No empty .Rs/.Re
[netbsd-mini2440.git] / sys / kern / kern_resource.c
blob4af03b5573cf17f6270aff60aa7d4bc25818a503
1 /* $NetBSD: kern_resource.c,v 1.153 2009/10/02 22:38:45 elad Exp $ */
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.153 2009/10/02 22:38:45 elad Exp $");
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/malloc.h>
48 #include <sys/kmem.h>
49 #include <sys/namei.h>
50 #include <sys/pool.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/timevar.h>
54 #include <sys/kauth.h>
55 #include <sys/atomic.h>
56 #include <sys/mount.h>
57 #include <sys/syscallargs.h>
58 #include <sys/atomic.h>
60 #include <uvm/uvm_extern.h>
63 * Maximum process data and stack limits.
64 * They are variables so they are patchable.
66 rlim_t maxdmap = MAXDSIZ;
67 rlim_t maxsmap = MAXSSIZ;
69 static pool_cache_t plimit_cache;
70 static pool_cache_t pstats_cache;
72 static kauth_listener_t resource_listener;
74 static int
75 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
76 void *arg0, void *arg1, void *arg2, void *arg3)
78 struct proc *p;
79 int result;
81 result = KAUTH_RESULT_DEFER;
82 p = arg0;
84 switch (action) {
85 case KAUTH_PROCESS_NICE:
86 if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
87 kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
88 break;
91 if ((u_long)arg1 >= p->p_nice)
92 result = KAUTH_RESULT_ALLOW;
94 break;
96 case KAUTH_PROCESS_RLIMIT: {
97 enum kauth_process_req req;
99 req = (enum kauth_process_req)(unsigned long)arg1;
101 switch (req) {
102 case KAUTH_REQ_PROCESS_RLIMIT_GET:
103 result = KAUTH_RESULT_ALLOW;
104 break;
106 case KAUTH_REQ_PROCESS_RLIMIT_SET: {
107 struct rlimit *new_rlimit;
108 u_long which;
110 if ((p != curlwp->l_proc) &&
111 (proc_uidmatch(cred, p->p_cred) != 0))
112 break;
114 new_rlimit = arg2;
115 which = (u_long)arg3;
117 if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
118 result = KAUTH_RESULT_ALLOW;
120 break;
123 default:
124 break;
127 break;
130 default:
131 break;
134 return result;
137 void
138 resource_init(void)
141 plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
142 "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
143 pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
144 "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
146 resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
147 resource_listener_cb, NULL);
151 * Resource controls and accounting.
155 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
156 register_t *retval)
158 /* {
159 syscallarg(int) which;
160 syscallarg(id_t) who;
161 } */
162 struct proc *curp = l->l_proc, *p;
163 int low = NZERO + PRIO_MAX + 1;
164 int who = SCARG(uap, who);
166 mutex_enter(proc_lock);
167 switch (SCARG(uap, which)) {
168 case PRIO_PROCESS:
169 if (who == 0)
170 p = curp;
171 else
172 p = p_find(who, PFIND_LOCKED);
173 if (p != NULL)
174 low = p->p_nice;
175 break;
177 case PRIO_PGRP: {
178 struct pgrp *pg;
180 if (who == 0)
181 pg = curp->p_pgrp;
182 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
183 break;
184 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
185 if (p->p_nice < low)
186 low = p->p_nice;
188 break;
191 case PRIO_USER:
192 if (who == 0)
193 who = (int)kauth_cred_geteuid(l->l_cred);
194 PROCLIST_FOREACH(p, &allproc) {
195 if ((p->p_flag & PK_MARKER) != 0)
196 continue;
197 mutex_enter(p->p_lock);
198 if (kauth_cred_geteuid(p->p_cred) ==
199 (uid_t)who && p->p_nice < low)
200 low = p->p_nice;
201 mutex_exit(p->p_lock);
203 break;
205 default:
206 mutex_exit(proc_lock);
207 return (EINVAL);
209 mutex_exit(proc_lock);
211 if (low == NZERO + PRIO_MAX + 1)
212 return (ESRCH);
213 *retval = low - NZERO;
214 return (0);
217 /* ARGSUSED */
219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220 register_t *retval)
