No empty .Rs/.Re
[netbsd-mini2440.git] / sys / fs / udf / udf_strat_sequential.c
blob065844ccf392b3ccfd41dd1b69068ce13f213648
1 /* $NetBSD: udf_strat_sequential.c,v 1.9 2009/02/10 17:48:19 reinoud Exp $ */
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #include <sys/cdefs.h>
30 #ifndef lint
31 __KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.9 2009/02/10 17:48:19 reinoud Exp $");
32 #endif /* not lint */
35 #if defined(_KERNEL_OPT)
36 #include "opt_compat_netbsd.h"
37 #endif
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/namei.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 #include <sys/vnode.h>
46 #include <miscfs/genfs/genfs_node.h>
47 #include <sys/mount.h>
48 #include <sys/buf.h>
49 #include <sys/file.h>
50 #include <sys/device.h>
51 #include <sys/disklabel.h>
52 #include <sys/ioctl.h>
53 #include <sys/malloc.h>
54 #include <sys/dirent.h>
55 #include <sys/stat.h>
56 #include <sys/conf.h>
57 #include <sys/kauth.h>
58 #include <sys/kthread.h>
59 #include <dev/clock_subr.h>
61 #include <fs/udf/ecma167-udf.h>
62 #include <fs/udf/udf_mount.h>
64 #include "udf.h"
65 #include "udf_subr.h"
66 #include "udf_bswap.h"
69 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
70 #define PRIV(ump) ((struct strat_private *) ump->strategy_private)
72 /* --------------------------------------------------------------------- */
74 /* BUFQ's */
75 #define UDF_SHED_MAX 3
77 #define UDF_SHED_READING 0
78 #define UDF_SHED_WRITING 1
79 #define UDF_SHED_SEQWRITING 2
81 struct strat_private {
82 struct pool desc_pool; /* node descriptors */
84 lwp_t *queue_lwp;
85 kcondvar_t discstrat_cv; /* to wait on */
86 kmutex_t discstrat_mutex; /* disc strategy */
88 int run_thread; /* thread control */
89 int cur_queue;
91 struct disk_strategy old_strategy_setting;
92 struct bufq_state *queues[UDF_SHED_MAX];
93 struct timespec last_queued[UDF_SHED_MAX];
97 /* --------------------------------------------------------------------- */
99 static void
100 udf_wr_nodedscr_callback(struct buf *buf)
102 struct udf_node *udf_node;
104 KASSERT(buf);
105 KASSERT(buf->b_data);
107 /* called when write action is done */
108 DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n"));
110 udf_node = VTOI(buf->b_vp);
111 if (udf_node == NULL) {
112 putiobuf(buf);
113 printf("udf_wr_node_callback: NULL node?\n");
114 return;
117 /* XXX right flags to mark dirty again on error? */
118 if (buf->b_error) {
119 udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED;
120 /* XXX TODO reshedule on error */
123 /* decrement outstanding_nodedscr */
124 KASSERT(udf_node->outstanding_nodedscr >= 1);
125 udf_node->outstanding_nodedscr--;
126 if (udf_node->outstanding_nodedscr == 0) {
127 /* first unlock the node */
128 UDF_UNLOCK_NODE(udf_node, 0);
129 wakeup(&udf_node->outstanding_nodedscr);
132 /* unreference the vnode so it can be recycled */
133 holdrele(udf_node->vnode);
135 putiobuf(buf);
138 /* --------------------------------------------------------------------- */
140 static int
141 udf_create_logvol_dscr_seq(struct udf_strat_args *args)
143 union dscrptr **dscrptr = &args->dscr;
144 struct udf_mount *ump = args->ump;
145 struct strat_private *priv = PRIV(ump);
146 uint32_t lb_size;
148 lb_size = udf_rw32(ump->logical_vol->lb_size);
149 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
150 memset(*dscrptr, 0, lb_size);
152 return 0;
156 static void
157 udf_free_logvol_dscr_seq(struct udf_strat_args *args)
159 union dscrptr *dscr = args->dscr;
160 struct udf_mount *ump = args->ump;
161 struct strat_private *priv = PRIV(ump);
163 pool_put(&priv->desc_pool, dscr);
167 static int
168 udf_read_logvol_dscr_seq(struct udf_strat_args *args)
170 union dscrptr **dscrptr = &args->dscr;
171 union dscrptr *tmpdscr;
