 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
468 OS_MARK(ah, AH_MARK_RESET_DONE, 0);
470 return AH_TRUE;
471 bad:
472 OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
473 if (*status)
474 *status = ecode;
475 return AH_FALSE;
476 #undef FAIL
477 #undef N
480 #if 0
482 * This channel change evaluates whether the selected hardware can
483 * perform a synthesizer-only channel change (no reset). If the
484 * TX is not stopped, or the RFBus cannot be granted in the given
485 * time, the function returns false as a reset is necessary
487 HAL_BOOL
488 ar5416ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
490 uint32_t ulCount;
491 uint32_t data, synthDelay, qnum;
492 uint16_t rfXpdGain[4];
493 struct ath_hal_5212 *ahp = AH5212(ah);
494 HAL_CHANNEL_INTERNAL *ichan;
497 * Map public channel to private.
499 ichan = ath_hal_checkchannel(ah, chan);
501 /* TX must be stopped or RF Bus grant will not work */
502 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
503 if (ar5212NumTxPending(ah, qnum)) {
504 HALDEBUG(ah, HAL_DEBUG_ANY,
505 "%s: frames pending on queue %d\n", __func__, qnum);
506 return AH_FALSE;
511 * Kill last Baseband Rx Frame - Request analog bus grant
513 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
514 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
515 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
516 __func__);
517 return AH_FALSE;
520 ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
522 /* Change the synth */
523 if (!ar5212SetChannel(ah, ichan))
524 return AH_FALSE;
526 /* Setup the transmit power values. */
527 if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
528 HALDEBUG(ah, HAL_DEBUG_ANY,
529 "%s: error init'ing transmit power\n", __func__);
530 return AH_FALSE;
534 * Wait for the frequency synth to settle (synth goes on
535 * via PHY_ACTIVE_EN). Read the phy active delay register.
536 * Value is in 100ns increments.
538 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
539 if (IS_CHAN_CCK(ichan)) {
540 synthDelay = (4 * data) / 22;
541 } else {
542 synthDelay = data / 10;
545 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
547 /* Release the RFBus Grant */
548 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
550 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
551 if (IS_CHAN_OFDM(ichan)|| IS_CHAN_HT(chan)) {
552 if (ahp->ah_eeprom.ee_version >= AR_EEPROM_VER5_3 &&
553 !IS_CHAN_B(chan))
554 ar5212SetSpurMitigation(ah, ichan);
555 ar5416SetDeltaSlope(ah, ichan);
558 /* XXX spur mitigation for Melin */
560 /* Copy over internal channel flags to public hal channel */
562 if (!(ichan->privFlags & CHANNEL_DFS))
563 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
564 chan->channelFlags = ichan->channelFlags;
565 chan->privFlags = ichan->privFlags;
566 chan->maxRegTxPower = ichan->maxRegTxPower;
567 chan->maxTxPower = ichan->maxTxPower;
568 chan->minTxPower = ichan->minTxPower;
569 AH_PRIVATE(ah)->ah_curchan->ah_channel_time=0;
570 AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar5212GetTsf64(ah);
571 ar5212TxEnable(ah,AH_TRUE);
572 return AH_TRUE;
574 #endif
576 static void
577 ar5416InitDMA(struct ath_hal *ah)
581 * set AHB_MODE not to do cacheline prefetches
583 OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
586 * let mac dma reads be in 128 byte chunks
588 OS_REG_WRITE(ah, AR_TXCFG,
589 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
592 * let mac dma writes be in 128 byte chunks
594 OS_REG_WRITE(ah, AR_RXCFG,
595 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
597 /* XXX restore TX trigger level */
600 * Setup receive FIFO threshold to hold off TX activities
602 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
605 * reduce the number of usable entries in PCU TXBUF to avoid
606 * wrap around.
608 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
611 static void
612 ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan)
614 uint32_t synthDelay;
617 * Wait for the frequency synth to settle (synth goes on
618 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
619 * Value is in 100ns increments.
621 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
622 if (IS_CHAN_CCK(chan)) {
623 synthDelay = (4 * synthDelay) / 22;
624 } else {
625 synthDelay /= 10;
628 /* Turn on PLL on 5416 */
629 HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
630 __func__, IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
631 ar5416InitPLL(ah, chan);
633 /* Activate the PHY (includes baseband activate and synthesizer on) */
634 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
637 * If the AP starts the calibration before the base band timeout
638 * completes we could get rx_clear false triggering. Add an
639 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
640 * does not happen.
642 if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
643 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
644 } else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
645 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
646 } else {
647 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
651 static void
652 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
654 struct ath_hal_5212 *ahp = AH5212(ah);
657 * Setup interrupt handling. Note that ar5212ResetTxQueue
658 * manipulates the secondary IMR's as queues are enabled
659 * and disabled. This is done with RMW ops to insure the
660 * settings we make here are preserved.
662 ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
663 | AR_IMR_RXERR | AR_IMR_RXORN
664 | AR_IMR_BCNMISC;
666 #ifdef AR5416_INT_MITIGATION
667 ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
668 | AR_IMR_TXMINTR | AR_IMR_RXMINTR;
669 #else
670 ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
671 #endif
672 if (opmode == HAL_M_HOSTAP)
673 ahp->ah_maskReg |= AR_IMR_MIB;
674 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
675 /* Enable bus errors that are OR'd to set the HIUERR bit */
677 #if 0
678 OS_REG_WRITE(ah, AR_IMR_S2,
679 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
680 #endif
683 static void
684 ar5416InitQoS(struct ath_hal *ah)
686 /* QoS support */
687 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
688 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
690 /* Turn on NOACK Support for QoS packets */
691 OS_REG_WRITE(ah, AR_NOACK,
692 SM(2, AR_NOACK_2BIT_VALUE) |
693 SM(5, AR_NOACK_BIT_OFFSET) |
694 SM(0, AR_NOACK_BYTE_OFFSET));
697 * initialize TXOP for all TIDs
699 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
700 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
701 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
702 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
703 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
706 static void
707 ar5416InitUserSettings(struct ath_hal *ah)
709 struct ath_hal_5212 *ahp = AH5212(ah);
711 /* Restore user-specified settings */
712 if (ahp->ah_miscMode != 0)
713 OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
714 if (ahp->ah_sifstime != (u_int) -1)
715 ar5212SetSifsTime(ah, ahp->ah_sifstime);
716 if (ahp->ah_slottime != (u_int) -1)
717 ar5212SetSlotTime(ah, ahp->ah_slottime);
718 if (ahp->ah_acktimeout != (u_int) -1)
719 ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
720 if (ahp->ah_ctstimeout != (u_int) -1)
721 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
722 if (AH_PRIVATE(ah)->ah_diagreg != 0)
723 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
724 #if 0 /* XXX Todo */
725 if (ahp->ah_globaltxtimeout != (u_int) -1)
726 ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
727 #endif
731 * Places the hardware into reset and then pulls it out of reset
733 HAL_BOOL
734 ar5416ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
736 uint32_t rfMode = 0;
738 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
740 * Warm reset is optimistic.
742 if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
743 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
744 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
745 return AH_FALSE;
746 } else {
747 if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
748 return AH_FALSE;
751 /* Bring out of sleep mode (AGAIN) */
752 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
753 return AH_FALSE;
755 ar5416InitPLL(ah, chan);
758 * Perform warm reset before the mode/PLL/turbo registers
759 * are changed in order to deactivate the radio. Mode changes
760 * with an active radio can result in corrupted shifts to the
761 * radio device.
763 if (chan != AH_NULL) {
764 /* treat channel B as channel G , no B mode suport in owl */
765 rfMode |= (IS_CHAN_G(chan) || IS_CHAN_B(chan)) ?
766 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
767 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
768 /* phy mode bits for 5GHz channels require Fast Clock */
769 rfMode |= AR_PHY_MODE_DYNAMIC
770 | AR_PHY_MODE_DYN_CCK_DISABLE;
771 } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
772 rfMode |= (IS_CHAN_5GHZ(chan)) ?
