No empty .Rs/.Re
[netbsd-mini2440.git] / sys / kern / kern_sig.c
blob606cce94fe108bc53e63c6e04298877fed7b3b47
1 /* $NetBSD: kern_sig.c,v 1.301 2009/12/20 04:49:09 rmind Exp $ */
3 /*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Copyright (c) 1982, 1986, 1989, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
65 * @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.301 2009/12/20 04:49:09 rmind Exp $");
71 #include "opt_ptrace.h"
72 #include "opt_compat_sunos.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_compat_netbsd32.h"
75 #include "opt_pax.h"
76 #include "opt_sa.h"
78 #define SIGPROP /* include signal properties table */
79 #include <sys/param.h>
80 #include <sys/signalvar.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/wait.h>
84 #include <sys/ktrace.h>
85 #include <sys/syslog.h>
86 #include <sys/filedesc.h>
87 #include <sys/file.h>
88 #include <sys/pool.h>
89 #include <sys/ucontext.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/exec.h>
93 #include <sys/kauth.h>
94 #include <sys/acct.h>
95 #include <sys/callout.h>
96 #include <sys/atomic.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
100 #ifdef PAX_SEGVGUARD
101 #include <sys/pax.h>
102 #endif /* PAX_SEGVGUARD */
104 #include <uvm/uvm.h>
105 #include <uvm/uvm_extern.h>
107 static void ksiginfo_exechook(struct proc *, void *);
108 static void proc_stop_callout(void *);
109 static int sigchecktrace(void);
110 static int sigpost(struct lwp *, sig_t, int, int, int);
111 static void sigput(sigpend_t *, struct proc *, ksiginfo_t *);
112 static int sigunwait(struct proc *, const ksiginfo_t *);
113 static void sigswitch(bool, int, int);
115 sigset_t contsigmask, stopsigmask, sigcantmask;
116 static pool_cache_t sigacts_cache; /* memory pool for sigacts structures */
117 static void sigacts_poolpage_free(struct pool *, void *);
118 static void *sigacts_poolpage_alloc(struct pool *, int);
119 static callout_t proc_stop_ch;
120 static pool_cache_t siginfo_cache;
121 static pool_cache_t ksiginfo_cache;
123 void (*sendsig_sigcontext_vec)(const struct ksiginfo *, const sigset_t *);
124 int (*coredump_vec)(struct lwp *, const char *) =
125 (int (*)(struct lwp *, const char *))enosys;
127 static struct pool_allocator sigactspool_allocator = {
128 .pa_alloc = sigacts_poolpage_alloc,
129 .pa_free = sigacts_poolpage_free
132 #ifdef DEBUG
133 int kern_logsigexit = 1;
134 #else
135 int kern_logsigexit = 0;
136 #endif
138 static const char logcoredump[] =
139 "pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
140 static const char lognocoredump[] =
141 "pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
143 static kauth_listener_t signal_listener;
145 static int
146 signal_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
147 void *arg0, void *arg1, void *arg2, void *arg3)
149 struct proc *p;
150 int result, signum;
152 result = KAUTH_RESULT_DEFER;
153 p = arg0;
154 signum = (int)(unsigned long)arg1;
156 if (action != KAUTH_PROCESS_SIGNAL)
157 return result;
159 if (kauth_cred_uidmatch(cred, p->p_cred) ||
160 (signum == SIGCONT && (curproc->p_session == p->p_session)))
161 result = KAUTH_RESULT_ALLOW;
163 return result;
167 * signal_init:
169 * Initialize global signal-related data structures.
171 void
172 signal_init(void)
175 sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
177 sigacts_cache = pool_cache_init(sizeof(struct sigacts), 0, 0, 0,
178 "sigacts", sizeof(struct sigacts) > PAGE_SIZE ?
179 &sigactspool_allocator : NULL, IPL_NONE, NULL, NULL, NULL);
181 siginfo_cache = pool_cache_init(sizeof(siginfo_t), 0, 0, 0,
182 "siginfo", NULL, IPL_NONE, NULL, NULL, NULL);
184 ksiginfo_cache = pool_cache_init(sizeof(ksiginfo_t), 0, 0, 0,
185 "ksiginfo", NULL, IPL_VM, NULL, NULL, NULL);
187 exechook_establish(ksiginfo_exechook, NULL);
189 callout_init(&proc_stop_ch, CALLOUT_MPSAFE);
190 callout_setfunc(&proc_stop_ch, proc_stop_callout, NULL);
192 signal_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
193 signal_listener_cb, NULL);
197 * sigacts_poolpage_alloc:
199 * Allocate a page for the sigacts memory pool.
201 static void *
202 sigacts_poolpage_alloc(struct pool *pp, int flags)
205 return (void *)uvm_km_alloc(kernel_map,
206 PAGE_SIZE * 2, PAGE_SIZE * 2,
207 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
208 | UVM_KMF_WIRED);
212 * sigacts_poolpage_free:
214 * Free a page on behalf of the sigacts memory pool.