172 struct udf_mount *ump = args->ump;
173 struct long_ad *icb = args->icb;
174 struct strat_private *priv = PRIV(ump);
175 uint32_t lb_size;
176 uint32_t sector, dummy;
177 int error;
179 lb_size = udf_rw32(ump->logical_vol->lb_size);
181 error = udf_translate_vtop(ump, icb, &sector, &dummy);
182 if (error)
183 return error;
185 /* try to read in fe/efe */
186 error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr);
187 if (error)
188 return error;
190 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
191 memcpy(*dscrptr, tmpdscr, lb_size);
192 free(tmpdscr, M_UDFTEMP);
194 return 0;
198 static int
199 udf_write_logvol_dscr_seq(struct udf_strat_args *args)
201 union dscrptr *dscr = args->dscr;
202 struct udf_mount *ump = args->ump;
203 struct udf_node *udf_node = args->udf_node;
204 struct long_ad *icb = args->icb;
205 int waitfor = args->waitfor;
206 uint32_t logsectornr, sectornr, dummy;
207 int error, vpart;
210 * we have to decide if we write it out sequential or at its fixed
211 * position by examining the partition its (to be) written on.
213 vpart = udf_rw16(udf_node->loc.loc.part_num);
214 logsectornr = udf_rw32(icb->loc.lb_num);
215 sectornr = 0;
216 if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) {
217 error = udf_translate_vtop(ump, icb, &sectornr, &dummy);
218 if (error)
219 goto out;
222 /* add reference to the vnode to prevent recycling */
223 vhold(udf_node->vnode);
225 if (waitfor) {
226 DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n"));
228 error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE,
229 dscr, sectornr, logsectornr);
230 } else {
231 DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n"));
233 error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE,
234 dscr, sectornr, logsectornr, udf_wr_nodedscr_callback);
235 /* will be UNLOCKED in call back */
236 return error;
239 holdrele(udf_node->vnode);
240 out:
241 udf_node->outstanding_nodedscr--;
242 if (udf_node->outstanding_nodedscr == 0) {
243 UDF_UNLOCK_NODE(udf_node, 0);
244 wakeup(&udf_node->outstanding_nodedscr);
247 return error;
250 /* --------------------------------------------------------------------- */
253 * Main file-system specific sheduler. Due to the nature of optical media
254 * sheduling can't be performed in the traditional way. Most OS
255 * implementations i've seen thus read or write a file atomically giving all
256 * kinds of side effects.
258 * This implementation uses a kernel thread to shedule the queued requests in
259 * such a way that is semi-optimal for optical media; this means aproximately
260 * (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in
261 * time.
264 static void
265 udf_queuebuf_seq(struct udf_strat_args *args)
267 struct udf_mount *ump = args->ump;
268 struct buf *nestbuf = args->nestbuf;
269 struct strat_private *priv = PRIV(ump);
270 int queue;
271 int what;
273 KASSERT(ump);
274 KASSERT(nestbuf);
275 KASSERT(nestbuf->b_iodone == nestiobuf_iodone);
277 what = nestbuf->b_udf_c_type;
278 queue = UDF_SHED_READING;
279 if ((nestbuf->b_flags & B_READ) == 0) {
280 /* writing */
281 queue = UDF_SHED_SEQWRITING;
282 if (what == UDF_C_ABSOLUTE)
283 queue = UDF_SHED_WRITING;
286 /* use our own sheduler lists for more complex sheduling */
287 mutex_enter(&priv->discstrat_mutex);
288 bufq_put(priv->queues[queue], nestbuf);
289 vfs_timestamp(&priv->last_queued[queue]);
290 mutex_exit(&priv->discstrat_mutex);
292 /* signal our thread that there might be something to do */
293 cv_signal(&priv->discstrat_cv);
296 /* --------------------------------------------------------------------- */
298 /* TODO convert to lb_size */
299 static void
300 udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map)
302 union dscrptr *fdscr = (union dscrptr *) buf->b_data;
