No empty .Rs/.Re
[netbsd-mini2440.git] / sys / kern / kern_ntptime.c
blob069aaa6f0087067df833279d7b269e1f03907bb4
1 /* $NetBSD: kern_ntptime.c,v 1.51 2009/01/11 02:45:52 christos Exp $ */
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
29 /*-
30 ***********************************************************************
31 * *
32 * Copyright (c) David L. Mills 1993-2001 *
33 * *
34 * Permission to use, copy, modify, and distribute this software and *
35 * its documentation for any purpose and without fee is hereby *
36 * granted, provided that the above copyright notice appears in all *
37 * copies and that both the copyright notice and this permission *
38 * notice appear in supporting documentation, and that the name *
39 * University of Delaware not be used in advertising or publicity *
40 * pertaining to distribution of the software without specific, *
41 * written prior permission. The University of Delaware makes no *
42 * representations about the suitability this software for any *
43 * purpose. It is provided "as is" without express or implied *
44 * warranty. *
45 * *
46 **********************************************************************/
49 * Adapted from the original sources for FreeBSD and timecounters by:
50 * Poul-Henning Kamp <phk@FreeBSD.org>.
52 * The 32bit version of the "LP" macros seems a bit past its "sell by"
53 * date so I have retained only the 64bit version and included it directly
54 * in this file.
56 * Only minor changes done to interface with the timecounters over in
57 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
58 * confusing and/or plain wrong in that context.
61 #include <sys/cdefs.h>
62 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
63 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.51 2009/01/11 02:45:52 christos Exp $");
65 #include "opt_ntp.h"
67 #include <sys/param.h>
68 #include <sys/resourcevar.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/proc.h>
72 #include <sys/sysctl.h>
73 #include <sys/timex.h>
74 #include <sys/vnode.h>
75 #include <sys/kauth.h>
76 #include <sys/mount.h>
77 #include <sys/syscallargs.h>
78 #include <sys/cpu.h>
80 #include <compat/sys/timex.h>
83 * Single-precision macros for 64-bit machines
85 typedef int64_t l_fp;
86 #define L_ADD(v, u) ((v) += (u))
87 #define L_SUB(v, u) ((v) -= (u))
88 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
89 #define L_NEG(v) ((v) = -(v))
90 #define L_RSHIFT(v, n) \
91 do { \
92 if ((v) < 0) \
93 (v) = -(-(v) >> (n)); \
94 else \
95 (v) = (v) >> (n); \
96 } while (0)
97 #define L_MPY(v, a) ((v) *= (a))
98 #define L_CLR(v) ((v) = 0)
99 #define L_ISNEG(v) ((v) < 0)
100 #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
101 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
103 #ifdef NTP
105 * Generic NTP kernel interface
107 * These routines constitute the Network Time Protocol (NTP) interfaces
108 * for user and daemon application programs. The ntp_gettime() routine
109 * provides the time, maximum error (synch distance) and estimated error
110 * (dispersion) to client user application programs. The ntp_adjtime()
111 * routine is used by the NTP daemon to adjust the system clock to an
112 * externally derived time. The time offset and related variables set by
113 * this routine are used by other routines in this module to adjust the
114 * phase and frequency of the clock discipline loop which controls the
115 * system clock.
117 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
118 * defined), the time at each tick interrupt is derived directly from
119 * the kernel time variable. When the kernel time is reckoned in
120 * microseconds, (NTP_NANO undefined), the time is derived from the
121 * kernel time variable together with a variable representing the
122 * leftover nanoseconds at the last tick interrupt. In either case, the
123 * current nanosecond time is reckoned from these values plus an
124 * interpolated value derived by the clock routines in another
125 * architecture-specific module. The interpolation can use either a
126 * dedicated counter or a processor cycle counter (PCC) implemented in
127 * some architectures.
129 * Note that all routines must run at priority splclock or higher.
132 * Phase/frequency-lock loop (PLL/FLL) definitions
134 * The nanosecond clock discipline uses two variable types, time
135 * variables and frequency variables. Both types are represented as 64-
136 * bit fixed-point quantities with the decimal point between two 32-bit
137 * halves. On a 32-bit machine, each half is represented as a single
138 * word and mathematical operations are done using multiple-precision
139 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
140 * used.