222 /* {
223 syscallarg(int) which;
224 syscallarg(id_t) who;
225 syscallarg(int) prio;
226 } */
227 struct proc *curp = l->l_proc, *p;
228 int found = 0, error = 0;
229 int who = SCARG(uap, who);
231 mutex_enter(proc_lock);
232 switch (SCARG(uap, which)) {
233 case PRIO_PROCESS:
234 if (who == 0)
235 p = curp;
236 else
237 p = p_find(who, PFIND_LOCKED);
238 if (p != 0) {
239 mutex_enter(p->p_lock);
240 error = donice(l, p, SCARG(uap, prio));
241 mutex_exit(p->p_lock);
242 found++;
244 break;
246 case PRIO_PGRP: {
247 struct pgrp *pg;
249 if (who == 0)
250 pg = curp->p_pgrp;
251 else if ((pg = pg_find(who, PFIND_LOCKED)) == NULL)
252 break;
253 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
254 mutex_enter(p->p_lock);
255 error = donice(l, p, SCARG(uap, prio));
256 mutex_exit(p->p_lock);
257 found++;
259 break;
262 case PRIO_USER:
263 if (who == 0)
264 who = (int)kauth_cred_geteuid(l->l_cred);
265 PROCLIST_FOREACH(p, &allproc) {
266 if ((p->p_flag & PK_MARKER) != 0)
267 continue;
268 mutex_enter(p->p_lock);
269 if (kauth_cred_geteuid(p->p_cred) ==
270 (uid_t)SCARG(uap, who)) {
271 error = donice(l, p, SCARG(uap, prio));
272 found++;
274 mutex_exit(p->p_lock);
276 break;
278 default:
279 mutex_exit(proc_lock);
280 return EINVAL;
282 mutex_exit(proc_lock);
283 if (found == 0)
284 return (ESRCH);
285 return (error);
289 * Renice a process.
291 * Call with the target process' credentials locked.
294 donice(struct lwp *l, struct proc *chgp, int n)
296 kauth_cred_t cred = l->l_cred;
298 KASSERT(mutex_owned(chgp->p_lock));
300 if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
301 kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
302 kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
303 return (EPERM);
305 if (n > PRIO_MAX)
306 n = PRIO_MAX;
307 if (n < PRIO_MIN)
308 n = PRIO_MIN;
309 n += NZERO;
310 if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
311 KAUTH_ARG(n), NULL, NULL))
312 return (EACCES);
313 sched_nice(chgp, n);
314 return (0);
317 /* ARGSUSED */
319 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
320 register_t *retval)
322 /* {
323 syscallarg(int) which;
324 syscallarg(const struct rlimit *) rlp;
325 } */
326 int which = SCARG(uap, which);
327 struct rlimit alim;
328 int error;
330 error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
331 if (error)
332 return (error);
333 return (dosetrlimit(l, l->l_proc, which, &alim));
337 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
339 struct rlimit *alimp;
340 int error;
342 if ((u_int)which >= RLIM_NLIMITS)
343 return (EINVAL);
345 if (limp->rlim_cur > limp->rlim_max) {
347 * This is programming error. According to SUSv2, we should
348 * return error in this case.
350 return (EINVAL);
353 alimp = &p->p_rlimit[which];
354 /* if we don't change the value, no need to limcopy() */
355 if (limp->rlim_cur == alimp->rlim_cur &&
356 limp->rlim_max == alimp->rlim_max)
357 return 0;
359 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
360 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
361 if (error)
362 return (error);
364 lim_privatise(p, false);
365 /* p->p_limit is now unchangeable */
366 alimp = &p->p_rlimit[which];
368 switch (which) {
370 case RLIMIT_DATA:
371 if (limp->rlim_cur > maxdmap)
372 limp->rlim_cur = maxdmap;
373 if (limp->rlim_max > maxdmap)
374 limp->rlim_max = maxdmap;
375 break;
377 case RLIMIT_STACK:
378 if (limp->rlim_cur > maxsmap)
379 limp->rlim_cur = maxsmap;
380 if (limp->rlim_max > maxsmap)
381 limp->rlim_max = maxsmap;
384 * Return EINVAL if the new stack size limit is lower than
385 * current usage. Otherwise, the process would get SIGSEGV the
386 * moment it would try to access anything on it's current stack.