773 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
775 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
777 return AH_TRUE;
781 * Delta slope coefficient computation.
782 * Required for OFDM operation.
784 static void
785 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
786 uint32_t *coef_mantissa, uint32_t *coef_exponent)
788 #define COEF_SCALE_S 24
789 uint32_t coef_exp, coef_man;
791 * ALGO -> coef_exp = 14-floor(log2(coef));
792 * floor(log2(x)) is the highest set bit position
794 for (coef_exp = 31; coef_exp > 0; coef_exp--)
795 if ((coef_scaled >> coef_exp) & 0x1)
796 break;
797 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
798 HALASSERT(coef_exp);
799 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
802 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
803 * The coefficient is already shifted up for scaling
805 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
807 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
808 *coef_exponent = coef_exp - 16;
810 #undef COEF_SCALE_S
813 void
814 ar5416SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
816 #define INIT_CLOCKMHZSCALED 0x64000000
817 uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
818 uint32_t clockMhzScaled = INIT_CLOCKMHZSCALED;
820 CHAN_CENTERS centers;
822 if (IS_CHAN_TURBO(chan))
823 clockMhzScaled *= 2;
824 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
825 /* scale for selected channel bandwidth */
826 if (IS_CHAN_HALF_RATE(chan)) {
827 clockMhzScaled = clockMhzScaled >> 1;
828 } else if (IS_CHAN_QUARTER_RATE(chan)) {
829 clockMhzScaled = clockMhzScaled >> 2;
833 * ALGO -> coef = 1e8/fcarrier*fclock/40;
834 * scaled coef to provide precision for this floating calculation
836 ar5416GetChannelCenters(ah, chan, &centers);
837 coef_scaled = clockMhzScaled / centers.synth_center;
839 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
841 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
842 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
843 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
844 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
847 * For Short GI,
848 * scaled coeff is 9/10 that of normal coeff
850 coef_scaled = (9 * coef_scaled)/10;
852 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
854 /* for short gi */
855 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
856 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
857 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
858 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
859 #undef INIT_CLOCKMHZSCALED
863 * Convert to baseband spur frequency given input channel frequency
864 * and compute register settings below.
866 #define SPUR_RSSI_THRESH 40
868 static void
869 ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
871 static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
872 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
873 static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
874 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
875 static const int inc[4] = { 0, 100, 0, 0 };
877 int bb_spur = AR_NO_SPUR;
878 int bin, cur_bin;
879 int spur_freq_sd;
880 int spur_delta_phase;
881 int denominator;
882 int upper, lower, cur_vit_mask;
883 int tmp, new;
884 int i;
886 int8_t mask_m[123];
887 int8_t mask_p[123];
888 int8_t mask_amt;
889 int tmp_mask;
890 int cur_bb_spur;
891 HAL_BOOL is2GHz = IS_CHAN_2GHZ(chan);
893 OS_MEMZERO(mask_m, sizeof(mask_m));
894 OS_MEMZERO(mask_p, sizeof(mask_p));
897 * Need to verify range +/- 9.5 for static ht20, otherwise spur
898 * is out-of-band and can be ignored.
900 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
901 cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
902 if (AR_NO_SPUR == cur_bb_spur)
903 break;
904 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
905 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
906 bb_spur = cur_bb_spur;
907 break;
910 if (AR_NO_SPUR == bb_spur)
911 return;
913 bin = bb_spur * 32;
915 tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
916 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
917 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
918 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
919 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
921 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), new);
923 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
924 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
925 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
926 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
927 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
928 OS_REG_WRITE(ah, AR_PHY_SPUR_REG, new);
930 * Should offset bb_spur by +/- 10 MHz for dynamic 2040 MHz
931 * config, no offset for HT20.
932 * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
933 * /80 for dyn2040.
935 spur_delta_phase = ((bb_spur * 524288) / 100) &
936 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
938 * in 11A mode the denominator of spur_freq_sd should be 40 and
939 * it should be 44 in 11G
941 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
942 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
944 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
945 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
946 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
947 OS_REG_WRITE(ah, AR_PHY_TIMING11, new);
951 * ============================================
952 * pilot mask 1 [31:0] = +6..-26, no 0 bin
953 * pilot mask 2 [19:0] = +26..+7
955 * channel mask 1 [31:0] = +6..-26, no 0 bin
956 * channel mask 2 [19:0] = +26..+7
958 //cur_bin = -26;
959 cur_bin = -6000;
960 upper = bin + 100;
961 lower = bin - 100;
963 for (i = 0; i < 4; i++) {
964 int pilot_mask = 0;
965 int chan_mask = 0;
966 int bp = 0;
967 for (bp = 0; bp < 30; bp++) {
968 if ((cur_bin > lower) && (cur_bin < upper)) {
969 pilot_mask = pilot_mask | 0x1 << bp;
970 chan_mask = chan_mask | 0x1 << bp;
972 cur_bin += 100;
974 cur_bin += inc[i];
975 OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
976 OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
979 /* =================================================
980 * viterbi mask 1 based on channel magnitude
981 * four levels 0-3
982 * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
983 * [1 2 2 1] for -9.6 or [1 2 1] for +16
984 * - enable_mask_ppm, all bins move with freq
986 * - mask_select, 8 bits for rates (reg 67,0x990c)
987 * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
988 * choose which mask to use mask or mask2
992 * viterbi mask 2 2nd set for per data rate puncturing
993 * four levels 0-3
994 * - mask_select, 8 bits for rates (reg 67)
995 * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
996 * [1 2 2 1] for -9.6 or [1 2 1] for +16
998 cur_vit_mask = 6100;
999 upper = bin + 120;
1000 lower = bin - 120;
1002 for (i = 0; i < 123; i++) {
1003 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1004 if ((abs(cur_vit_mask - bin)) < 75) {
1005 mask_amt = 1;
1006 } else {
1007 mask_amt = 0;
1009 if (cur_vit_mask < 0) {
1010 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1011 } else {
1012 mask_p[cur_vit_mask / 100] = mask_amt;
1015 cur_vit_mask -= 100;
1018 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1019 | (mask_m[48] << 26) | (mask_m[49] << 24)
1020 | (mask_m[50] << 22) | (mask_m[51] << 20)
1021 | (mask_m[52] << 18) | (mask_m[53] << 16)
1022 | (mask_m[54] << 14) | (mask_m[55] << 12)
1023 | (mask_m[56] << 10) | (mask_m[57] << 8)
1024 | (mask_m[58] << 6) | (mask_m[59] << 4)
1025 | (mask_m[60] << 2) | (mask_m[61] << 0);
1026 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1027 OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1029 tmp_mask = (mask_m[31] << 28)
1030 | (mask_m[32] << 26) | (mask_m[33] << 24)
1031 | (mask_m[34] << 22) | (mask_m[35] << 20)
1032 | (mask_m[36] << 18) | (mask_m[37] << 16)
1033 | (mask_m[48] << 14) | (mask_m[39] << 12)