142 * A time variable is a signed 64-bit fixed-point number in ns and
143 * fraction. It represents the remaining time offset to be amortized
144 * over succeeding tick interrupts. The maximum time offset is about
145 * 0.5 s and the resolution is about 2.3e-10 ns.
147 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
148 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
149 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
150 * |s s s| ns |
151 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
152 * | fraction |
153 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
155 * A frequency variable is a signed 64-bit fixed-point number in ns/s
156 * and fraction. It represents the ns and fraction to be added to the
157 * kernel time variable at each second. The maximum frequency offset is
158 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
160 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
161 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
162 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
163 * |s s s s s s s s s s s s s| ns/s |
164 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
165 * | fraction |
166 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
169 * The following variables establish the state of the PLL/FLL and the
170 * residual time and frequency offset of the local clock.
172 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
173 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
175 static int time_state = TIME_OK; /* clock state */
176 static int time_status = STA_UNSYNC; /* clock status bits */
177 static long time_tai; /* TAI offset (s) */
178 static long time_monitor; /* last time offset scaled (ns) */
179 static long time_constant; /* poll interval (shift) (s) */
180 static long time_precision = 1; /* clock precision (ns) */
181 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
182 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
183 static long time_reftime; /* time at last adjustment (s) */
184 static l_fp time_offset; /* time offset (ns) */
185 static l_fp time_freq; /* frequency offset (ns/s) */
186 #endif /* NTP */
188 static l_fp time_adj; /* tick adjust (ns/s) */
189 int64_t time_adjtime; /* correction from adjtime(2) (usec) */
191 extern int time_adjusted; /* ntp might have changed the system time */
193 #ifdef NTP
194 #ifdef PPS_SYNC
196 * The following variables are used when a pulse-per-second (PPS) signal
197 * is available and connected via a modem control lead. They establish
198 * the engineering parameters of the clock discipline loop when
199 * controlled by the PPS signal.
201 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
202 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
203 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
204 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
205 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
206 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
207 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
209 static struct timespec pps_tf[3]; /* phase median filter */
210 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
211 static long pps_fcount; /* frequency accumulator */
212 static long pps_jitter; /* nominal jitter (ns) */
213 static long pps_stabil; /* nominal stability (scaled ns/s) */
214 static long pps_lastsec; /* time at last calibration (s) */
215 static int pps_valid; /* signal watchdog counter */
216 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
217 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
218 static int pps_intcnt; /* wander counter */
221 * PPS signal quality monitors
223 static long pps_calcnt; /* calibration intervals */
224 static long pps_jitcnt; /* jitter limit exceeded */
225 static long pps_stbcnt; /* stability limit exceeded */
226 static long pps_errcnt; /* calibration errors */
227 #endif /* PPS_SYNC */
229 * End of phase/frequency-lock loop (PLL/FLL) definitions
232 static void hardupdate(long offset);
235 * ntp_gettime() - NTP user application interface
237 void
238 ntp_gettime(struct ntptimeval *ntv)
241 mutex_spin_enter(&timecounter_lock);
242 nanotime(&ntv->time);
243 ntv->maxerror = time_maxerror;
244 ntv->esterror = time_esterror;
245 ntv->tai = time_tai;
246 ntv->time_state = time_state;
247 mutex_spin_exit(&timecounter_lock);
250 /* ARGSUSED */
252 * ntp_adjtime() - NTP daemon application interface
255 sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
257 /* {
258 syscallarg(struct timex *) tp;
259 } */
260 struct timex ntv;
261 int error = 0;
263 error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
264 if (error != 0)
265 return (error);
267 if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
268 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
269 NULL, NULL)) != 0)
270 return (error);
272 ntp_adjtime1(&ntv);
274 error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
275 if (!error)
276 *retval = ntp_timestatus();
278 return error;
281 void
282 ntp_adjtime1(struct timex *ntv)
284 long freq;
285 int modes;
288 * Update selected clock variables - only the superuser can
289 * change anything. Note that there is no error checking here on
290 * the assumption the superuser should know what it is doing.
291 * Note that either the time constant or TAI offset are loaded
292 * from the ntv.constant member, depending on the mode bits. If
293 * the STA_PLL bit in the status word is cleared, the state and
294 * status words are reset to the initial values at boot.