387 * This conforms to SUSv2.
389 if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
390 || limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
391 return (EINVAL);
395 * Stack is allocated to the max at exec time with
396 * only "rlim_cur" bytes accessible (In other words,
397 * allocates stack dividing two contiguous regions at
398 * "rlim_cur" bytes boundary).
400 * Since allocation is done in terms of page, roundup
401 * "rlim_cur" (otherwise, contiguous regions
402 * overlap). If stack limit is going up make more
403 * accessible, if going down make inaccessible.
405 limp->rlim_cur = round_page(limp->rlim_cur);
406 if (limp->rlim_cur != alimp->rlim_cur) {
407 vaddr_t addr;
408 vsize_t size;
409 vm_prot_t prot;
411 if (limp->rlim_cur > alimp->rlim_cur) {
412 prot = VM_PROT_READ | VM_PROT_WRITE;
413 size = limp->rlim_cur - alimp->rlim_cur;
414 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
415 limp->rlim_cur;
416 } else {
417 prot = VM_PROT_NONE;
418 size = alimp->rlim_cur - limp->rlim_cur;
419 addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
420 alimp->rlim_cur;
422 (void) uvm_map_protect(&p->p_vmspace->vm_map,
423 addr, addr+size, prot, false);
425 break;
427 case RLIMIT_NOFILE:
428 if (limp->rlim_cur > maxfiles)
429 limp->rlim_cur = maxfiles;
430 if (limp->rlim_max > maxfiles)
431 limp->rlim_max = maxfiles;
432 break;
434 case RLIMIT_NPROC:
435 if (limp->rlim_cur > maxproc)
436 limp->rlim_cur = maxproc;
437 if (limp->rlim_max > maxproc)
438 limp->rlim_max = maxproc;
439 break;
442 mutex_enter(&p->p_limit->pl_lock);
443 *alimp = *limp;
444 mutex_exit(&p->p_limit->pl_lock);
445 return (0);
448 /* ARGSUSED */
450 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
451 register_t *retval)
453 /* {
454 syscallarg(int) which;
455 syscallarg(struct rlimit *) rlp;
456 } */
457 struct proc *p = l->l_proc;
458 int which = SCARG(uap, which);
459 struct rlimit rl;
461 if ((u_int)which >= RLIM_NLIMITS)
462 return (EINVAL);
464 mutex_enter(p->p_lock);
465 memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
466 mutex_exit(p->p_lock);
468 return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
472 * Transform the running time and tick information in proc p into user,
473 * system, and interrupt time usage.
475 * Should be called with p->p_lock held unless called from exit1().
477 void
478 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
479 struct timeval *ip, struct timeval *rp)
481 uint64_t u, st, ut, it, tot;
482 struct lwp *l;
483 struct bintime tm;
484 struct timeval tv;
486 mutex_spin_enter(&p->p_stmutex);
487 st = p->p_sticks;
488 ut = p->p_uticks;
489 it = p->p_iticks;
490 mutex_spin_exit(&p->p_stmutex);
492 tm = p->p_rtime;
494 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
495 lwp_lock(l);
496 bintime_add(&tm, &l->l_rtime);
497 if ((l->l_pflag & LP_RUNNING) != 0) {
498 struct bintime diff;
500 * Adjust for the current time slice. This is
501 * actually fairly important since the error
502 * here is on the order of a time quantum,
503 * which is much greater than the sampling
504 * error.