1034 | (mask_m[40] << 10) | (mask_m[41] << 8)
1035 | (mask_m[42] << 6) | (mask_m[43] << 4)
1036 | (mask_m[44] << 2) | (mask_m[45] << 0);
1037 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1038 OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1040 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1041 | (mask_m[18] << 26) | (mask_m[18] << 24)
1042 | (mask_m[20] << 22) | (mask_m[20] << 20)
1043 | (mask_m[22] << 18) | (mask_m[22] << 16)
1044 | (mask_m[24] << 14) | (mask_m[24] << 12)
1045 | (mask_m[25] << 10) | (mask_m[26] << 8)
1046 | (mask_m[27] << 6) | (mask_m[28] << 4)
1047 | (mask_m[29] << 2) | (mask_m[30] << 0);
1048 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1049 OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1051 tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
1052 | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
1053 | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
1054 | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
1055 | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
1056 | (mask_m[10] << 10) | (mask_m[11] << 8)
1057 | (mask_m[12] << 6) | (mask_m[13] << 4)
1058 | (mask_m[14] << 2) | (mask_m[15] << 0);
1059 OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1060 OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1062 tmp_mask = (mask_p[15] << 28)
1063 | (mask_p[14] << 26) | (mask_p[13] << 24)
1064 | (mask_p[12] << 22) | (mask_p[11] << 20)
1065 | (mask_p[10] << 18) | (mask_p[ 9] << 16)
1066 | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
1067 | (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
1068 | (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
1069 | (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
1070 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1071 OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1073 tmp_mask = (mask_p[30] << 28)
1074 | (mask_p[29] << 26) | (mask_p[28] << 24)
1075 | (mask_p[27] << 22) | (mask_p[26] << 20)
1076 | (mask_p[25] << 18) | (mask_p[24] << 16)
1077 | (mask_p[23] << 14) | (mask_p[22] << 12)
1078 | (mask_p[21] << 10) | (mask_p[20] << 8)
1079 | (mask_p[19] << 6) | (mask_p[18] << 4)
1080 | (mask_p[17] << 2) | (mask_p[16] << 0);
1081 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1082 OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1084 tmp_mask = (mask_p[45] << 28)
1085 | (mask_p[44] << 26) | (mask_p[43] << 24)
1086 | (mask_p[42] << 22) | (mask_p[41] << 20)
1087 | (mask_p[40] << 18) | (mask_p[39] << 16)
1088 | (mask_p[38] << 14) | (mask_p[37] << 12)
1089 | (mask_p[36] << 10) | (mask_p[35] << 8)
1090 | (mask_p[34] << 6) | (mask_p[33] << 4)
1091 | (mask_p[32] << 2) | (mask_p[31] << 0);
1092 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1093 OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1095 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1096 | (mask_p[59] << 26) | (mask_p[58] << 24)
1097 | (mask_p[57] << 22) | (mask_p[56] << 20)
1098 | (mask_p[55] << 18) | (mask_p[54] << 16)
1099 | (mask_p[53] << 14) | (mask_p[52] << 12)
1100 | (mask_p[51] << 10) | (mask_p[50] << 8)
1101 | (mask_p[49] << 6) | (mask_p[48] << 4)
1102 | (mask_p[47] << 2) | (mask_p[46] << 0);
1103 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1104 OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1107 #ifdef AH_SUPPORT_AR9280
1108 #define AR_BASE_FREQ_2GHZ 2300
1109 #define AR_BASE_FREQ_5GHZ 4900
1110 #define AR_SPUR_FEEQ_BOUND_HT40 19
1111 #define AR_SPUR_FEEQ_BOUND_HT20 10
1113 static void
1114 ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
1116 static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1117 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
1118 static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1119 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
1120 static int inc[4] = { 0, 100, 0, 0 };
1122 int bb_spur = AR_NO_SPUR;
1123 int freq;
1124 int bin, cur_bin;
1125 int bb_spur_off, spur_subchannel_sd;
1126 int spur_freq_sd;
1127 int spur_delta_phase;
1128 int denominator;
1129 int upper, lower, cur_vit_mask;
1130 int tmp, newVal;
1131 int i;
1132 CHAN_CENTERS centers;
1134 int8_t mask_m[123];
1135 int8_t mask_p[123];
1136 int8_t mask_amt;
1137 int tmp_mask;
1138 int cur_bb_spur;
1139 HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
1141 OS_MEMZERO(&mask_m, sizeof(int8_t) * 123);
1142 OS_MEMZERO(&mask_p, sizeof(int8_t) * 123);
1144 ar5416GetChannelCenters(ah, ichan, &centers);
1145 freq = centers.synth_center;
1148 * Need to verify range +/- 9.38 for static ht20 and +/- 18.75 for ht40,
1149 * otherwise spur is out-of-band and can be ignored.
1151 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
1152 cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
1153 /* Get actual spur freq in MHz from EEPROM read value */
1154 if (is2GHz) {
1155 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1156 } else {
1157 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1160 if (AR_NO_SPUR == cur_bb_spur)
1161 break;
1162 cur_bb_spur = cur_bb_spur - freq;
1164 if (IS_CHAN_HT40(ichan)) {
1165 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1166 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1167 bb_spur = cur_bb_spur;
1168 break;
1170 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1171 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1172 bb_spur = cur_bb_spur;
1173 break;
1177 if (AR_NO_SPUR == bb_spur) {
1178 #if 1
1180 * MRC CCK can interfere with beacon detection and cause deaf/mute.
1181 * Disable MRC CCK for now.
1183 OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1184 #else
1185 /* Enable MRC CCK if no spur is found in this channel. */
1186 OS_REG_SET_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1187 #endif
1188 return;
1189 } else {
1191 * For Merlin, spur can break CCK MRC algorithm. Disable CCK MRC if spur
1192 * is found in this channel.
1194 OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1197 bin = bb_spur * 320;
1199 tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
1201 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1202 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1203 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1204 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1205 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), newVal);
1207 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1208 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1209 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1210 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1211 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1212 OS_REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1214 /* Pick control or extn channel to cancel the spur */
1215 if (IS_CHAN_HT40(ichan)) {
1216 if (bb_spur < 0) {
1217 spur_subchannel_sd = 1;
1218 bb_spur_off = bb_spur + 10;
1219 } else {
1220 spur_subchannel_sd = 0;
1221 bb_spur_off = bb_spur - 10;
1223 } else {
1224 spur_subchannel_sd = 0;
1225 bb_spur_off = bb_spur;
1229 * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
1230 * /80 for dyn2040.
1232 if (IS_CHAN_HT40(ichan))
1233 spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1234 else
1235 spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1238 * in 11A mode the denominator of spur_freq_sd should be 40 and
1239 * it should be 44 in 11G
1241 denominator = IS_CHAN_2GHZ(ichan) ? 44 : 40;
1242 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1244 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1245 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1246 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1247 OS_REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1249 /* Choose to cancel between control and extension channels */
1250 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1251 OS_REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1254 * ============================================
1255 * Set Pilot and Channel Masks