303 struct vnode *vp = buf->b_vp;
304 struct udf_node *udf_node = VTOI(vp);
305 uint32_t lb_size, blks;
306 uint32_t lb_num;
307 uint32_t udf_rw32_lbmap;
308 int c_type = buf->b_udf_c_type;
309 int error;
311 /* only interested when we're using a VAT */
312 KASSERT(ump->vat_node);
313 KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT);
315 /* only nodes are recorded in the VAT */
316 /* NOTE: and the fileset descriptor (FIXME ?) */
317 if (c_type != UDF_C_NODE)
318 return;
320 /* we now have an UDF FE/EFE node on media with VAT (or VAT itself) */
321 lb_size = udf_rw32(ump->logical_vol->lb_size);
322 blks = lb_size / DEV_BSIZE;
324 udf_rw32_lbmap = udf_rw32(lb_map);
326 /* if we're the VAT itself, only update our assigned sector number */
327 if (udf_node == ump->vat_node) {
328 fdscr->tag.tag_loc = udf_rw32_lbmap;
329 udf_validate_tag_sum(fdscr);
330 DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n",
331 udf_rw32(udf_rw32_lbmap)));
332 /* no use mapping the VAT node in the VAT */
333 return;
336 /* record new position in VAT file */
337 lb_num = udf_rw32(fdscr->tag.tag_loc);
339 /* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */
341 DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n",
342 lb_num, lb_map));
344 /* VAT should be the longer than this write, can't go wrong */
345 KASSERT(lb_num <= ump->vat_entries);
347 mutex_enter(&ump->allocate_mutex);
348 error = udf_vat_write(ump->vat_node,
349 (uint8_t *) &udf_rw32_lbmap, 4,
350 ump->vat_offset + lb_num * 4);
351 mutex_exit(&ump->allocate_mutex);
353 if (error)
354 panic( "udf_VAT_mapping_update: HELP! i couldn't "
355 "write in the VAT file ?\n");
359 static void
360 udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf)
362 union dscrptr *dscr;
363 struct long_ad *node_ad_cpy;
364 struct part_desc *pdesc;
365 uint64_t *lmapping, *lmappos, blknr;
366 uint32_t our_sectornr, sectornr, bpos;
367 uint32_t ptov;
368 uint16_t vpart_num;
369 uint8_t *fidblk;
370 int sector_size = ump->discinfo.sector_size;
371 int blks = sector_size / DEV_BSIZE;
372 int len, buf_len;
374 /* if reading, just pass to the device's STRATEGY */
375 if (queue == UDF_SHED_READING) {
376 DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d,"
377 "b_resid %d, b_bcount %d, b_bufsize %d\n",
378 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
379 buf->b_resid, buf->b_bcount, buf->b_bufsize));
380 VOP_STRATEGY(ump->devvp, buf);
381 return;
384 blknr = buf->b_blkno;
385 our_sectornr = blknr / blks;
387 if (queue == UDF_SHED_WRITING) {
388 DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d "
389 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
390 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
391 buf->b_resid, buf->b_bcount, buf->b_bufsize));
392 KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE);
394 // udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
395 VOP_STRATEGY(ump->devvp, buf);
396 return;
399 KASSERT(queue == UDF_SHED_SEQWRITING);
400 DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX "
401 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
402 buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount,
403 buf->b_bufsize));
406 * Buffers should not have been allocated to disc addresses yet on
407 * this queue. Note that a buffer can get multiple extents allocated.
409 * lmapping contains lb_num relative to base partition.
411 lmapping = ump->la_lmapping;
412 node_ad_cpy = ump->la_node_ad_cpy;
414 /* logically allocate buf and map it in the file */
415 udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num);
418 * NOTE We are using the knowledge here that sequential media will
419 * always be mapped linearly. Thus no use to explicitly translate the
420 * lmapping list.