216 static void
217 sigacts_poolpage_free(struct pool *pp, void *v)
220 uvm_km_free(kernel_map, (vaddr_t)v, PAGE_SIZE * 2, UVM_KMF_WIRED);
224 * sigactsinit:
226 * Create an initial sigacts structure, using the same signal state
227 * as of specified process. If 'share' is set, share the sigacts by
228 * holding a reference, otherwise just copy it from parent.
230 struct sigacts *
231 sigactsinit(struct proc *pp, int share)
233 struct sigacts *ps = pp->p_sigacts, *ps2;
235 if (__predict_false(share)) {
236 atomic_inc_uint(&ps->sa_refcnt);
237 return ps;
239 ps2 = pool_cache_get(sigacts_cache, PR_WAITOK);
240 mutex_init(&ps2->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
241 ps2->sa_refcnt = 1;
243 mutex_enter(&ps->sa_mutex);
244 memcpy(ps2->sa_sigdesc, ps->sa_sigdesc, sizeof(ps2->sa_sigdesc));
245 mutex_exit(&ps->sa_mutex);
246 return ps2;
250 * sigactsunshare:
252 * Make this process not share its sigacts, maintaining all signal state.
254 void
255 sigactsunshare(struct proc *p)
257 struct sigacts *ps, *oldps = p->p_sigacts;
259 if (__predict_true(oldps->sa_refcnt == 1))
260 return;
262 ps = pool_cache_get(sigacts_cache, PR_WAITOK);
263 mutex_init(&ps->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
264 memset(ps->sa_sigdesc, 0, sizeof(ps->sa_sigdesc));
265 ps->sa_refcnt = 1;
267 p->p_sigacts = ps;
268 sigactsfree(oldps);
272 * sigactsfree;
274 * Release a sigacts structure.
276 void
277 sigactsfree(struct sigacts *ps)
280 if (atomic_dec_uint_nv(&ps->sa_refcnt) == 0) {
281 mutex_destroy(&ps->sa_mutex);
282 pool_cache_put(sigacts_cache, ps);
287 * siginit:
289 * Initialize signal state for process 0; set to ignore signals that
290 * are ignored by default and disable the signal stack. Locking not
291 * required as the system is still cold.
293 void
294 siginit(struct proc *p)
296 struct lwp *l;
297 struct sigacts *ps;
298 int signo, prop;
300 ps = p->p_sigacts;
301 sigemptyset(&contsigmask);
302 sigemptyset(&stopsigmask);
303 sigemptyset(&sigcantmask);
304 for (signo = 1; signo < NSIG; signo++) {
305 prop = sigprop[signo];
306 if (prop & SA_CONT)
307 sigaddset(&contsigmask, signo);
308 if (prop & SA_STOP)
309 sigaddset(&stopsigmask, signo);
310 if (prop & SA_CANTMASK)
311 sigaddset(&sigcantmask, signo);
312 if (prop & SA_IGNORE && signo != SIGCONT)
313 sigaddset(&p->p_sigctx.ps_sigignore, signo);
314 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
315 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
317 sigemptyset(&p->p_sigctx.ps_sigcatch);
318 p->p_sflag &= ~PS_NOCLDSTOP;
320 ksiginfo_queue_init(&p->p_sigpend.sp_info);
321 sigemptyset(&p->p_sigpend.sp_set);
324 * Reset per LWP state.
326 l = LIST_FIRST(&p->p_lwps);
327 l->l_sigwaited = NULL;
328 l->l_sigstk.ss_flags = SS_DISABLE;
329 l->l_sigstk.ss_size = 0;
330 l->l_sigstk.ss_sp = 0;
331 ksiginfo_queue_init(&l->l_sigpend.sp_info);
332 sigemptyset(&l->l_sigpend.sp_set);
334 /* One reference. */
335 ps->sa_refcnt = 1;
339 * execsigs:
341 * Reset signals for an exec of the specified process.
343 void
344 execsigs(struct proc *p)
346 struct sigacts *ps;
347 struct lwp *l;
348 int signo, prop;
349 sigset_t tset;
350 ksiginfoq_t kq;
352 KASSERT(p->p_nlwps == 1);
354 sigactsunshare(p);
355 ps = p->p_sigacts;
358 * Reset caught signals. Held signals remain held through
359 * l->l_sigmask (unless they were caught, and are now ignored
360 * by default).
362 * No need to lock yet, the process has only one LWP and
363 * at this point the sigacts are private to the process.
365 sigemptyset(&tset);
366 for (signo = 1; signo < NSIG; signo++) {
367 if (sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
368 prop = sigprop[signo];
369 if (prop & SA_IGNORE) {
370 if ((prop & SA_CONT) == 0)
371 sigaddset(&p->p_sigctx.ps_sigignore,
372 signo);
373 sigaddset(&tset, signo);
375 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
377 sigemptyset(&SIGACTION_PS(ps, signo).sa_mask);
378 SIGACTION_PS(ps, signo).sa_flags = SA_RESTART;
380 ksiginfo_queue_init(&kq);
382 mutex_enter(p->p_lock);
383 sigclearall(p, &tset, &kq);
384 sigemptyset(&p->p_sigctx.ps_sigcatch);
387 * Reset no zombies if child dies flag as Solaris does.