296 mutex_spin_enter(&timecounter_lock);
297 modes = ntv->modes;
298 if (modes != 0)
299 /* We need to save the system time during shutdown */
300 time_adjusted |= 2;
301 if (modes & MOD_MAXERROR)
302 time_maxerror = ntv->maxerror;
303 if (modes & MOD_ESTERROR)
304 time_esterror = ntv->esterror;
305 if (modes & MOD_STATUS) {
306 if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
307 time_state = TIME_OK;
308 time_status = STA_UNSYNC;
309 #ifdef PPS_SYNC
310 pps_shift = PPS_FAVG;
311 #endif /* PPS_SYNC */
313 time_status &= STA_RONLY;
314 time_status |= ntv->status & ~STA_RONLY;
316 if (modes & MOD_TIMECONST) {
317 if (ntv->constant < 0)
318 time_constant = 0;
319 else if (ntv->constant > MAXTC)
320 time_constant = MAXTC;
321 else
322 time_constant = ntv->constant;
324 if (modes & MOD_TAI) {
325 if (ntv->constant > 0) /* XXX zero & negative numbers ? */
326 time_tai = ntv->constant;
328 #ifdef PPS_SYNC
329 if (modes & MOD_PPSMAX) {
330 if (ntv->shift < PPS_FAVG)
331 pps_shiftmax = PPS_FAVG;
332 else if (ntv->shift > PPS_FAVGMAX)
333 pps_shiftmax = PPS_FAVGMAX;
334 else
335 pps_shiftmax = ntv->shift;
337 #endif /* PPS_SYNC */
338 if (modes & MOD_NANO)
339 time_status |= STA_NANO;
340 if (modes & MOD_MICRO)
341 time_status &= ~STA_NANO;
342 if (modes & MOD_CLKB)
343 time_status |= STA_CLK;
344 if (modes & MOD_CLKA)
345 time_status &= ~STA_CLK;
346 if (modes & MOD_FREQUENCY) {
347 freq = (ntv->freq * 1000LL) >> 16;
348 if (freq > MAXFREQ)
349 L_LINT(time_freq, MAXFREQ);
350 else if (freq < -MAXFREQ)
351 L_LINT(time_freq, -MAXFREQ);
352 else {
354 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
355 * time_freq is [ns/s * 2^32]
357 time_freq = ntv->freq * 1000LL * 65536LL;
359 #ifdef PPS_SYNC
360 pps_freq = time_freq;
361 #endif /* PPS_SYNC */
363 if (modes & MOD_OFFSET) {
364 if (time_status & STA_NANO)
365 hardupdate(ntv->offset);
366 else
367 hardupdate(ntv->offset * 1000);
371 * Retrieve all clock variables. Note that the TAI offset is
372 * returned only by ntp_gettime();
374 if (time_status & STA_NANO)
375 ntv->offset = L_GINT(time_offset);
376 else
377 ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
378 ntv->freq = L_GINT((time_freq / 1000LL) << 16);
379 ntv->maxerror = time_maxerror;
380 ntv->esterror = time_esterror;
381 ntv->status = time_status;
382 ntv->constant = time_constant;
383 if (time_status & STA_NANO)
384 ntv->precision = time_precision;
385 else
386 ntv->precision = time_precision / 1000;
387 ntv->tolerance = MAXFREQ * SCALE_PPM;
388 #ifdef PPS_SYNC
389 ntv->shift = pps_shift;
390 ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
391 if (time_status & STA_NANO)
392 ntv->jitter = pps_jitter;
393 else
394 ntv->jitter = pps_jitter / 1000;
395 ntv->stabil = pps_stabil;
396 ntv->calcnt = pps_calcnt;
397 ntv->errcnt = pps_errcnt;
398 ntv->jitcnt = pps_jitcnt;
399 ntv->stbcnt = pps_stbcnt;
400 #endif /* PPS_SYNC */
401 mutex_spin_exit(&timecounter_lock);
403 #endif /* NTP */
406 * second_overflow() - called after ntp_tick_adjust()
408 * This routine is ordinarily called immediately following the above
409 * routine ntp_tick_adjust(). While these two routines are normally
410 * combined, they are separated here only for the purposes of
411 * simulation.
413 void
414 ntp_update_second(int64_t *adjustment, time_t *newsec)
416 int tickrate;
417 l_fp ftemp; /* 32/64-bit temporary */
419 KASSERT(mutex_owned(&timecounter_lock));
421 #ifdef NTP
424 * On rollover of the second both the nanosecond and microsecond
425 * clocks are updated and the state machine cranked as
426 * necessary. The phase adjustment to be used for the next
427 * second is calculated and the maximum error is increased by
428 * the tolerance.