1257 * pilot mask 1 [31:0] = +6..-26, no 0 bin
1258 * pilot mask 2 [19:0] = +26..+7
1260 * channel mask 1 [31:0] = +6..-26, no 0 bin
1261 * channel mask 2 [19:0] = +26..+7
1263 cur_bin = -6000;
1264 upper = bin + 100;
1265 lower = bin - 100;
1267 for (i = 0; i < 4; i++) {
1268 int pilot_mask = 0;
1269 int chan_mask = 0;
1270 int bp = 0;
1271 for (bp = 0; bp < 30; bp++) {
1272 if ((cur_bin > lower) && (cur_bin < upper)) {
1273 pilot_mask = pilot_mask | 0x1 << bp;
1274 chan_mask = chan_mask | 0x1 << bp;
1276 cur_bin += 100;
1278 cur_bin += inc[i];
1279 OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1280 OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1283 /* =================================================
1284 * viterbi mask 1 based on channel magnitude
1285 * four levels 0-3
1286 * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
1287 * [1 2 2 1] for -9.6 or [1 2 1] for +16
1288 * - enable_mask_ppm, all bins move with freq
1290 * - mask_select, 8 bits for rates (reg 67,0x990c)
1291 * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
1292 * choose which mask to use mask or mask2
1296 * viterbi mask 2 2nd set for per data rate puncturing
1297 * four levels 0-3
1298 * - mask_select, 8 bits for rates (reg 67)
1299 * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
1300 * [1 2 2 1] for -9.6 or [1 2 1] for +16
1302 cur_vit_mask = 6100;
1303 upper = bin + 120;
1304 lower = bin - 120;
1306 for (i = 0; i < 123; i++) {
1307 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1308 if ((abs(cur_vit_mask - bin)) < 75) {
1309 mask_amt = 1;
1310 } else {
1311 mask_amt = 0;
1313 if (cur_vit_mask < 0) {
1314 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1315 } else {
1316 mask_p[cur_vit_mask / 100] = mask_amt;
1319 cur_vit_mask -= 100;
1322 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1323 | (mask_m[48] << 26) | (mask_m[49] << 24)
1324 | (mask_m[50] << 22) | (mask_m[51] << 20)
1325 | (mask_m[52] << 18) | (mask_m[53] << 16)
1326 | (mask_m[54] << 14) | (mask_m[55] << 12)
1327 | (mask_m[56] << 10) | (mask_m[57] << 8)
1328 | (mask_m[58] << 6) | (mask_m[59] << 4)
1329 | (mask_m[60] << 2) | (mask_m[61] << 0);
1330 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1331 OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1333 tmp_mask = (mask_m[31] << 28)
1334 | (mask_m[32] << 26) | (mask_m[33] << 24)
1335 | (mask_m[34] << 22) | (mask_m[35] << 20)
1336 | (mask_m[36] << 18) | (mask_m[37] << 16)
1337 | (mask_m[48] << 14) | (mask_m[39] << 12)
1338 | (mask_m[40] << 10) | (mask_m[41] << 8)
1339 | (mask_m[42] << 6) | (mask_m[43] << 4)
1340 | (mask_m[44] << 2) | (mask_m[45] << 0);
1341 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1342 OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1344 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1345 | (mask_m[18] << 26) | (mask_m[18] << 24)
1346 | (mask_m[20] << 22) | (mask_m[20] << 20)
1347 | (mask_m[22] << 18) | (mask_m[22] << 16)
1348 | (mask_m[24] << 14) | (mask_m[24] << 12)
1349 | (mask_m[25] << 10) | (mask_m[26] << 8)
1350 | (mask_m[27] << 6) | (mask_m[28] << 4)
1351 | (mask_m[29] << 2) | (mask_m[30] << 0);
1352 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1353 OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1355 tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
1356 | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
1357 | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
1358 | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
1359 | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
1360 | (mask_m[10] << 10) | (mask_m[11] << 8)
1361 | (mask_m[12] << 6) | (mask_m[13] << 4)
1362 | (mask_m[14] << 2) | (mask_m[15] << 0);
1363 OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1364 OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1366 tmp_mask = (mask_p[15] << 28)
1367 | (mask_p[14] << 26) | (mask_p[13] << 24)
1368 | (mask_p[12] << 22) | (mask_p[11] << 20)
1369 | (mask_p[10] << 18) | (mask_p[ 9] << 16)
1370 | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
1371 | (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
1372 | (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
1373 | (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
1374 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1375 OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1377 tmp_mask = (mask_p[30] << 28)
1378 | (mask_p[29] << 26) | (mask_p[28] << 24)
1379 | (mask_p[27] << 22) | (mask_p[26] << 20)
1380 | (mask_p[25] << 18) | (mask_p[24] << 16)
1381 | (mask_p[23] << 14) | (mask_p[22] << 12)
1382 | (mask_p[21] << 10) | (mask_p[20] << 8)
1383 | (mask_p[19] << 6) | (mask_p[18] << 4)
1384 | (mask_p[17] << 2) | (mask_p[16] << 0);
1385 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1386 OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1388 tmp_mask = (mask_p[45] << 28)
1389 | (mask_p[44] << 26) | (mask_p[43] << 24)
1390 | (mask_p[42] << 22) | (mask_p[41] << 20)
1391 | (mask_p[40] << 18) | (mask_p[39] << 16)
1392 | (mask_p[38] << 14) | (mask_p[37] << 12)
1393 | (mask_p[36] << 10) | (mask_p[35] << 8)
1394 | (mask_p[34] << 6) | (mask_p[33] << 4)
1395 | (mask_p[32] << 2) | (mask_p[31] << 0);
1396 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1397 OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1399 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1400 | (mask_p[59] << 26) | (mask_p[58] << 24)
1401 | (mask_p[57] << 22) | (mask_p[56] << 20)
1402 | (mask_p[55] << 18) | (mask_p[54] << 16)
1403 | (mask_p[53] << 14) | (mask_p[52] << 12)
1404 | (mask_p[51] << 10) | (mask_p[50] << 8)
1405 | (mask_p[49] << 6) | (mask_p[48] << 4)
1406 | (mask_p[47] << 2) | (mask_p[46] << 0);
1407 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1408 OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1410 #endif /* AH_SUPPORT_AR9280 */
1413 * Set a limit on the overall output power. Used for dynamic
1414 * transmit power control and the like.
1416 * NB: limit is in units of 0.5 dbM.
1418 HAL_BOOL
1419 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1421 uint16_t dummyXpdGains[2];
1423 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1424 return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
1425 dummyXpdGains);
1428 HAL_BOOL
1429 ar5416GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
1431 struct ath_hal_5212 *ahp = AH5212(ah);
1432 int16_t minPower, maxPower;
1433 HAL_CHANNEL *chan;
1434 int i;
1437 * Get Pier table max and min powers.
1439 for (i = 0; i < nchans; i++) {
1440 chan = &chans[i];
1441 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
1442 /* NB: rf code returns 1/4 dBm units, convert */
1443 chan->maxTxPower = maxPower / 2;
1444 chan->minTxPower = minPower / 2;
1445 } else {
1446 HALDEBUG(ah, HAL_DEBUG_ANY,
1447 "%s: no min/max power for %u/0x%x\n",
1448 __func__, chan->channel, chan->channelFlags);
1449 chan->maxTxPower = AR5416_MAX_RATE_POWER;
1450 chan->minTxPower = 0;
1453 #ifdef AH_DEBUG
1454 for (i=0; i<nchans; i++) {
1455 HALDEBUG(ah, HAL_DEBUG_RESET,
1456 "Chan %d: MaxPow = %d MinPow = %d\n",
1457 chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
1459 #endif
1460 return AH_TRUE;
1463 /* XXX gag, this is sick */
1464 typedef enum Ar5416_Rates {
1465 rate6mb, rate9mb, rate12mb, rate18mb,
1466 rate24mb, rate36mb, rate48mb, rate54mb,
1467 rate1l, rate2l, rate2s, rate5_5l,
1468 rate5_5s, rate11l, rate11s, rateXr,
1469 rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
1470 rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
1471 rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
1472 rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
1473 rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
1474 Ar5416RateSize
1475 } AR5416_RATES;
1477 /**************************************************************
1478 * ar5416SetTransmitPower
1480 * Set the transmit power in the baseband for the given
1481 * operating channel and mode.