506 binuptime(&diff);
507 bintime_sub(&diff, &l->l_stime);
508 bintime_add(&tm, &diff);
510 lwp_unlock(l);
513 tot = st + ut + it;
514 bintime2timeval(&tm, &tv);
515 u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
517 if (tot == 0) {
518 /* No ticks, so can't use to share time out, split 50-50 */
519 st = ut = u / 2;
520 } else {
521 st = (u * st) / tot;
522 ut = (u * ut) / tot;
524 if (sp != NULL) {
525 sp->tv_sec = st / 1000000;
526 sp->tv_usec = st % 1000000;
528 if (up != NULL) {
529 up->tv_sec = ut / 1000000;
530 up->tv_usec = ut % 1000000;
532 if (ip != NULL) {
533 if (it != 0)
534 it = (u * it) / tot;
535 ip->tv_sec = it / 1000000;
536 ip->tv_usec = it % 1000000;
538 if (rp != NULL) {
539 *rp = tv;
543 /* ARGSUSED */
545 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
546 register_t *retval)
548 /* {
549 syscallarg(int) who;
550 syscallarg(struct rusage *) rusage;
551 } */
552 struct rusage ru;
553 struct proc *p = l->l_proc;
555 switch (SCARG(uap, who)) {
556 case RUSAGE_SELF:
557 mutex_enter(p->p_lock);
558 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
559 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
560 rulwps(p, &ru);
561 mutex_exit(p->p_lock);
562 break;
564 case RUSAGE_CHILDREN:
565 mutex_enter(p->p_lock);
566 memcpy(&ru, &p->p_stats->p_cru, sizeof(ru));
567 mutex_exit(p->p_lock);
568 break;
570 default:
571 return EINVAL;
574 return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
577 void
578 ruadd(struct rusage *ru, struct rusage *ru2)
580 long *ip, *ip2;
581 int i;
583 timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
584 timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
585 if (ru->ru_maxrss < ru2->ru_maxrss)
586 ru->ru_maxrss = ru2->ru_maxrss;
587 ip = &ru->ru_first; ip2 = &ru2->ru_first;
588 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
589 *ip++ += *ip2++;
592 void
593 rulwps(proc_t *p, struct rusage *ru)
595 lwp_t *l;
597 KASSERT(mutex_owned(p->p_lock));
599 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
600 ruadd(ru, &l->l_ru);
601 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
602 ru->ru_nivcsw += l->l_nivcsw;
607 * Make a copy of the plimit structure.
608 * We share these structures copy-on-write after fork,
609 * and copy when a limit is changed.
611 * Unfortunately (due to PL_SHAREMOD) it is possibly for the structure
612 * we are copying to change beneath our feet!
614 struct plimit *
615 lim_copy(struct plimit *lim)
617 struct plimit *newlim;
618 char *corename;
619 size_t alen, len;
621 newlim = pool_cache_get(plimit_cache, PR_WAITOK);
622 mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
623 newlim->pl_flags = 0;
624 newlim->pl_refcnt = 1;
625 newlim->pl_sv_limit = NULL;
627 mutex_enter(&lim->pl_lock);
628 memcpy(newlim->pl_rlimit, lim->pl_rlimit,
629 sizeof(struct rlimit) * RLIM_NLIMITS);
631 alen = 0;
632 corename = NULL;
633 for (;;) {
634 if (lim->pl_corename == defcorename) {
635 newlim->pl_corename = defcorename;
636 break;
638 len = strlen(lim->pl_corename) + 1;
639 if (len <= alen) {
640 newlim->pl_corename = corename;
641 memcpy(corename, lim->pl_corename, len);
642 corename = NULL;
643 break;
645 mutex_exit(&lim->pl_lock);
646 if (corename != NULL)
647 free(corename, M_TEMP);
648 alen = len;
649 corename = malloc(alen, M_TEMP, M_WAITOK);
650 mutex_enter(&lim->pl_lock);
652 mutex_exit(&lim->pl_lock);
653 if (corename != NULL)
654 free(corename, M_TEMP);
655 return newlim;
658 void
659 lim_addref(struct plimit *lim)
661 atomic_inc_uint(&lim->pl_refcnt);
665 * Give a process it's own private plimit structure.