423 /* calculate offset from physical base partition */
424 pdesc = ump->partitions[ump->vtop[vpart_num]];
425 ptov = udf_rw32(pdesc->start_loc);
427 /* set buffers blkno to the physical block number */
428 buf->b_blkno = (*lmapping + ptov) * blks;
430 /* fixate floating descriptors */
431 if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) {
432 /* set our tag location to the absolute position */
433 dscr = (union dscrptr *) buf->b_data;
434 dscr->tag.tag_loc = udf_rw32(*lmapping + ptov);
435 udf_validate_tag_and_crc_sums(dscr);
438 /* update mapping in the VAT */
439 if (buf->b_udf_c_type == UDF_C_NODE) {
440 udf_VAT_mapping_update(ump, buf, *lmapping);
441 udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
444 /* if we have FIDs, fixup using the new allocation table */
445 if (buf->b_udf_c_type == UDF_C_FIDS) {
446 buf_len = buf->b_bcount;
447 bpos = 0;
448 lmappos = lmapping;
449 while (buf_len) {
450 sectornr = *lmappos++;
451 len = MIN(buf_len, sector_size);
452 fidblk = (uint8_t *) buf->b_data + bpos;
453 udf_fixup_fid_block(fidblk, sector_size,
454 0, len, sectornr);
455 bpos += len;
456 buf_len -= len;
460 VOP_STRATEGY(ump->devvp, buf);
464 static void
465 udf_doshedule(struct udf_mount *ump)
467 struct buf *buf;
468 struct timespec now, *last;
469 struct strat_private *priv = PRIV(ump);
470 void (*b_callback)(struct buf *);
471 int new_queue;
472 int error;
474 buf = bufq_get(priv->queues[priv->cur_queue]);
475 if (buf) {
476 /* transfer from the current queue to the device queue */
477 mutex_exit(&priv->discstrat_mutex);
479 /* transform buffer to synchronous; XXX needed? */
480 b_callback = buf->b_iodone;
481 buf->b_iodone = NULL;
482 CLR(buf->b_flags, B_ASYNC);
484 /* issue and wait on completion */
485 udf_issue_buf(ump, priv->cur_queue, buf);
486 biowait(buf);
488 mutex_enter(&priv->discstrat_mutex);
490 /* if there is an error, repair this error, otherwise propagate */
491 if (buf->b_error && ((buf->b_flags & B_READ) == 0)) {
492 /* check what we need to do */
493 panic("UDF write error, can't handle yet!\n");
496 /* propagate result to higher layers */
497 if (b_callback) {
498 buf->b_iodone = b_callback;
499 (*buf->b_iodone)(buf);
502 return;
505 /* Check if we're idling in this state */
506 vfs_timestamp(&now);
507 last = &priv->last_queued[priv->cur_queue];
508 if (ump->discinfo.mmc_class == MMC_CLASS_CD) {
509 /* dont switch too fast for CD media; its expensive in time */
510 if (now.tv_sec - last->tv_sec < 3)
511 return;
514 /* check if we can/should switch */
515 new_queue = priv->cur_queue;
517 if (bufq_peek(priv->queues[UDF_SHED_READING]))
518 new_queue = UDF_SHED_READING;
519 if (bufq_peek(priv->queues[UDF_SHED_WRITING])) /* only for unmount */
520 new_queue = UDF_SHED_WRITING;
521 if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]))
522 new_queue = UDF_SHED_SEQWRITING;
523 if (priv->cur_queue == UDF_SHED_READING) {
524 if (new_queue == UDF_SHED_SEQWRITING) {
525 /* TODO use flag to signal if this is needed */
526 mutex_exit(&priv->discstrat_mutex);
528 /* update trackinfo for data and metadata */
529 error = udf_update_trackinfo(ump,
530 &ump->data_track);
531 assert(error == 0);
532 error = udf_update_trackinfo(ump,
533 &ump->metadata_track);
534 assert(error == 0);
535 mutex_enter(&priv->discstrat_mutex);
539 if (new_queue != priv->cur_queue) {
540 DPRINTF(SHEDULE, ("switching from %d to %d\n",
541 priv->cur_queue, new_queue));
544 priv->cur_queue = new_queue;
548 static void
549 udf_discstrat_thread(void *arg)
551 struct udf_mount *ump = (struct udf_mount *) arg;
552 struct strat_private *priv = PRIV(ump);
553 int empty;
555 empty = 1;
556 mutex_enter(&priv->discstrat_mutex);
557 while (priv->run_thread || !empty) {
558 /* process the current selected queue */
559 udf_doshedule(ump);