389 p->p_flag &= ~(PK_NOCLDWAIT | PK_CLDSIGIGN);
390 if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
391 SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
394 * Reset per-LWP state.
396 l = LIST_FIRST(&p->p_lwps);
397 l->l_sigwaited = NULL;
398 l->l_sigstk.ss_flags = SS_DISABLE;
399 l->l_sigstk.ss_size = 0;
400 l->l_sigstk.ss_sp = 0;
401 ksiginfo_queue_init(&l->l_sigpend.sp_info);
402 sigemptyset(&l->l_sigpend.sp_set);
403 mutex_exit(p->p_lock);
405 ksiginfo_queue_drain(&kq);
409 * ksiginfo_exechook:
411 * Free all pending ksiginfo entries from a process on exec.
412 * Additionally, drain any unused ksiginfo structures in the
413 * system back to the pool.
415 * XXX This should not be a hook, every process has signals.
417 static void
418 ksiginfo_exechook(struct proc *p, void *v)
420 ksiginfoq_t kq;
422 ksiginfo_queue_init(&kq);
424 mutex_enter(p->p_lock);
425 sigclearall(p, NULL, &kq);
426 mutex_exit(p->p_lock);
428 ksiginfo_queue_drain(&kq);
432 * ksiginfo_alloc:
434 * Allocate a new ksiginfo structure from the pool, and optionally copy
435 * an existing one. If the existing ksiginfo_t is from the pool, and
436 * has not been queued somewhere, then just return it. Additionally,
437 * if the existing ksiginfo_t does not contain any information beyond
438 * the signal number, then just return it.
440 ksiginfo_t *
441 ksiginfo_alloc(struct proc *p, ksiginfo_t *ok, int flags)
443 ksiginfo_t *kp;
445 if (ok != NULL) {
446 if ((ok->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) ==
447 KSI_FROMPOOL)
448 return ok;
449 if (KSI_EMPTY_P(ok))
450 return ok;
453 kp = pool_cache_get(ksiginfo_cache, flags);
454 if (kp == NULL) {
455 #ifdef DIAGNOSTIC
456 printf("Out of memory allocating ksiginfo for pid %d\n",
457 p->p_pid);
458 #endif
459 return NULL;
462 if (ok != NULL) {
463 memcpy(kp, ok, sizeof(*kp));
464 kp->ksi_flags &= ~KSI_QUEUED;
465 } else
466 KSI_INIT_EMPTY(kp);
468 kp->ksi_flags |= KSI_FROMPOOL;
470 return kp;
474 * ksiginfo_free:
476 * If the given ksiginfo_t is from the pool and has not been queued,
477 * then free it.
479 void
480 ksiginfo_free(ksiginfo_t *kp)
483 if ((kp->ksi_flags & (KSI_QUEUED | KSI_FROMPOOL)) != KSI_FROMPOOL)
484 return;
485 pool_cache_put(ksiginfo_cache, kp);
489 * ksiginfo_queue_drain:
491 * Drain a non-empty ksiginfo_t queue.
493 void
494 ksiginfo_queue_drain0(ksiginfoq_t *kq)
496 ksiginfo_t *ksi;
498 KASSERT(!CIRCLEQ_EMPTY(kq));
500 while (!CIRCLEQ_EMPTY(kq)) {
501 ksi = CIRCLEQ_FIRST(kq);
502 CIRCLEQ_REMOVE(kq, ksi, ksi_list);
503 pool_cache_put(ksiginfo_cache, ksi);
508 * sigget:
510 * Fetch the first pending signal from a set. Optionally, also fetch
511 * or manufacture a ksiginfo element. Returns the number of the first
512 * pending signal, or zero.
515 sigget(sigpend_t *sp, ksiginfo_t *out, int signo, const sigset_t *mask)
517 ksiginfo_t *ksi;
518 sigset_t tset;
520 /* If there's no pending set, the signal is from the debugger. */
521 if (sp == NULL)
522 goto out;
524 /* Construct mask from signo, and 'mask'. */
525 if (signo == 0) {
526 if (mask != NULL) {
527 tset = *mask;
528 __sigandset(&sp->sp_set, &tset);
529 } else
530 tset = sp->sp_set;
532 /* If there are no signals pending - return. */
533 if ((signo = firstsig(&tset)) == 0)
534 goto out;
535 } else {
536 KASSERT(sigismember(&sp->sp_set, signo));
539 sigdelset(&sp->sp_set, signo);
541 /* Find siginfo and copy it out. */
542 CIRCLEQ_FOREACH(ksi, &sp->sp_info, ksi_list) {
543 if (ksi->ksi_signo != signo)
544 continue;
545 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
546 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
547 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
548 ksi->ksi_flags &= ~KSI_QUEUED;
549 if (out != NULL) {
550 memcpy(out, ksi, sizeof(*out));
551 out->ksi_flags &= ~(KSI_FROMPOOL | KSI_QUEUED);
553 ksiginfo_free(ksi); /* XXXSMP */
554 return signo;
556 out:
557 /* If there is no siginfo, then manufacture it. */
558 if (out != NULL) {
559 KSI_INIT(out);
560 out->ksi_info._signo = signo;
561 out->ksi_info._code = SI_NOINFO;
563 return signo;
567 * sigput:
569 * Append a new ksiginfo element to the list of pending ksiginfo's.