666 * This will only be shared (in fork) if modifications are to be shared.
668 void
669 lim_privatise(struct proc *p, bool set_shared)
671 struct plimit *lim, *newlim;
673 lim = p->p_limit;
674 if (lim->pl_flags & PL_WRITEABLE) {
675 if (set_shared)
676 lim->pl_flags |= PL_SHAREMOD;
677 return;
680 if (set_shared && lim->pl_flags & PL_SHAREMOD)
681 return;
683 newlim = lim_copy(lim);
685 mutex_enter(p->p_lock);
686 if (p->p_limit->pl_flags & PL_WRITEABLE) {
687 /* Someone crept in while we were busy */
688 mutex_exit(p->p_lock);
689 limfree(newlim);
690 if (set_shared)
691 p->p_limit->pl_flags |= PL_SHAREMOD;
692 return;
696 * Since most accesses to p->p_limit aren't locked, we must not
697 * delete the old limit structure yet.
699 newlim->pl_sv_limit = p->p_limit;
700 newlim->pl_flags |= PL_WRITEABLE;
701 if (set_shared)
702 newlim->pl_flags |= PL_SHAREMOD;
703 p->p_limit = newlim;
704 mutex_exit(p->p_lock);
707 void
708 limfree(struct plimit *lim)
710 struct plimit *sv_lim;
712 do {
713 if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0)
714 return;
715 if (lim->pl_corename != defcorename)
716 free(lim->pl_corename, M_TEMP);
717 sv_lim = lim->pl_sv_limit;
718 mutex_destroy(&lim->pl_lock);
719 pool_cache_put(plimit_cache, lim);
720 } while ((lim = sv_lim) != NULL);
723 struct pstats *
724 pstatscopy(struct pstats *ps)
727 struct pstats *newps;
729 newps = pool_cache_get(pstats_cache, PR_WAITOK);
731 memset(&newps->pstat_startzero, 0,
732 (unsigned) ((char *)&newps->pstat_endzero -
733 (char *)&newps->pstat_startzero));
734 memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
735 ((char *)&newps->pstat_endcopy -
736 (char *)&newps->pstat_startcopy));
738 return (newps);
742 void
743 pstatsfree(struct pstats *ps)
746 pool_cache_put(pstats_cache, ps);
750 * sysctl interface in five parts
754 * a routine for sysctl proc subtree helpers that need to pick a valid
755 * process by pid.
757 static int
758 sysctl_proc_findproc(struct lwp *l, struct proc **p2, pid_t pid)
760 struct proc *ptmp;
761 int error = 0;
763 if (pid == PROC_CURPROC)
764 ptmp = l->l_proc;
765 else if ((ptmp = pfind(pid)) == NULL)
766 error = ESRCH;
768 *p2 = ptmp;
769 return (error);
773 * sysctl helper routine for setting a process's specific corefile
774 * name. picks the process based on the given pid and checks the
775 * correctness of the new value.
777 static int
778 sysctl_proc_corename(SYSCTLFN_ARGS)
780 struct proc *ptmp;
781 struct plimit *lim;
782 int error = 0, len;
783 char *cname;
784 char *ocore;
785 char *tmp;
786 struct sysctlnode node;
789 * is this all correct?
791 if (namelen != 0)
792 return (EINVAL);
793 if (name[-1] != PROC_PID_CORENAME)
794 return (EINVAL);
797 * whom are we tweaking?
799 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
800 if (error)
801 return (error);
803 /* XXX-elad */
804 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
805 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
806 if (error)
807 return (error);
809 if (newp == NULL) {
810 error = kauth_authorize_process(l->l_cred,
811 KAUTH_PROCESS_CORENAME, ptmp,
812 KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
813 if (error)
814 return (error);
818 * let them modify a temporary copy of the core name
820 cname = PNBUF_GET();
821 lim = ptmp->p_limit;
822 mutex_enter(&lim->pl_lock);
823 strlcpy(cname, lim->pl_corename, MAXPATHLEN);
824 mutex_exit(&lim->pl_lock);
826 node = *rnode;
827 node.sysctl_data = cname;
828 error = sysctl_lookup(SYSCTLFN_CALL(&node));
831 * if that failed, or they have nothing new to say, or we've
832 * heard it before...