1483 static HAL_BOOL
1484 ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain)
1486 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
1487 #define N(a) (sizeof (a) / sizeof (a[0]))
1489 MODAL_EEP_HEADER *pModal;
1490 struct ath_hal_5212 *ahp = AH5212(ah);
1491 int16_t ratesArray[Ar5416RateSize];
1492 int16_t txPowerIndexOffset = 0;
1493 uint8_t ht40PowerIncForPdadc = 2;
1494 int i;
1496 uint16_t cfgCtl;
1497 uint16_t powerLimit;
1498 uint16_t twiceAntennaReduction;
1499 uint16_t twiceMaxRegulatoryPower;
1500 int16_t maxPower;
1501 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1502 struct ar5416eeprom *pEepData = &ee->ee_base;
1504 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1506 /* Setup info for the actual eeprom */
1507 ath_hal_memzero(ratesArray, sizeof(ratesArray));
1508 cfgCtl = ath_hal_getctl(ah, (HAL_CHANNEL *)chan);
1509 powerLimit = chan->maxRegTxPower * 2;
1510 twiceAntennaReduction = chan->antennaMax;
1511 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1512 pModal = &pEepData->modalHeader[IS_CHAN_2GHZ(chan)];
1513 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1514 __func__,chan->channel, cfgCtl );
1516 if (IS_EEP_MINOR_V2(ah)) {
1517 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1520 if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
1521 &ratesArray[0],cfgCtl,
1522 twiceAntennaReduction,
1523 twiceMaxRegulatoryPower, powerLimit)) {
1524 HALDEBUG(ah, HAL_DEBUG_ANY,
1525 "%s: unable to set tx power per rate table\n", __func__);
1526 return AH_FALSE;
1529 if (!ar5416SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
1530 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1531 __func__);
1532 return AH_FALSE;
1535 maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
1537 if (IS_CHAN_2GHZ(chan)) {
1538 maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
1541 if (IS_CHAN_HT40(chan)) {
1542 maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
1545 ahp->ah_tx6PowerInHalfDbm = maxPower;
1546 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1547 ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1550 * txPowerIndexOffset is set by the SetPowerTable() call -
1551 * adjust the rate table (0 offset if rates EEPROM not loaded)
1553 for (i = 0; i < N(ratesArray); i++) {
1554 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1555 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1556 ratesArray[i] = AR5416_MAX_RATE_POWER;
1559 #ifdef AH_EEPROM_DUMP
1560 ar5416PrintPowerPerRate(ah, ratesArray);
1561 #endif
1563 /* Write the OFDM power per rate set */
1564 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1565 POW_SM(ratesArray[rate18mb], 24)
1566 | POW_SM(ratesArray[rate12mb], 16)
1567 | POW_SM(ratesArray[rate9mb], 8)
1568 | POW_SM(ratesArray[rate6mb], 0)
1570 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1571 POW_SM(ratesArray[rate54mb], 24)
1572 | POW_SM(ratesArray[rate48mb], 16)
1573 | POW_SM(ratesArray[rate36mb], 8)
1574 | POW_SM(ratesArray[rate24mb], 0)
1577 if (IS_CHAN_2GHZ(chan)) {
1578 /* Write the CCK power per rate set */
1579 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1580 POW_SM(ratesArray[rate2s], 24)
1581 | POW_SM(ratesArray[rate2l], 16)
1582 | POW_SM(ratesArray[rateXr], 8) /* XR target power */
1583 | POW_SM(ratesArray[rate1l], 0)
1585 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1586 POW_SM(ratesArray[rate11s], 24)
1587 | POW_SM(ratesArray[rate11l], 16)
1588 | POW_SM(ratesArray[rate5_5s], 8)
1589 | POW_SM(ratesArray[rate5_5l], 0)
1591 HALDEBUG(ah, HAL_DEBUG_RESET,
1592 "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
1593 __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
1594 OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
1597 /* Write the HT20 power per rate set */
1598 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1599 POW_SM(ratesArray[rateHt20_3], 24)
1600 | POW_SM(ratesArray[rateHt20_2], 16)
1601 | POW_SM(ratesArray[rateHt20_1], 8)
1602 | POW_SM(ratesArray[rateHt20_0], 0)
1604 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1605 POW_SM(ratesArray[rateHt20_7], 24)
1606 | POW_SM(ratesArray[rateHt20_6], 16)
1607 | POW_SM(ratesArray[rateHt20_5], 8)
1608 | POW_SM(ratesArray[rateHt20_4], 0)
1611 if (IS_CHAN_HT40(chan)) {
1612 /* Write the HT40 power per rate set */
1613 /* Correct PAR difference between HT40 and HT20/LEGACY */
1614 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1615 POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
1616 | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
1617 | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
1618 | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
1620 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1621 POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
1622 | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
1623 | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
1624 | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
1626 /* Write the Dup/Ext 40 power per rate set */
1627 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1628 POW_SM(ratesArray[rateExtOfdm], 24)
1629 | POW_SM(ratesArray[rateExtCck], 16)
1630 | POW_SM(ratesArray[rateDupOfdm], 8)
1631 | POW_SM(ratesArray[rateDupCck], 0)
1635 /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1636 OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1637 POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1638 | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1640 return AH_TRUE;
1641 #undef POW_SM
1642 #undef N
1646 * Exported call to check for a recent gain reading and return
1647 * the current state of the thermal calibration gain engine.
1649 HAL_RFGAIN
1650 ar5416GetRfgain(struct ath_hal *ah)
1652 return HAL_RFGAIN_INACTIVE;
1656 * Places all of hardware into reset
1658 HAL_BOOL
1659 ar5416Disable(struct ath_hal *ah)
1661 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1662 return AH_FALSE;
1663 return ar5416SetResetReg(ah, HAL_RESET_COLD);
1667 * Places the PHY and Radio chips into reset. A full reset
1668 * must be called to leave this state. The PCI/MAC/PCU are
1669 * not placed into reset as we must receive interrupt to
1670 * re-enable the hardware.
1672 HAL_BOOL
1673 ar5416PhyDisable(struct ath_hal *ah)
1675 return ar5416SetResetReg(ah, HAL_RESET_WARM);
1679 * Write the given reset bit mask into the reset register
1681 HAL_BOOL
1682 ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1685 * Set force wake
1687 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1688 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1690 switch (type) {
1691 case HAL_RESET_POWER_ON:
1692 return ar5416SetResetPowerOn(ah);
1693 break;
1694 case HAL_RESET_WARM:
1695 case HAL_RESET_COLD:
1696 return ar5416SetReset(ah, type);
1697 break;
1698 default:
1699 return AH_FALSE;
1703 static HAL_BOOL
1704 ar5416SetResetPowerOn(struct ath_hal *ah)
1706 /* Power On Reset (Hard Reset) */
1709 * Set force wake
1711 * If the MAC was running, previously calling
1712 * reset will wake up the MAC but it may go back to sleep
1713 * before we can start polling.
1714 * Set force wake stops that
1715 * This must be called before initiating a hard reset.
1717 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1718 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1721 * RTC reset and clear
1723 OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1724 OS_DELAY(20);
1725 OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1728 * Poll till RTC is ON
1730 if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1731 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1732 return AH_FALSE;
1735 return ar5416SetReset(ah, HAL_RESET_COLD);
1738 static HAL_BOOL
1739 ar5416SetReset(struct ath_hal *ah, int type)
1741 uint32_t tmpReg;
1744 * Force wake
1746 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1747 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1750 * Reset AHB
1752 tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1753 if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1754 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1755 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1756 } else {
1757 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1761 * Set Mac(BB,Phy) Warm Reset
1763 switch (type) {
1764 case HAL_RESET_WARM:
1765 OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
1766 break;
1767 case HAL_RESET_COLD:
1768 OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
1769 break;
1770 default:
1771 HALASSERT(0);
1772 break;
1776 * Clear resets and force wakeup
1778 OS_REG_WRITE(ah, AR_RTC_RC, 0);
1779 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1780 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1781 return AH_FALSE;
1784 /* Clear AHB reset */
1785 OS_REG_WRITE(ah, AR_RC, 0);
1787 /* Set register and descriptor swapping on
1788 * Bigendian platforms on cold reset
1790 #ifdef __BIG_ENDIAN__
1791 if (type == HAL_RESET_COLD) {
1792 uint32_t mask;
1794 HALDEBUG(ah, HAL_DEBUG_RESET,
1795 "%s Applying descriptor swap\n", __func__);
1797 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1798 #ifndef AH_NEED_DESC_SWAP
1799 mask |= AR_CFG_SWTD;
1800 #endif
1801 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1803 #endif
1805 ar5416InitPLL(ah, AH_NULL);
1807 return AH_TRUE;
1810 #ifndef IS_5GHZ_FAST_CLOCK_EN
1811 #define IS_5GHZ_FAST_CLOCK_EN(ah, chan) AH_FALSE
1812 #endif
1814 static void
1815 ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan)
1817 uint32_t pll;
1819 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1820 pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1822 if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1823 pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1824 } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1825 pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1827 if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1828 pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
1831 * PLL WAR for Merlin 2.0/2.1
1832 * When doing fast clock, set PLL to 0x142c
1833 * Else, set PLL to 0x2850 to prevent reset-to-reset variation
1835 if (AR_SREV_MERLIN_20(ah)) {
1836 if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
1837 pll = 0x142c;
1838 } else {
1839 pll = 0x2850;
1842 } else {
1843 pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
1845 } else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
1846 pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1848 if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1849 pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1850 } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1851 pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1853 if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1854 pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
1855 } else {
1856 pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
1858 } else {
1859 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1861 if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1862 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1863 } else if (chan != AH_NULL && IS_CHAN_QUARTER_RATE(chan)) {
1864 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1866 if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1867 pll |= SM(0xa, AR_RTC_PLL_DIV);
1868 } else {
1869 pll |= SM(0xb, AR_RTC_PLL_DIV);
1872 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1874 /* TODO:
1875 * For multi-band owl, switch between bands by reiniting the PLL.