571 static void
572 sigput(sigpend_t *sp, struct proc *p, ksiginfo_t *ksi)
574 ksiginfo_t *kp;
576 KASSERT(mutex_owned(p->p_lock));
577 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
579 sigaddset(&sp->sp_set, ksi->ksi_signo);
582 * If there is no siginfo, we are done.
584 if (KSI_EMPTY_P(ksi))
585 return;
587 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
589 #ifdef notyet /* XXX: QUEUING */
590 if (ksi->ksi_signo < SIGRTMIN)
591 #endif
593 CIRCLEQ_FOREACH(kp, &sp->sp_info, ksi_list) {
594 if (kp->ksi_signo == ksi->ksi_signo) {
595 KSI_COPY(ksi, kp);
596 kp->ksi_flags |= KSI_QUEUED;
597 return;
602 ksi->ksi_flags |= KSI_QUEUED;
603 CIRCLEQ_INSERT_TAIL(&sp->sp_info, ksi, ksi_list);
607 * sigclear:
609 * Clear all pending signals in the specified set.
611 void
612 sigclear(sigpend_t *sp, const sigset_t *mask, ksiginfoq_t *kq)
614 ksiginfo_t *ksi, *next;
616 if (mask == NULL)
617 sigemptyset(&sp->sp_set);
618 else
619 sigminusset(mask, &sp->sp_set);
621 ksi = CIRCLEQ_FIRST(&sp->sp_info);
622 for (; ksi != (void *)&sp->sp_info; ksi = next) {
623 next = CIRCLEQ_NEXT(ksi, ksi_list);
624 if (mask == NULL || sigismember(mask, ksi->ksi_signo)) {
625 CIRCLEQ_REMOVE(&sp->sp_info, ksi, ksi_list);
626 KASSERT((ksi->ksi_flags & KSI_FROMPOOL) != 0);
627 KASSERT((ksi->ksi_flags & KSI_QUEUED) != 0);
628 CIRCLEQ_INSERT_TAIL(kq, ksi, ksi_list);
634 * sigclearall:
636 * Clear all pending signals in the specified set from a process and
637 * its LWPs.
639 void
640 sigclearall(struct proc *p, const sigset_t *mask, ksiginfoq_t *kq)
642 struct lwp *l;
644 KASSERT(mutex_owned(p->p_lock));
646 sigclear(&p->p_sigpend, mask, kq);
648 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
649 sigclear(&l->l_sigpend, mask, kq);
654 * sigispending:
656 * Return true if there are pending signals for the current LWP. May
657 * be called unlocked provided that LW_PENDSIG is set, and that the
658 * signal has been posted to the appopriate queue before LW_PENDSIG is
659 * set.
662 sigispending(struct lwp *l, int signo)
664 struct proc *p = l->l_proc;
665 sigset_t tset;
667 membar_consumer();
669 tset = l->l_sigpend.sp_set;
670 sigplusset(&p->p_sigpend.sp_set, &tset);
671 sigminusset(&p->p_sigctx.ps_sigignore, &tset);
672 sigminusset(&l->l_sigmask, &tset);
674 if (signo == 0) {
675 if (firstsig(&tset) != 0)
676 return EINTR;
677 } else if (sigismember(&tset, signo))
678 return EINTR;
680 return 0;
683 #ifdef KERN_SA
686 * siginfo_alloc:
688 * Allocate a new siginfo_t structure from the pool.
690 siginfo_t *
691 siginfo_alloc(int flags)
694 return pool_cache_get(siginfo_cache, flags);
698 * siginfo_free:
700 * Return a siginfo_t structure to the pool.
702 void
703 siginfo_free(void *arg)
706 pool_cache_put(siginfo_cache, arg);
709 #endif
711 void
712 getucontext(struct lwp *l, ucontext_t *ucp)
714 struct proc *p = l->l_proc;
716 KASSERT(mutex_owned(p->p_lock));
718 ucp->uc_flags = 0;
719 ucp->uc_link = l->l_ctxlink;
721 #if KERN_SA
722 if (p->p_sa != NULL)
723 ucp->uc_sigmask = p->p_sa->sa_sigmask;
724 else
725 #endif /* KERN_SA */
726 ucp->uc_sigmask = l->l_sigmask;
727 ucp->uc_flags |= _UC_SIGMASK;
730 * The (unsupplied) definition of the `current execution stack'
731 * in the System V Interface Definition appears to allow returning
732 * the main context stack.
734 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
735 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
736 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
737 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
738 } else {
739 /* Simply copy alternate signal execution stack. */
740 ucp->uc_stack = l->l_sigstk;
742 ucp->uc_flags |= _UC_STACK;
743 mutex_exit(p->p_lock);
744 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
745 mutex_enter(p->p_lock);
749 * getucontext_sa:
750 * Get a ucontext_t for use in SA upcall generation.