430 time_maxerror += MAXFREQ / 1000;
433 * Leap second processing. If in leap-insert state at
434 * the end of the day, the system clock is set back one
435 * second; if in leap-delete state, the system clock is
436 * set ahead one second. The nano_time() routine or
437 * external clock driver will insure that reported time
438 * is always monotonic.
440 switch (time_state) {
443 * No warning.
445 case TIME_OK:
446 if (time_status & STA_INS)
447 time_state = TIME_INS;
448 else if (time_status & STA_DEL)
449 time_state = TIME_DEL;
450 break;
453 * Insert second 23:59:60 following second
454 * 23:59:59.
456 case TIME_INS:
457 if (!(time_status & STA_INS))
458 time_state = TIME_OK;
459 else if ((*newsec) % 86400 == 0) {
460 (*newsec)--;
461 time_state = TIME_OOP;
462 time_tai++;
464 break;
467 * Delete second 23:59:59.
469 case TIME_DEL:
470 if (!(time_status & STA_DEL))
471 time_state = TIME_OK;
472 else if (((*newsec) + 1) % 86400 == 0) {
473 (*newsec)++;
474 time_tai--;
475 time_state = TIME_WAIT;
477 break;
480 * Insert second in progress.
482 case TIME_OOP:
483 time_state = TIME_WAIT;
484 break;
487 * Wait for status bits to clear.
489 case TIME_WAIT:
490 if (!(time_status & (STA_INS | STA_DEL)))
491 time_state = TIME_OK;
495 * Compute the total time adjustment for the next second
496 * in ns. The offset is reduced by a factor depending on
497 * whether the PPS signal is operating. Note that the
498 * value is in effect scaled by the clock frequency,
499 * since the adjustment is added at each tick interrupt.
501 ftemp = time_offset;
502 #ifdef PPS_SYNC
503 /* XXX even if PPS signal dies we should finish adjustment ? */
504 if (time_status & STA_PPSTIME && time_status &
505 STA_PPSSIGNAL)
506 L_RSHIFT(ftemp, pps_shift);
507 else
508 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
509 #else
510 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
511 #endif /* PPS_SYNC */
512 time_adj = ftemp;
513 L_SUB(time_offset, ftemp);
514 L_ADD(time_adj, time_freq);
516 #ifdef PPS_SYNC
517 if (pps_valid > 0)
518 pps_valid--;
519 else
520 time_status &= ~STA_PPSSIGNAL;
521 #endif /* PPS_SYNC */
522 #else /* !NTP */
523 L_CLR(time_adj);
524 #endif /* !NTP */
527 * Apply any correction from adjtime(2). If more than one second
528 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
529 * until the last second is slewed the final < 500 usecs.
531 if (time_adjtime != 0) {
532 if (time_adjtime > 1000000)
533 tickrate = 5000;
534 else if (time_adjtime < -1000000)
535 tickrate = -5000;
536 else if (time_adjtime > 500)
537 tickrate = 500;
538 else if (time_adjtime < -500)
539 tickrate = -500;
540 else
541 tickrate = time_adjtime;
542 time_adjtime -= tickrate;
543 L_LINT(ftemp, tickrate * 1000);
544 L_ADD(time_adj, ftemp);
546 *adjustment = time_adj;
550 * ntp_init() - initialize variables and structures
552 * This routine must be called after the kernel variables hz and tick
553 * are set or changed and before the next tick interrupt. In this
554 * particular implementation, these values are assumed set elsewhere in
555 * the kernel. The design allows the clock frequency and tick interval
556 * to be changed while the system is running. So, this routine should
557 * probably be integrated with the code that does that.
559 void
560 ntp_init(void)
564 * The following variables are initialized only at startup. Only
565 * those structures not cleared by the compiler need to be
566 * initialized, and these only in the simulator. In the actual
567 * kernel, any nonzero values here will quickly evaporate.