1878 OS_DELAY(RTC_PLL_SETTLE_DELAY);
1880 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1884 * Read EEPROM header info and program the device for correct operation
1885 * given the channel value.
1887 static HAL_BOOL
1888 ar5416SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
1890 const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1891 const struct ar5416eeprom *eep = &ee->ee_base;
1892 const MODAL_EEP_HEADER *pModal;
1893 int i, regChainOffset;
1894 uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
1896 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1897 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1899 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; /* workaround for eeprom versions <= 14.2 */
1901 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1902 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1903 if (AR_SREV_MERLIN(ah)) {
1904 if (i >= 2) break;
1906 if (AR_SREV_OWL_20_OR_LATER(ah) &&
1907 (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1908 AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
1909 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1910 * only chains 0 and 2 populated
1912 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1913 } else {
1914 regChainOffset = i * 0x1000;
1917 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1918 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1919 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1920 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1921 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1922 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1925 * Large signal upgrade.
1926 * XXX update
1929 if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1930 OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
1931 (OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
1932 SM(IS_EEP_MINOR_V3(ah) ? pModal->txRxAttenCh[i] : txRxAttenLocal,
1933 AR_PHY_RXGAIN_TXRX_ATTEN));
1935 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1936 (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1937 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1941 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1942 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1943 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1944 OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1945 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1946 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1947 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1948 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1950 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1952 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1953 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1954 pModal->thresh62);
1955 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1956 pModal->thresh62);
1957 } else {
1958 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1959 pModal->thresh62);
1960 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
1961 pModal->thresh62);
1964 /* Minor Version Specific application */
1965 if (IS_EEP_MINOR_V2(ah)) {
1966 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
1967 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
1970 if (IS_EEP_MINOR_V3(ah)) {
1971 if (IS_CHAN_HT40(chan)) {
1972 /* Overwrite switch settling with HT40 value */
1973 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1976 if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
1977 ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
1978 /* Reg Offsets are swapped for logical mapping */
1979 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1980 SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1981 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1982 SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1983 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1984 SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1985 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1986 SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1987 } else {
1988 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1989 SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1990 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1991 SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1992 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1993 SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1994 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1995 SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1997 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
1998 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
2000 return AH_TRUE;
2004 * Helper functions common for AP/CB/XB
2008 * ar5416SetPowerPerRateTable
2010 * Sets the transmit power in the baseband for the given
2011 * operating channel and mode.
2013 static HAL_BOOL
2014 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2015 HAL_CHANNEL_INTERNAL *chan,
2016 int16_t *ratesArray, uint16_t cfgCtl,
2017 uint16_t AntennaReduction,
2018 uint16_t twiceMaxRegulatoryPower,
2019 uint16_t powerLimit)
2021 #define N(a) (sizeof(a)/sizeof(a[0]))
2022 /* Local defines to distinguish between extension and control CTL's */
2023 #define EXT_ADDITIVE (0x8000)
2024 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
2025 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
2026 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
2028 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2029 int i;
2030 int16_t twiceLargestAntenna;
2031 CAL_CTL_DATA *rep;
2032 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
2033 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
2034 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
2035 int16_t scaledPower, minCtlPower;
2037 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
2038 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
2039 static const uint16_t ctlModesFor11a[] = {
2040 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
2042 static const uint16_t ctlModesFor11g[] = {
2043 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
2045 const uint16_t *pCtlMode;
2046 uint16_t numCtlModes, ctlMode, freq;
2047 CHAN_CENTERS centers;
2049 ar5416GetChannelCenters(ah, chan, &centers);
2051 /* Compute TxPower reduction due to Antenna Gain */
2053 twiceLargestAntenna = AH_MAX(AH_MAX(pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
2054 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
2055 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2056 #if 0
2057 /* Turn it back on if we need to calculate per chain antenna gain reduction */
2058 /* Use only if the expected gain > 6dbi */
2059 /* Chain 0 is always used */
2060 twiceLargestAntenna = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0];
2062 /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
2063 if (ahp->ah_tx_chainmask & 0x2)
2064 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
2065 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
2067 if (ahp->ah_tx_chainmask & 0x4)
2068 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
2069 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2070 #endif
2071 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
2073 /* XXX setup for 5212 use (really used?) */
2074 ath_hal_eepromSet(ah,
2075 IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
2076 twiceLargestAntenna);
2079 * scaledPower is the minimum of the user input power level and
2080 * the regulatory allowed power level
2082 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
2084 /* Reduce scaled Power by number of chains active to get to per chain tx power level */
2085 /* TODO: better value than these? */
2086 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
2087 case 1:
2088 break;
2089 case 2:
2090 scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
2091 break;
2092 case 3:
2093 scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
2094 break;
2095 default:
2096 return AH_FALSE; /* Unsupported number of chains */
2099 scaledPower = AH_MAX(0, scaledPower);
2101 /* Get target powers from EEPROM - our baseline for TX Power */
2102 if (IS_CHAN_2GHZ(chan)) {
2103 /* Setup for CTL modes */
2104 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
2105 pCtlMode = ctlModesFor11g;
2107 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
2108 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
2109 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
2110 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
2111 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
2112 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
2114 if (IS_CHAN_HT40(chan)) {
2115 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
2117 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
2118 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
2119 /* Get target powers for extension channels */
2120 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
2121 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
2122 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
2123 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
2125 } else {
2126 /* Setup for CTL modes */
2127 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
2128 pCtlMode = ctlModesFor11a;
2130 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
2131 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
2132 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
2133 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
2135 if (IS_CHAN_HT40(chan)) {
2136 numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
2138 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
2139 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
2140 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
2141 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
2146 * For MIMO, need to apply regulatory caps individually across dynamically
2147 * running modes: CCK, OFDM, HT20, HT40
2149 * The outer loop walks through each possible applicable runtime mode.
2150 * The inner loop walks through each ctlIndex entry in EEPROM.