751 * Teweaked version of getucontext(). We 1) do not take p_lock, 2)
752 * fudge things with uc_link (which is usually NULL for libpthread
753 * code), and 3) we report an empty signal mask.
755 void
756 getucontext_sa(struct lwp *l, ucontext_t *ucp)
758 ucp->uc_flags = 0;
759 ucp->uc_link = l->l_ctxlink;
761 sigemptyset(&ucp->uc_sigmask);
762 ucp->uc_flags |= _UC_SIGMASK;
765 * The (unsupplied) definition of the `current execution stack'
766 * in the System V Interface Definition appears to allow returning
767 * the main context stack.
769 if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
770 ucp->uc_stack.ss_sp = (void *)l->l_proc->p_stackbase;
771 ucp->uc_stack.ss_size = ctob(l->l_proc->p_vmspace->vm_ssize);
772 ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
773 } else {
774 /* Simply copy alternate signal execution stack. */
775 ucp->uc_stack = l->l_sigstk;
777 ucp->uc_flags |= _UC_STACK;
778 cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
782 setucontext(struct lwp *l, const ucontext_t *ucp)
784 struct proc *p = l->l_proc;
785 int error;
787 KASSERT(mutex_owned(p->p_lock));
789 if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
790 error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
791 if (error != 0)
792 return error;
795 mutex_exit(p->p_lock);
796 error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags);
797 mutex_enter(p->p_lock);
798 if (error != 0)
799 return (error);
801 l->l_ctxlink = ucp->uc_link;
804 * If there was stack information, update whether or not we are
805 * still running on an alternate signal stack.
807 if ((ucp->uc_flags & _UC_STACK) != 0) {
808 if (ucp->uc_stack.ss_flags & SS_ONSTACK)
809 l->l_sigstk.ss_flags |= SS_ONSTACK;
810 else
811 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
814 return 0;
818 * killpg1: common code for kill process group/broadcast kill.
821 killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
823 struct proc *p, *cp;
824 kauth_cred_t pc;
825 struct pgrp *pgrp;
826 int nfound;
827 int signo = ksi->ksi_signo;
829 cp = l->l_proc;
830 pc = l->l_cred;
831 nfound = 0;
833 mutex_enter(proc_lock);
834 if (all) {
836 * Broadcast.
838 PROCLIST_FOREACH(p, &allproc) {
839 if (p->p_pid <= 1 || p == cp ||
840 p->p_flag & (PK_SYSTEM|PK_MARKER))
841 continue;
842 mutex_enter(p->p_lock);
843 if (kauth_authorize_process(pc,
844 KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signo), NULL,
845 NULL) == 0) {
846 nfound++;
847 if (signo)
848 kpsignal2(p, ksi);
850 mutex_exit(p->p_lock);
852 } else {
853 if (pgid == 0)
854 /* Zero pgid means send to my process group. */
855 pgrp = cp->p_pgrp;
856 else {
857 pgrp = pg_find(pgid, PFIND_LOCKED);
858 if (pgrp == NULL)
859 goto out;
861 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
862 if (p->p_pid <= 1 || p->p_flag & PK_SYSTEM)
863 continue;
864 mutex_enter(p->p_lock);
865 if (kauth_authorize_process(pc, KAUTH_PROCESS_SIGNAL,
866 p, KAUTH_ARG(signo), NULL, NULL) == 0) {
867 nfound++;
868 if (signo && P_ZOMBIE(p) == 0)
869 kpsignal2(p, ksi);
871 mutex_exit(p->p_lock);
874 out:
875 mutex_exit(proc_lock);
876 return nfound ? 0 : ESRCH;
880 * Send a signal to a process group. If checktty is set, limit to members
881 * which have a controlling terminal.
883 void
884 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
886 ksiginfo_t ksi;
888 KASSERT(!cpu_intr_p());
889 KASSERT(mutex_owned(proc_lock));
891 KSI_INIT_EMPTY(&ksi);
892 ksi.ksi_signo = sig;
893 kpgsignal(pgrp, &ksi, NULL, checkctty);
896 void
897 kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
899 struct proc *p;
901 KASSERT(!cpu_intr_p());
902 KASSERT(mutex_owned(proc_lock));
903 KASSERT(pgrp != NULL);
905 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
906 if (checkctty == 0 || p->p_lflag & PL_CONTROLT)
907 kpsignal(p, ksi, data);
911 * Send a signal caused by a trap to the current LWP. If it will be caught
912 * immediately, deliver it with correct code. Otherwise, post it normally.