569 L_CLR(time_adj);
570 #ifdef NTP
571 L_CLR(time_offset);
572 L_CLR(time_freq);
573 #ifdef PPS_SYNC
574 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
575 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
576 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
577 pps_fcount = 0;
578 L_CLR(pps_freq);
579 #endif /* PPS_SYNC */
580 #endif
583 #ifdef NTP
585 * hardupdate() - local clock update
587 * This routine is called by ntp_adjtime() to update the local clock
588 * phase and frequency. The implementation is of an adaptive-parameter,
589 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
590 * time and frequency offset estimates for each call. If the kernel PPS
591 * discipline code is configured (PPS_SYNC), the PPS signal itself
592 * determines the new time offset, instead of the calling argument.
593 * Presumably, calls to ntp_adjtime() occur only when the caller
594 * believes the local clock is valid within some bound (+-128 ms with
595 * NTP). If the caller's time is far different than the PPS time, an
596 * argument will ensue, and it's not clear who will lose.
598 * For uncompensated quartz crystal oscillators and nominal update
599 * intervals less than 256 s, operation should be in phase-lock mode,
600 * where the loop is disciplined to phase. For update intervals greater
601 * than 1024 s, operation should be in frequency-lock mode, where the
602 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
603 * is selected by the STA_MODE status bit.
605 * Note: splclock() is in effect.
607 void
608 hardupdate(long offset)
610 long mtemp;
611 l_fp ftemp;
613 KASSERT(mutex_owned(&timecounter_lock));
616 * Select how the phase is to be controlled and from which
617 * source. If the PPS signal is present and enabled to
618 * discipline the time, the PPS offset is used; otherwise, the
619 * argument offset is used.
621 if (!(time_status & STA_PLL))
622 return;
623 if (!(time_status & STA_PPSTIME && time_status &
624 STA_PPSSIGNAL)) {
625 if (offset > MAXPHASE)
626 time_monitor = MAXPHASE;
627 else if (offset < -MAXPHASE)
628 time_monitor = -MAXPHASE;
629 else
630 time_monitor = offset;
631 L_LINT(time_offset, time_monitor);
635 * Select how the frequency is to be controlled and in which
636 * mode (PLL or FLL). If the PPS signal is present and enabled
637 * to discipline the frequency, the PPS frequency is used;
638 * otherwise, the argument offset is used to compute it.
640 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
641 time_reftime = time_second;
642 return;
644 if (time_status & STA_FREQHOLD || time_reftime == 0)
645 time_reftime = time_second;
646 mtemp = time_second - time_reftime;
647 L_LINT(ftemp, time_monitor);
648 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
649 L_MPY(ftemp, mtemp);
650 L_ADD(time_freq, ftemp);
651 time_status &= ~STA_MODE;
652 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
653 MAXSEC)) {
654 L_LINT(ftemp, (time_monitor << 4) / mtemp);
655 L_RSHIFT(ftemp, SHIFT_FLL + 4);
656 L_ADD(time_freq, ftemp);
657 time_status |= STA_MODE;
659 time_reftime = time_second;
660 if (L_GINT(time_freq) > MAXFREQ)
661 L_LINT(time_freq, MAXFREQ);
662 else if (L_GINT(time_freq) < -MAXFREQ)
663 L_LINT(time_freq, -MAXFREQ);
666 #ifdef PPS_SYNC
668 * hardpps() - discipline CPU clock oscillator to external PPS signal
670 * This routine is called at each PPS interrupt in order to discipline
671 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
672 * and leaves it in a handy spot for the hardclock() routine. It
673 * integrates successive PPS phase differences and calculates the
674 * frequency offset. This is used in hardclock() to discipline the CPU
675 * clock oscillator so that intrinsic frequency error is cancelled out.
676 * The code requires the caller to capture the time and hardware counter
677 * value at the on-time PPS signal transition.
679 * Note that, on some Unix systems, this routine runs at an interrupt
680 * priority level higher than the timer interrupt routine hardclock().
681 * Therefore, the variables used are distinct from the hardclock()
682 * variables, except for certain exceptions: The PPS frequency pps_freq
683 * and phase pps_offset variables are determined by this routine and
684 * updated atomically. The time_tolerance variable can be considered a
685 * constant, since it is infrequently changed, and then only when the
686 * PPS signal is disabled. The watchdog counter pps_valid is updated
687 * once per second by hardclock() and is atomically cleared in this
688 * routine.