2151 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
2154 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
2156 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
2157 (pCtlMode[ctlMode] == CTL_2GHT40);
2158 if (isHt40CtlMode) {
2159 freq = centers.ctl_center;
2160 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
2161 freq = centers.ext_center;
2162 } else {
2163 freq = centers.ctl_center;
2166 /* walk through each CTL index stored in EEPROM */
2167 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
2168 uint16_t twiceMinEdgePower;
2170 /* compare test group from regulatory channel list with test mode from pCtlMode list */
2171 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
2172 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2173 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
2174 rep = &(pEepData->ctlData[i]);
2175 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
2176 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
2177 IS_CHAN_2GHZ(chan));
2178 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2179 /* Find the minimum of all CTL edge powers that apply to this channel */
2180 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2181 } else {
2182 /* specific */
2183 twiceMaxEdgePower = twiceMinEdgePower;
2184 break;
2188 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
2189 /* Apply ctl mode to correct target power set */
2190 switch(pCtlMode[ctlMode]) {
2191 case CTL_11B:
2192 for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
2193 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
2195 break;
2196 case CTL_11A:
2197 case CTL_11G:
2198 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
2199 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
2201 break;
2202 case CTL_5GHT20:
2203 case CTL_2GHT20:
2204 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2205 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
2207 break;
2208 case CTL_11B_EXT:
2209 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
2210 break;
2211 case CTL_11A_EXT:
2212 case CTL_11G_EXT:
2213 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2214 break;
2215 case CTL_5GHT40:
2216 case CTL_2GHT40:
2217 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2218 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2220 break;
2221 default:
2222 return AH_FALSE;
2223 break;
2225 } /* end ctl mode checking */
2227 /* Set rates Array from collected data */
2228 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
2229 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
2230 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
2231 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
2232 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
2234 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2235 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
2238 if (IS_CHAN_2GHZ(chan)) {
2239 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
2240 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
2241 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
2242 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
2244 if (IS_CHAN_HT40(chan)) {
2245 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2246 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
2248 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
2249 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
2250 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
2251 if (IS_CHAN_2GHZ(chan)) {
2252 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
2255 return AH_TRUE;
2256 #undef EXT_ADDITIVE
2257 #undef CTL_11A_EXT
2258 #undef CTL_11G_EXT
2259 #undef CTL_11B_EXT
2260 #undef SUB_NUM_CTL_MODES_AT_5G_40
2261 #undef SUB_NUM_CTL_MODES_AT_2G_40
2262 #undef N
2265 /**************************************************************************
2266 * fbin2freq
2268 * Get channel value from binary representation held in eeprom
2269 * RETURNS: the frequency in MHz
2271 static uint16_t
2272 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2275 * Reserved value 0xFF provides an empty definition both as
2276 * an fbin and as a frequency - do not convert
2278 if (fbin == AR5416_BCHAN_UNUSED) {
2279 return fbin;
2282 return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2286 * ar5416GetMaxEdgePower
2288 * Find the maximum conformance test limit for the given channel and CTL info
2290 static uint16_t
2291 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2293 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2294 int i;
2296 /* Get the edge power */
2297 for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2299 * If there's an exact channel match or an inband flag set
2300 * on the lower channel use the given rdEdgePower
2302 if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2303 twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2304 break;
2305 } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2306 if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2307 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2309 /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2310 break;
2313 HALASSERT(twiceMaxEdgePower > 0);
2314 return twiceMaxEdgePower;
2317 /**************************************************************
2318 * ar5416GetTargetPowers
2320 * Return the rates of target power for the given target power table
2321 * channel, and number of channels
2323 static void
2324 ar5416GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
2325 CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2326 CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2327 HAL_BOOL isHt40Target)
2329 uint16_t clo, chi;
2330 int i;
2331 int matchIndex = -1, lowIndex = -1;
2332 uint16_t freq;
2333 CHAN_CENTERS centers;
2335 ar5416GetChannelCenters(ah, chan, &centers);
2336 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2338 /* Copy the target powers into the temp channel list */
2339 if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
2340 matchIndex = 0;
2341 } else {
2342 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2343 if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
2344 matchIndex = i;
2345 break;
2346 } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
2347 (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
2349 lowIndex = i - 1;
2350 break;
2353 if ((matchIndex == -1) && (lowIndex == -1)) {
2354 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
2355 matchIndex = i - 1;
2359 if (matchIndex != -1) {
2360 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2361 } else {
2362 HALASSERT(lowIndex != -1);
2364 * Get the lower and upper channels, target powers,
2365 * and interpolate between them.
2367 clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
2368 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
2370 for (i = 0; i < numRates; i++) {
2371 pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
2372 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2376 /**************************************************************
2377 * ar5416GetTargetPowersLeg
2379 * Return the four rates of target power for the given target power table
2380 * channel, and number of channels
2382 static void
2383 ar5416GetTargetPowersLeg(struct ath_hal *ah,
2384 HAL_CHANNEL_INTERNAL *chan,
2385 CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2386 CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2387 HAL_BOOL isExtTarget)
2389 uint16_t clo, chi;
2390 int i;
2391 int matchIndex = -1, lowIndex = -1;
2392 uint16_t freq;
2393 CHAN_CENTERS centers;
2395 ar5416GetChannelCenters(ah, chan, &centers);
2396 freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2398 /* Copy the target powers into the temp channel list */
2399 if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
2400 matchIndex = 0;
2401 } else {
2402 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2403 if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
2404 matchIndex = i;
2405 break;
2406 } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
2407 (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
2409 lowIndex = i - 1;
2410 break;
2413 if ((matchIndex == -1) && (lowIndex == -1)) {
2414 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
2415 matchIndex = i - 1;
2419 if (matchIndex != -1) {
2420 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2421 } else {
2422 HALASSERT(lowIndex != -1);
2424 * Get the lower and upper channels, target powers,
2425 * and interpolate between them.
2427 clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
2428 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
2430 for (i = 0; i < numRates; i++) {
2431 pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
2432 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2437 /**************************************************************
2438 * ar5416SetPowerCalTable
2440 * Pull the PDADC piers from cal data and interpolate them across the given
2441 * points as well as from the nearest pier(s) to get a power detector
2442 * linear voltage to power level table.
2444 static HAL_BOOL
2445 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
2447 CAL_DATA_PER_FREQ *pRawDataset;
2448 uint8_t *pCalBChans = AH_NULL;
2449 uint16_t pdGainOverlap_t2;
2450 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
2451 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2452 uint16_t numPiers, i, j;
2453 int16_t tMinCalPower;
2454 uint16_t numXpdGain, xpdMask;
2455 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2456 uint32_t reg32, regOffset, regChainOffset;
2458 ath_hal_memzero(xpdGainValues, sizeof(xpdGainValues));
2460 xpdMask = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].xpdGain;
2462 if (IS_EEP_MINOR_V2(ah)) {
2463 pdGainOverlap_t2 = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pdGainOverlap;
2464 } else {
2465 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2468 if (IS_CHAN_2GHZ(chan)) {
2469 pCalBChans = pEepData->calFreqPier2G;
2470 numPiers = AR5416_NUM_2G_CAL_PIERS;
2471 } else {
2472 pCalBChans = pEepData->calFreqPier5G;
2473 numPiers = AR5416_NUM_5G_CAL_PIERS;
2476 numXpdGain = 0;
2477 /* Calculate the value of xpdgains from the xpdGain Mask */
2478 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2479 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2480 if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2481 HALASSERT(0);
2482 break;
2484 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2485 numXpdGain++;
2489 /* Write the detector gain biases and their number */
2490 OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2491 ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2492 SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2493 SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
2495 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2497 if (AR_SREV_OWL_20_OR_LATER(ah) &&
2498 ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
2499 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
2500 * only chains 0 and 2 populated
2502 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
2503 } else {
2504 regChainOffset = i * 0x1000;
2507 if (pEepData->baseEepHeader.txMask & (1 << i)) {
2508 if (IS_CHAN_2GHZ(chan)) {
2509 pRawDataset = pEepData->calPierData2G[i];
2510 } else {
2511 pRawDataset = pEepData->calPierData5G[i];
2514 ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
2515 pCalBChans, numPiers,
2516 pdGainOverlap_t2,
2517 &tMinCalPower, gainBoundaries,
2518 pdadcValues, numXpdGain);
2520 if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
2522 * Note the pdadc table may not start at 0 dBm power, could be
2523 * negative or greater than 0. Need to offset the power
2524 * values by the amount of minPower for griffin
2527 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2528 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2529 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
2530 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
2531 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
2532 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2535 /* Write the power values into the baseband power table */
2536 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2538 for (j = 0; j < 32; j++) {
2539 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
2540 ((pdadcValues[4*j + 1] & 0xFF) << 8) |
2541 ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2542 ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2543 OS_REG_WRITE(ah, regOffset, reg32);
2545 #ifdef PDADC_DUMP
2546 ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
2548 4*j, pdadcValues[4*j],
2549 4*j+1, pdadcValues[4*j + 1],
2550 4*j+2, pdadcValues[4*j + 2],
2551 4*j+3, pdadcValues[4*j + 3]);
2552 #endif
2553 regOffset += 4;
2557 *pTxPowerIndexOffset = 0;
2559 return AH_TRUE;
2562 /**************************************************************
2563 * ar5416GetGainBoundariesAndPdadcs
2565 * Uses the data points read from EEPROM to reconstruct the pdadc power table
2566 * Called by ar5416SetPowerCalTable only.