834 if (error || newp == NULL)
835 goto done;
836 lim = ptmp->p_limit;
837 mutex_enter(&lim->pl_lock);
838 error = strcmp(cname, lim->pl_corename);
839 mutex_exit(&lim->pl_lock);
840 if (error == 0)
841 /* Unchanged */
842 goto done;
844 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
845 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cname, NULL);
846 if (error)
847 return (error);
850 * no error yet and cname now has the new core name in it.
851 * let's see if it looks acceptable. it must be either "core"
852 * or end in ".core" or "/core".
854 len = strlen(cname);
855 if (len < 4) {
856 error = EINVAL;
857 } else if (strcmp(cname + len - 4, "core") != 0) {
858 error = EINVAL;
859 } else if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.') {
860 error = EINVAL;
862 if (error != 0) {
863 goto done;
867 * hmm...looks good. now...where do we put it?
869 tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
870 if (tmp == NULL) {
871 error = ENOMEM;
872 goto done;
874 memcpy(tmp, cname, len + 1);
876 lim_privatise(ptmp, false);
877 lim = ptmp->p_limit;
878 mutex_enter(&lim->pl_lock);
879 ocore = lim->pl_corename;
880 lim->pl_corename = tmp;
881 mutex_exit(&lim->pl_lock);
882 if (ocore != defcorename)
883 free(ocore, M_TEMP);
885 done:
886 PNBUF_PUT(cname);
887 return error;
891 * sysctl helper routine for checking/setting a process's stop flags,
892 * one for fork and one for exec.
894 static int
895 sysctl_proc_stop(SYSCTLFN_ARGS)
897 struct proc *ptmp;
898 int i, f, error = 0;
899 struct sysctlnode node;
901 if (namelen != 0)
902 return (EINVAL);
904 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-2]);
905 if (error)
906 return (error);
908 /* XXX-elad */
909 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
910 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
911 if (error)
912 return (error);
914 switch (rnode->sysctl_num) {
915 case PROC_PID_STOPFORK:
916 f = PS_STOPFORK;
917 break;
918 case PROC_PID_STOPEXEC:
919 f = PS_STOPEXEC;
920 break;
921 case PROC_PID_STOPEXIT:
922 f = PS_STOPEXIT;
923 break;
924 default:
925 return (EINVAL);
928 i = (ptmp->p_flag & f) ? 1 : 0;
929 node = *rnode;
930 node.sysctl_data = &i;
931 error = sysctl_lookup(SYSCTLFN_CALL(&node));
932 if (error || newp == NULL)
933 return (error);
935 mutex_enter(ptmp->p_lock);
936 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
937 ptmp, KAUTH_ARG(f), NULL, NULL);
938 if (!error) {
939 if (i) {
940 ptmp->p_sflag |= f;
941 } else {
942 ptmp->p_sflag &= ~f;
945 mutex_exit(ptmp->p_lock);
947 return error;
951 * sysctl helper routine for a process's rlimits as exposed by sysctl.