914 void
915 trapsignal(struct lwp *l, ksiginfo_t *ksi)
917 struct proc *p;
918 struct sigacts *ps;
919 int signo = ksi->ksi_signo;
920 sigset_t *mask;
922 KASSERT(KSI_TRAP_P(ksi));
924 ksi->ksi_lid = l->l_lid;
925 p = l->l_proc;
927 KASSERT(!cpu_intr_p());
928 mutex_enter(proc_lock);
929 mutex_enter(p->p_lock);
930 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
931 ps = p->p_sigacts;
932 if ((p->p_slflag & PSL_TRACED) == 0 &&
933 sigismember(&p->p_sigctx.ps_sigcatch, signo) &&
934 !sigismember(mask, signo)) {
935 mutex_exit(proc_lock);
936 l->l_ru.ru_nsignals++;
937 kpsendsig(l, ksi, mask);
938 mutex_exit(p->p_lock);
939 ktrpsig(signo, SIGACTION_PS(ps, signo).sa_handler, mask, ksi);
940 } else {
941 /* XXX for core dump/debugger */
942 p->p_sigctx.ps_lwp = l->l_lid;
943 p->p_sigctx.ps_signo = ksi->ksi_signo;
944 p->p_sigctx.ps_code = ksi->ksi_trap;
945 kpsignal2(p, ksi);
946 mutex_exit(p->p_lock);
947 mutex_exit(proc_lock);
952 * Fill in signal information and signal the parent for a child status change.
954 void
955 child_psignal(struct proc *p, int mask)
957 ksiginfo_t ksi;
958 struct proc *q;
959 int xstat;
961 KASSERT(mutex_owned(proc_lock));
962 KASSERT(mutex_owned(p->p_lock));
964 xstat = p->p_xstat;
966 KSI_INIT(&ksi);
967 ksi.ksi_signo = SIGCHLD;
968 ksi.ksi_code = (xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED);
969 ksi.ksi_pid = p->p_pid;
970 ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
971 ksi.ksi_status = xstat;
972 ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
973 ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
975 q = p->p_pptr;
977 mutex_exit(p->p_lock);
978 mutex_enter(q->p_lock);
980 if ((q->p_sflag & mask) == 0)
981 kpsignal2(q, &ksi);
983 mutex_exit(q->p_lock);
984 mutex_enter(p->p_lock);
987 void
988 psignal(struct proc *p, int signo)
990 ksiginfo_t ksi;
992 KASSERT(!cpu_intr_p());
993 KASSERT(mutex_owned(proc_lock));
995 KSI_INIT_EMPTY(&ksi);
996 ksi.ksi_signo = signo;
997 mutex_enter(p->p_lock);
998 kpsignal2(p, &ksi);
999 mutex_exit(p->p_lock);
1002 void
1003 kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
1005 fdfile_t *ff;
1006 file_t *fp;
1007 fdtab_t *dt;
1009 KASSERT(!cpu_intr_p());
1010 KASSERT(mutex_owned(proc_lock));
1012 if ((p->p_sflag & PS_WEXIT) == 0 && data) {
1013 size_t fd;
1014 filedesc_t *fdp = p->p_fd;
1016 /* XXXSMP locking */
1017 ksi->ksi_fd = -1;
1018 dt = fdp->fd_dt;
1019 for (fd = 0; fd < dt->dt_nfiles; fd++) {
1020 if ((ff = dt->dt_ff[fd]) == NULL)
1021 continue;
1022 if ((fp = ff->ff_file) == NULL)
1023 continue;
1024 if (fp->f_data == data) {
1025 ksi->ksi_fd = fd;
1026 break;
1030 mutex_enter(p->p_lock);
1031 kpsignal2(p, ksi);
1032 mutex_exit(p->p_lock);
1036 * sigismasked:
1038 * Returns true if signal is ignored or masked for the specified LWP.
1041 sigismasked(struct lwp *l, int sig)
1043 struct proc *p = l->l_proc;
1045 return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
1046 sigismember(&l->l_sigmask, sig)
1047 #if KERN_SA
1048 || ((p->p_sa != NULL) && sigismember(&p->p_sa->sa_sigmask, sig))
1049 #endif /* KERN_SA */
1054 * sigpost:
1056 * Post a pending signal to an LWP. Returns non-zero if the LWP may
1057 * be able to take the signal.
1059 static int
1060 sigpost(struct lwp *l, sig_t action, int prop, int sig, int idlecheck)
1062 int rv, masked;
1063 struct proc *p = l->l_proc;
1065 KASSERT(mutex_owned(p->p_lock));
1068 * If the LWP is on the way out, sigclear() will be busy draining all
1069 * pending signals. Don't give it more.
1071 if (l->l_refcnt == 0)
1072 return 0;
1075 * Have the LWP check for signals. This ensures that even if no LWP
1076 * is found to take the signal immediately, it should be taken soon.
1078 lwp_lock(l);
1079 l->l_flag |= LW_PENDSIG;
1082 * When sending signals to SA processes, we first try to find an
1083 * idle VP to take it.
1085 if (idlecheck && (l->l_flag & (LW_SA_IDLE | LW_SA_YIELD)) == 0) {
1086 lwp_unlock(l);
1087 return 0;
1091 * SIGCONT can be masked, but if LWP is stopped, it needs restart.
1092 * Note: SIGKILL and SIGSTOP cannot be masked.
1094 #if KERN_SA
1095 if (p->p_sa != NULL)
1096 masked = sigismember(&p->p_sa->sa_sigmask, sig);
1097 else
1098 #endif
1099 masked = sigismember(&l->l_sigmask, sig);
1100 if (masked && ((prop & SA_CONT) == 0 || l->l_stat != LSSTOP)) {
1101 lwp_unlock(l);
1102 return 0;
1106 * If killing the process, make it run fast.