690 void
691 hardpps(struct timespec *tsp, /* time at PPS */
692 long nsec /* hardware counter at PPS */)
694 long u_sec, u_nsec, v_nsec; /* temps */
695 l_fp ftemp;
697 KASSERT(mutex_owned(&timecounter_lock));
700 * The signal is first processed by a range gate and frequency
701 * discriminator. The range gate rejects noise spikes outside
702 * the range +-500 us. The frequency discriminator rejects input
703 * signals with apparent frequency outside the range 1 +-500
704 * PPM. If two hits occur in the same second, we ignore the
705 * later hit; if not and a hit occurs outside the range gate,
706 * keep the later hit for later comparison, but do not process
707 * it.
709 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
710 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
711 pps_valid = PPS_VALID;
712 u_sec = tsp->tv_sec;
713 u_nsec = tsp->tv_nsec;
714 if (u_nsec >= (NANOSECOND >> 1)) {
715 u_nsec -= NANOSECOND;
716 u_sec++;
718 v_nsec = u_nsec - pps_tf[0].tv_nsec;
719 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
720 MAXFREQ)
721 return;
722 pps_tf[2] = pps_tf[1];
723 pps_tf[1] = pps_tf[0];
724 pps_tf[0].tv_sec = u_sec;
725 pps_tf[0].tv_nsec = u_nsec;
728 * Compute the difference between the current and previous
729 * counter values. If the difference exceeds 0.5 s, assume it
730 * has wrapped around, so correct 1.0 s. If the result exceeds
731 * the tick interval, the sample point has crossed a tick
732 * boundary during the last second, so correct the tick. Very
733 * intricate.
735 u_nsec = nsec;
736 if (u_nsec > (NANOSECOND >> 1))
737 u_nsec -= NANOSECOND;
738 else if (u_nsec < -(NANOSECOND >> 1))
739 u_nsec += NANOSECOND;
740 pps_fcount += u_nsec;
741 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
742 return;
743 time_status &= ~STA_PPSJITTER;
746 * A three-stage median filter is used to help denoise the PPS
747 * time. The median sample becomes the time offset estimate; the
748 * difference between the other two samples becomes the time
749 * dispersion (jitter) estimate.
751 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
752 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
753 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
754 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
755 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
756 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
757 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
758 } else {
759 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
760 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
762 } else {
763 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
764 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
765 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
766 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
767 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
768 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
769 } else {
770 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
771 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
776 * Nominal jitter is due to PPS signal noise and interrupt
777 * latency. If it exceeds the popcorn threshold, the sample is
778 * discarded. otherwise, if so enabled, the time offset is
779 * updated. We can tolerate a modest loss of data here without
780 * much degrading time accuracy.
782 if (u_nsec > (pps_jitter << PPS_POPCORN)) {
783 time_status |= STA_PPSJITTER;
784 pps_jitcnt++;
785 } else if (time_status & STA_PPSTIME) {
786 time_monitor = -v_nsec;
787 L_LINT(time_offset, time_monitor);
789 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
790 u_sec = pps_tf[0].tv_sec - pps_lastsec;
791 if (u_sec < (1 << pps_shift))
792 return;
795 * At the end of the calibration interval the difference between
796 * the first and last counter values becomes the scaled
797 * frequency. It will later be divided by the length of the
798 * interval to determine the frequency update. If the frequency
799 * exceeds a sanity threshold, or if the actual calibration
800 * interval is not equal to the expected length, the data are
801 * discarded. We can tolerate a modest loss of data here without
802 * much degrading frequency accuracy.
804 pps_calcnt++;
805 v_nsec = -pps_fcount;
806 pps_lastsec = pps_tf[0].tv_sec;
807 pps_fcount = 0;
808 u_nsec = MAXFREQ << pps_shift;
809 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
810 pps_shift)) {
811 time_status |= STA_PPSERROR;
812 pps_errcnt++;
813 return;
817 * Here the raw frequency offset and wander (stability) is
818 * calculated. If the wander is less than the wander threshold
819 * for four consecutive averaging intervals, the interval is
820 * doubled; if it is greater than the threshold for four
821 * consecutive intervals, the interval is halved. The scaled
822 * frequency offset is converted to frequency offset. The
823 * stability metric is calculated as the average of recent
824 * frequency changes, but is used only for performance
825 * monitoring.