560 empty = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL);
561 empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL);
562 empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL);
564 /* wait for more if needed */
565 if (empty)
566 cv_timedwait(&priv->discstrat_cv,
567 &priv->discstrat_mutex, hz/8);
569 mutex_exit(&priv->discstrat_mutex);
571 wakeup(&priv->run_thread);
572 kthread_exit(0);
573 /* not reached */
576 /* --------------------------------------------------------------------- */
578 static void
579 udf_discstrat_init_seq(struct udf_strat_args *args)
581 struct udf_mount *ump = args->ump;
582 struct strat_private *priv = PRIV(ump);
583 struct disk_strategy dkstrat;
584 uint32_t lb_size;
586 KASSERT(ump);
587 KASSERT(ump->logical_vol);
588 KASSERT(priv == NULL);
590 lb_size = udf_rw32(ump->logical_vol->lb_size);
591 KASSERT(lb_size > 0);
593 /* initialise our memory space */
594 ump->strategy_private = malloc(sizeof(struct strat_private),
595 M_UDFTEMP, M_WAITOK);
596 priv = ump->strategy_private;
597 memset(priv, 0 , sizeof(struct strat_private));
599 /* initialise locks */
600 cv_init(&priv->discstrat_cv, "udfstrat");
601 mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE);
604 * Initialise pool for descriptors associated with nodes. This is done
605 * in lb_size units though currently lb_size is dictated to be
606 * sector_size.
608 pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL,
609 IPL_NONE);
612 * remember old device strategy method and explicit set method
613 * `discsort' since we have our own more complex strategy that is not
614 * implementable on the CD device and other strategies will get in the
615 * way.
617 memset(&priv->old_strategy_setting, 0,
618 sizeof(struct disk_strategy));
619 VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting,
620 FREAD | FKIOCTL, NOCRED);
621 memset(&dkstrat, 0, sizeof(struct disk_strategy));
622 strcpy(dkstrat.dks_name, "discsort");
623 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL,
624 NOCRED);
626 /* initialise our internal sheduler */
627 priv->cur_queue = UDF_SHED_READING;
628 bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort",
629 BUFQ_SORT_RAWBLOCK);
630 bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort",
631 BUFQ_SORT_RAWBLOCK);
632 bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0);
633 vfs_timestamp(&priv->last_queued[UDF_SHED_READING]);
634 vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]);
635 vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]);
637 /* create our disk strategy thread */
638 priv->run_thread = 1;
639 if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/,
640 udf_discstrat_thread, ump, &priv->queue_lwp,
641 "%s", "udf_rw")) {
642 panic("fork udf_rw");
647 static void
648 udf_discstrat_finish_seq(struct udf_strat_args *args)
650 struct udf_mount *ump = args->ump;
651 struct strat_private *priv = PRIV(ump);
652 int error;
654 if (ump == NULL)
655 return;
657 /* stop our sheduling thread */
658 KASSERT(priv->run_thread == 1);
659 priv->run_thread = 0;
660 wakeup(priv->queue_lwp);
661 do {
662 error = tsleep(&priv->run_thread, PRIBIO+1,
663 "udfshedfin", hz);
664 } while (error);
665 /* kthread should be finished now */
667 /* set back old device strategy method */
668 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting,
669 FWRITE, NOCRED);
671 /* destroy our pool */
672 pool_destroy(&priv->desc_pool);
674 /* free our private space */
675 free(ump->strategy_private, M_UDFTEMP);
676 ump->strategy_private = NULL;
679 /* --------------------------------------------------------------------- */
681 struct udf_strategy udf_strat_sequential =
683 udf_create_logvol_dscr_seq,
684 udf_free_logvol_dscr_seq,
685 udf_read_logvol_dscr_seq,
686 udf_write_logvol_dscr_seq,
687 udf_queuebuf_seq,
688 udf_discstrat_init_seq,
689 udf_discstrat_finish_seq