1108 if (__predict_false((prop & SA_KILL) != 0) &&
1109 action == SIG_DFL && l->l_priority < MAXPRI_USER) {
1110 KASSERT(l->l_class == SCHED_OTHER);
1111 lwp_changepri(l, MAXPRI_USER);
1115 * If the LWP is running or on a run queue, then we win. If it's
1116 * sleeping interruptably, wake it and make it take the signal. If
1117 * the sleep isn't interruptable, then the chances are it will get
1118 * to see the signal soon anyhow. If suspended, it can't take the
1119 * signal right now. If it's LWP private or for all LWPs, save it
1120 * for later; otherwise punt.
1122 rv = 0;
1124 switch (l->l_stat) {
1125 case LSRUN:
1126 case LSONPROC:
1127 lwp_need_userret(l);
1128 rv = 1;
1129 break;
1131 case LSSLEEP:
1132 if ((l->l_flag & LW_SINTR) != 0) {
1133 /* setrunnable() will release the lock. */
1134 setrunnable(l);
1135 return 1;
1137 break;
1139 case LSSUSPENDED:
1140 if ((prop & SA_KILL) != 0) {
1141 /* lwp_continue() will release the lock. */
1142 lwp_continue(l);
1143 return 1;
1145 break;
1147 case LSSTOP:
1148 if ((prop & SA_STOP) != 0)
1149 break;
1152 * If the LWP is stopped and we are sending a continue
1153 * signal, then start it again.
1155 if ((prop & SA_CONT) != 0) {
1156 if (l->l_wchan != NULL) {
1157 l->l_stat = LSSLEEP;
1158 p->p_nrlwps++;
1159 rv = 1;
1160 break;
1162 /* setrunnable() will release the lock. */
1163 setrunnable(l);
1164 return 1;
1165 } else if (l->l_wchan == NULL || (l->l_flag & LW_SINTR) != 0) {
1166 /* setrunnable() will release the lock. */
1167 setrunnable(l);
1168 return 1;
1170 break;
1172 default:
1173 break;
1176 lwp_unlock(l);
1177 return rv;
1181 * Notify an LWP that it has a pending signal.
1183 void
1184 signotify(struct lwp *l)
1186 KASSERT(lwp_locked(l, NULL));
1188 l->l_flag |= LW_PENDSIG;
1189 lwp_need_userret(l);
1193 * Find an LWP within process p that is waiting on signal ksi, and hand
1194 * it on.
1196 static int
1197 sigunwait(struct proc *p, const ksiginfo_t *ksi)
1199 struct lwp *l;
1200 int signo;
1202 KASSERT(mutex_owned(p->p_lock));
1204 signo = ksi->ksi_signo;
1206 if (ksi->ksi_lid != 0) {
1208 * Signal came via _lwp_kill(). Find the LWP and see if
1209 * it's interested.
1211 if ((l = lwp_find(p, ksi->ksi_lid)) == NULL)
1212 return 0;
1213 if (l->l_sigwaited == NULL ||
1214 !sigismember(&l->l_sigwaitset, signo))
1215 return 0;
1216 } else {
1218 * Look for any LWP that may be interested.
1220 LIST_FOREACH(l, &p->p_sigwaiters, l_sigwaiter) {
1221 KASSERT(l->l_sigwaited != NULL);
1222 if (sigismember(&l->l_sigwaitset, signo))
1223 break;
1227 if (l != NULL) {
1228 l->l_sigwaited->ksi_info = ksi->ksi_info;
1229 l->l_sigwaited = NULL;
1230 LIST_REMOVE(l, l_sigwaiter);
1231 cv_signal(&l->l_sigcv);
1232 return 1;
1235 return 0;
1239 * Send the signal to the process. If the signal has an action, the action
1240 * is usually performed by the target process rather than the caller; we add
1241 * the signal to the set of pending signals for the process.
1243 * Exceptions:
1244 * o When a stop signal is sent to a sleeping process that takes the
1245 * default action, the process is stopped without awakening it.
1246 * o SIGCONT restarts stopped processes (or puts them back to sleep)
1247 * regardless of the signal action (eg, blocked or ignored).
1249 * Other ignored signals are discarded immediately.
1251 void
1252 kpsignal2(struct proc *p, ksiginfo_t *ksi)
1254 int prop, signo = ksi->ksi_signo;
1255 struct sigacts *sa;
1256 struct lwp *l;
1257 ksiginfo_t *kp;
1258 lwpid_t lid;
1259 sig_t action;
1260 bool toall;
1262 KASSERT(!cpu_intr_p());
1263 KASSERT(mutex_owned(proc_lock));
1264 KASSERT(mutex_owned(p->p_lock));
1265 KASSERT((ksi->ksi_flags & KSI_QUEUED) == 0);
1266 KASSERT(signo > 0 && signo < NSIG);
1269 * If the process is being created by fork, is a zombie or is
1270 * exiting, then just drop the signal here and bail out.
1272 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1273 return;
1276 * Notify any interested parties of the signal.