953 static int
954 sysctl_proc_plimit(SYSCTLFN_ARGS)
956 struct proc *ptmp;
957 u_int limitno;
958 int which, error = 0;
959 struct rlimit alim;
960 struct sysctlnode node;
962 if (namelen != 0)
963 return (EINVAL);
965 which = name[-1];
966 if (which != PROC_PID_LIMIT_TYPE_SOFT &&
967 which != PROC_PID_LIMIT_TYPE_HARD)
968 return (EINVAL);
970 limitno = name[-2] - 1;
971 if (limitno >= RLIM_NLIMITS)
972 return (EINVAL);
974 if (name[-3] != PROC_PID_LIMIT)
975 return (EINVAL);
977 error = sysctl_proc_findproc(l, &ptmp, (pid_t)name[-4]);
978 if (error)
979 return (error);
981 /* XXX-elad */
982 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, ptmp,
983 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
984 if (error)
985 return (error);
987 /* Check if we can view limits. */
988 if (newp == NULL) {
989 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
990 ptmp, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
991 KAUTH_ARG(which));
992 if (error)
993 return (error);
996 node = *rnode;
997 memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
998 if (which == PROC_PID_LIMIT_TYPE_HARD)
999 node.sysctl_data = &alim.rlim_max;
1000 else
1001 node.sysctl_data = &alim.rlim_cur;
1003 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1004 if (error || newp == NULL)
1005 return (error);
1007 return (dosetrlimit(l, ptmp, limitno, &alim));
1011 * and finally, the actually glue that sticks it to the tree
1013 SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
1016 sysctl_createv(clog, 0, NULL, NULL,
1017 CTLFLAG_PERMANENT,
1018 CTLTYPE_NODE, "proc", NULL,
1019 NULL, 0, NULL, 0,
1020 CTL_PROC, CTL_EOL);
1021 sysctl_createv(clog, 0, NULL, NULL,
1022 CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1023 CTLTYPE_NODE, "curproc",
1024 SYSCTL_DESCR("Per-process settings"),
1025 NULL, 0, NULL, 0,
1026 CTL_PROC, PROC_CURPROC, CTL_EOL);
1028 sysctl_createv(clog, 0, NULL, NULL,
1029 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1030 CTLTYPE_STRING, "corename",
1031 SYSCTL_DESCR("Core file name"),
1032 sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1033 CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1034 sysctl_createv(clog, 0, NULL, NULL,
1035 CTLFLAG_PERMANENT,
1036 CTLTYPE_NODE, "rlimit",
1037 SYSCTL_DESCR("Process limits"),
1038 NULL, 0, NULL, 0,
1039 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1041 #define create_proc_plimit(s, n) do { \
1042 sysctl_createv(clog, 0, NULL, NULL, \
1043 CTLFLAG_PERMANENT, \
1044 CTLTYPE_NODE, s, \
1045 SYSCTL_DESCR("Process " s " limits"), \
1046 NULL, 0, NULL, 0, \
1047 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1048 CTL_EOL); \
1049 sysctl_createv(clog, 0, NULL, NULL, \
1050 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1051 CTLTYPE_QUAD, "soft", \
1052 SYSCTL_DESCR("Process soft " s " limit"), \
1053 sysctl_proc_plimit, 0, NULL, 0, \
1054 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1055 PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
1056 sysctl_createv(clog, 0, NULL, NULL, \
1057 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1058 CTLTYPE_QUAD, "hard", \
1059 SYSCTL_DESCR("Process hard " s " limit"), \
1060 sysctl_proc_plimit, 0, NULL, 0, \
1061 CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
1062 PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
1063 } while (0/*CONSTCOND*/)
1065 create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
1066 create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
1067 create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
1068 create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
1069 create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
1070 create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
1071 create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
1072 create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
1073 create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
1074 create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
1075 create_proc_plimit("vmemoryuse", PROC_PID_LIMIT_AS);
1077 #undef create_proc_plimit
1079 sysctl_createv(clog, 0, NULL, NULL,
1080 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1081 CTLTYPE_INT, "stopfork",
1082 SYSCTL_DESCR("Stop process at fork(2)"),
1083 sysctl_proc_stop, 0, NULL, 0,
1084 CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1085 sysctl_createv(clog, 0, NULL, NULL,
1086 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1087 CTLTYPE_INT, "stopexec",
1088 SYSCTL_DESCR("Stop process at execve(2)"),
1089 sysctl_proc_stop, 0, NULL, 0,
1090 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1091 sysctl_createv(clog, 0, NULL, NULL,
1092 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1093 CTLTYPE_INT, "stopexit",
1094 SYSCTL_DESCR("Stop process before completing exit"),
1095 sysctl_proc_stop, 0, NULL, 0,
1096 CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);