2568 static void
2569 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2570 HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
2571 uint8_t * bChans, uint16_t availPiers,
2572 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2573 uint8_t * pPDADCValues, uint16_t numXpdGains)
2576 int i, j, k;
2577 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
2578 uint16_t idxL = 0, idxR = 0, numPiers; /* Pier indexes */
2580 /* filled out Vpd table for all pdGains (chanL) */
2581 static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2583 /* filled out Vpd table for all pdGains (chanR) */
2584 static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2586 /* filled out Vpd table for all pdGains (interpolated) */
2587 static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2589 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2590 uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
2591 uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
2592 int16_t vpdStep;
2593 int16_t tmpVal;
2594 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
2595 HAL_BOOL match;
2596 int16_t minDelta = 0;
2597 CHAN_CENTERS centers;
2599 ar5416GetChannelCenters(ah, chan, &centers);
2601 /* Trim numPiers for the number of populated channel Piers */
2602 for (numPiers = 0; numPiers < availPiers; numPiers++) {
2603 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2604 break;
2608 /* Find pier indexes around the current channel */
2609 match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
2610 bChans, numPiers, &idxL, &idxR);
2612 if (match) {
2613 /* Directly fill both vpd tables from the matching index */
2614 for (i = 0; i < numXpdGains; i++) {
2615 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2616 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2617 ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2618 pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2620 } else {
2621 for (i = 0; i < numXpdGains; i++) {
2622 pVpdL = pRawDataSet[idxL].vpdPdg[i];
2623 pPwrL = pRawDataSet[idxL].pwrPdg[i];
2624 pVpdR = pRawDataSet[idxR].vpdPdg[i];
2625 pPwrR = pRawDataSet[idxR].pwrPdg[i];
2627 /* Start Vpd interpolation from the max of the minimum powers */
2628 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2630 /* End Vpd interpolation from the min of the max powers */
2631 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2632 HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2634 /* Fill pier Vpds */
2635 ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2636 ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2638 /* Interpolate the final vpd */
2639 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2640 vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
2641 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2645 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2647 k = 0; /* index for the final table */
2648 for (i = 0; i < numXpdGains; i++) {
2649 if (i == (numXpdGains - 1)) {
2650 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2651 } else {
2652 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2655 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2657 /* NB: only applies to owl 1.0 */
2658 if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
2660 * fix the gain delta, but get a delta that can be applied to min to
2661 * keep the upper power values accurate, don't think max needs to
2662 * be adjusted because should not be at that area of the table?
2664 minDelta = pPdGainBoundaries[0] - 23;
2665 pPdGainBoundaries[0] = 23;
2667 else {
2668 minDelta = 0;
2671 /* Find starting index for this pdGain */
2672 if (i == 0) {
2673 ss = 0; /* for the first pdGain, start from index 0 */
2674 } else {
2675 /* need overlap entries extrapolated below. */
2676 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2678 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2679 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2681 *-ve ss indicates need to extrapolate data below for this pdGain
2683 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2684 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2685 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2686 ss++;
2689 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2690 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2691 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2693 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2694 pPDADCValues[k++] = vpdTableI[i][ss++];
2697 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2698 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2700 * for last gain, pdGainBoundary == Pmax_t2, so will
2701 * have to extrapolate
2703 if (tgtIndex > maxIndex) { /* need to extrapolate above */
2704 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2705 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2706 (ss - maxIndex +1) * vpdStep));
2707 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2708 ss++;
2710 } /* extrapolated above */
2711 } /* for all pdGainUsed */
2713 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2714 while (i < AR5416_PD_GAINS_IN_MASK) {
2715 pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2716 i++;
2719 while (k < AR5416_NUM_PDADC_VALUES) {
2720 pPDADCValues[k] = pPDADCValues[k-1];
2721 k++;
2723 return;
2726 /**************************************************************
2727 * getLowerUppderIndex
2729 * Return indices surrounding the value in sorted integer lists.
2730 * Requirement: the input list must be monotonically increasing
2731 * and populated up to the list size
2732 * Returns: match is set if an index in the array matches exactly
2733 * or a the target is before or after the range of the array.
2735 HAL_BOOL
2736 getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
2737 uint16_t *indexL, uint16_t *indexR)
2739 uint16_t i;
2742 * Check first and last elements for beyond ordered array cases.
2744 if (target <= pList[0]) {
2745 *indexL = *indexR = 0;
2746 return AH_TRUE;
2748 if (target >= pList[listSize-1]) {
2749 *indexL = *indexR = (uint16_t)(listSize - 1);
2750 return AH_TRUE;
2753 /* look for value being near or between 2 values in list */
2754 for (i = 0; i < listSize - 1; i++) {
2756 * If value is close to the current value of the list
2757 * then target is not between values, it is one of the values
2759 if (pList[i] == target) {
2760 *indexL = *indexR = i;
2761 return AH_TRUE;
2764 * Look for value being between current value and next value
2765 * if so return these 2 values
2767 if (target < pList[i + 1]) {
2768 *indexL = i;
2769 *indexR = (uint16_t)(i + 1);
2770 return AH_FALSE;
2773 HALASSERT(0);
2774 return AH_FALSE;
2777 /**************************************************************
2778 * ar5416FillVpdTable
2780 * Fill the Vpdlist for indices Pmax-Pmin
2781 * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
2783 static HAL_BOOL
2784 ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
2785 uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
2787 uint16_t i, k;
2788 uint8_t currPwr = pwrMin;
2789 uint16_t idxL = 0, idxR = 0;
2791 HALASSERT(pwrMax > pwrMin);
2792 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
2793 getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
2794 &(idxL), &(idxR));
2795 if (idxR < 1)
2796 idxR = 1; /* extrapolate below */
2797 if (idxL == numIntercepts - 1)
2798 idxL = (uint16_t)(numIntercepts - 2); /* extrapolate above */
2799 if (pPwrList[idxL] == pPwrList[idxR])
2800 k = pVpdList[idxL];
2801 else
2802 k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
2803 (pPwrList[idxR] - pPwrList[idxL]) );
2804 HALASSERT(k < 256);
2805 pRetVpdList[i] = (uint8_t)k;
2806 currPwr += 2; /* half dB steps */
2809 return AH_TRUE;
2812 /**************************************************************************
2813 * interpolate
2815 * Returns signed interpolated or the scaled up interpolated value
2817 static int16_t
2818 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2819 int16_t targetLeft, int16_t targetRight)
2821 int16_t rv;
2823 if (srcRight == srcLeft) {
2824 rv = targetLeft;
2825 } else {
2826 rv = (int16_t)( ((target - srcLeft) * targetRight +
2827 (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
2829 return rv;
2832 static void
2833 ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan)
2835 uint32_t phymode;
2836 HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
2838 if (!IS_CHAN_HT(chan))
2839 return;
2841 /* Enable 11n HT, 20 MHz */
2842 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2843 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
2845 /* Configure baseband for dynamic 20/40 operation */
2846 if (IS_CHAN_HT40(chan)) {
2847 phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
2849 /* Configure control (primary) channel at +-10MHz */
2850 if ((chan->channelFlags & CHANNEL_HT40PLUS))
2851 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2852 #if 0
2853 /* Configure 20/25 spacing */
2854 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2855 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2856 #endif
2857 macmode = HAL_HT_MACMODE_2040;
2858 } else
2859 macmode = HAL_HT_MACMODE_20;
2860 OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2862 /* Configure MAC for 20/40 operation */
2863 ar5416Set11nMac2040(ah, macmode);
2865 /* global transmit timeout (25 TUs default)*/
2866 /* XXX - put this elsewhere??? */
2867 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2869 /* carrier sense timeout */
2870 OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2871 OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
2874 void
2875 ar5416GetChannelCenters(struct ath_hal *ah,
2876 HAL_CHANNEL_INTERNAL *chan, CHAN_CENTERS *centers)
2878 centers->ctl_center = chan->channel;
2879 centers->synth_center = chan->channel;
2881 * In 20/40 phy mode, the center frequency is
2882 * "between" the control and extension channels.
2884 if (chan->channelFlags & CHANNEL_HT40PLUS) {
2885 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2886 centers->ext_center =
2887 centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2888 } else if (chan->channelFlags & CHANNEL_HT40MINUS) {
2889 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2890 centers->ext_center =
2891 centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2892 } else {
2893 centers->ext_center = chan->channel;