827 L_LINT(ftemp, v_nsec);
828 L_RSHIFT(ftemp, pps_shift);
829 L_SUB(ftemp, pps_freq);
830 u_nsec = L_GINT(ftemp);
831 if (u_nsec > PPS_MAXWANDER) {
832 L_LINT(ftemp, PPS_MAXWANDER);
833 pps_intcnt--;
834 time_status |= STA_PPSWANDER;
835 pps_stbcnt++;
836 } else if (u_nsec < -PPS_MAXWANDER) {
837 L_LINT(ftemp, -PPS_MAXWANDER);
838 pps_intcnt--;
839 time_status |= STA_PPSWANDER;
840 pps_stbcnt++;
841 } else {
842 pps_intcnt++;
844 if (pps_intcnt >= 4) {
845 pps_intcnt = 4;
846 if (pps_shift < pps_shiftmax) {
847 pps_shift++;
848 pps_intcnt = 0;
850 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
851 pps_intcnt = -4;
852 if (pps_shift > PPS_FAVG) {
853 pps_shift--;
854 pps_intcnt = 0;
857 if (u_nsec < 0)
858 u_nsec = -u_nsec;
859 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
862 * The PPS frequency is recalculated and clamped to the maximum
863 * MAXFREQ. If enabled, the system clock frequency is updated as
864 * well.
866 L_ADD(pps_freq, ftemp);
867 u_nsec = L_GINT(pps_freq);
868 if (u_nsec > MAXFREQ)
869 L_LINT(pps_freq, MAXFREQ);
870 else if (u_nsec < -MAXFREQ)
871 L_LINT(pps_freq, -MAXFREQ);
872 if (time_status & STA_PPSFREQ)
873 time_freq = pps_freq;
875 #endif /* PPS_SYNC */
876 #endif /* NTP */
878 #ifdef NTP
880 ntp_timestatus(void)
882 int rv;
885 * Status word error decode. If any of these conditions
886 * occur, an error is returned, instead of the status
887 * word. Most applications will care only about the fact
888 * the system clock may not be trusted, not about the
889 * details.
891 * Hardware or software error
893 mutex_spin_enter(&timecounter_lock);
894 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
897 * PPS signal lost when either time or frequency
898 * synchronization requested
900 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
901 !(time_status & STA_PPSSIGNAL)) ||
904 * PPS jitter exceeded when time synchronization
905 * requested
907 (time_status & STA_PPSTIME &&
908 time_status & STA_PPSJITTER) ||
911 * PPS wander exceeded or calibration error when
912 * frequency synchronization requested
914 (time_status & STA_PPSFREQ &&
915 time_status & (STA_PPSWANDER | STA_PPSERROR)))
916 rv = TIME_ERROR;
917 else
918 rv = time_state;
919 mutex_spin_exit(&timecounter_lock);
921 return rv;
924 /*ARGSUSED*/
926 * ntp_gettime() - NTP user application interface
929 sys___ntp_gettime50(struct lwp *l, const struct sys___ntp_gettime50_args *uap, register_t *retval)
931 /* {
932 syscallarg(struct ntptimeval *) ntvp;
933 } */
934 struct ntptimeval ntv;
935 int error = 0;
937 if (SCARG(uap, ntvp)) {
938 ntp_gettime(&ntv);
940 error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
941 sizeof(ntv));
943 if (!error) {
944 *retval = ntp_timestatus();
946 return(error);
950 * return information about kernel precision timekeeping
952 static int
953 sysctl_kern_ntptime(SYSCTLFN_ARGS)
955 struct sysctlnode node;
956 struct ntptimeval ntv;
958 ntp_gettime(&ntv);
960 node = *rnode;
961 node.sysctl_data = &ntv;
962 node.sysctl_size = sizeof(ntv);
963 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
966 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
969 sysctl_createv(clog, 0, NULL, NULL,
970 CTLFLAG_PERMANENT,
971 CTLTYPE_NODE, "kern", NULL,
972 NULL, 0, NULL, 0,
973 CTL_KERN, CTL_EOL);
975 sysctl_createv(clog, 0, NULL, NULL,
976 CTLFLAG_PERMANENT,
977 CTLTYPE_STRUCT, "ntptime",
978 SYSCTL_DESCR("Kernel clock values for NTP"),
979 sysctl_kern_ntptime, 0, NULL,
980 sizeof(struct ntptimeval),
981 CTL_KERN, KERN_NTPTIME, CTL_EOL);
983 #endif /* !NTP */