1278 KNOTE(&p->p_klist, NOTE_SIGNAL | signo);
1281 * Some signals including SIGKILL must act on the entire process.
1283 kp = NULL;
1284 prop = sigprop[signo];
1285 toall = ((prop & SA_TOALL) != 0);
1286 lid = toall ? 0 : ksi->ksi_lid;
1289 * If proc is traced, always give parent a chance.
1291 if (p->p_slflag & PSL_TRACED) {
1292 action = SIG_DFL;
1294 if (lid == 0) {
1296 * If the process is being traced and the signal
1297 * is being caught, make sure to save any ksiginfo.
1299 if ((kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1300 return;
1301 sigput(&p->p_sigpend, p, kp);
1303 } else {
1305 * If the signal was the result of a trap and is not being
1306 * caught, then reset it to default action so that the
1307 * process dumps core immediately.
1309 if (KSI_TRAP_P(ksi)) {
1310 sa = p->p_sigacts;
1311 mutex_enter(&sa->sa_mutex);
1312 if (!sigismember(&p->p_sigctx.ps_sigcatch, signo)) {
1313 sigdelset(&p->p_sigctx.ps_sigignore, signo);
1314 SIGACTION(p, signo).sa_handler = SIG_DFL;
1316 mutex_exit(&sa->sa_mutex);
1320 * If the signal is being ignored, then drop it. Note: we
1321 * don't set SIGCONT in ps_sigignore, and if it is set to
1322 * SIG_IGN, action will be SIG_DFL here.
1324 if (sigismember(&p->p_sigctx.ps_sigignore, signo))
1325 return;
1327 else if (sigismember(&p->p_sigctx.ps_sigcatch, signo))
1328 action = SIG_CATCH;
1329 else {
1330 action = SIG_DFL;
1333 * If sending a tty stop signal to a member of an
1334 * orphaned process group, discard the signal here if
1335 * the action is default; don't stop the process below
1336 * if sleeping, and don't clear any pending SIGCONT.
1338 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
1339 return;
1341 if (prop & SA_KILL && p->p_nice > NZERO)
1342 p->p_nice = NZERO;
1347 * If stopping or continuing a process, discard any pending
1348 * signals that would do the inverse.
1350 if ((prop & (SA_CONT | SA_STOP)) != 0) {
1351 ksiginfoq_t kq;
1353 ksiginfo_queue_init(&kq);
1354 if ((prop & SA_CONT) != 0)
1355 sigclear(&p->p_sigpend, &stopsigmask, &kq);
1356 if ((prop & SA_STOP) != 0)
1357 sigclear(&p->p_sigpend, &contsigmask, &kq);
1358 ksiginfo_queue_drain(&kq); /* XXXSMP */
1362 * If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
1363 * please!), check if any LWPs are waiting on it. If yes, pass on
1364 * the signal info. The signal won't be processed further here.
1366 if ((prop & SA_CANTMASK) == 0 && !LIST_EMPTY(&p->p_sigwaiters) &&
1367 p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0 &&
1368 sigunwait(p, ksi))
1369 return;
1372 * XXXSMP Should be allocated by the caller, we're holding locks
1373 * here.
1375 if (kp == NULL && (kp = ksiginfo_alloc(p, ksi, PR_NOWAIT)) == NULL)
1376 return;
1379 * LWP private signals are easy - just find the LWP and post
1380 * the signal to it.
1382 if (lid != 0) {
1383 l = lwp_find(p, lid);
1384 if (l != NULL) {
1385 sigput(&l->l_sigpend, p, kp);
1386 membar_producer();
1387 (void)sigpost(l, action, prop, kp->ksi_signo, 0);
1389 goto out;
1393 * Some signals go to all LWPs, even if posted with _lwp_kill()
1394 * or for an SA process.
1396 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1397 if ((p->p_slflag & PSL_TRACED) != 0)
1398 goto deliver;
1401 * If SIGCONT is default (or ignored) and process is
1402 * asleep, we are finished; the process should not
1403 * be awakened.
1405 if ((prop & SA_CONT) != 0 && action == SIG_DFL)
1406 goto out;
1407 } else {
1409 * Process is stopped or stopping.
1410 * - If traced, then no action is needed, unless killing.
1411 * - Run the process only if sending SIGCONT or SIGKILL.
1413 if ((p->p_slflag & PSL_TRACED) != 0 && signo != SIGKILL) {
1414 goto out;
1416 if ((prop & SA_CONT) != 0 || signo == SIGKILL) {
1418 * Re-adjust p_nstopchild if the process wasn't
1419 * collected by its parent.
1421 p->p_stat = SACTIVE;
1422 p->p_sflag &= ~PS_STOPPING;
1423 if (!p->p_waited) {
1424 p->p_pptr->p_nstopchild--;
1426 if (p->p_slflag & PSL_TRACED) {
1427 KASSERT(signo == SIGKILL);
1428 goto deliver;
1431 * Do not make signal pending if SIGCONT is default.
1433 * If the process catches SIGCONT, let it handle the
1434 * signal itself (if waiting on event - process runs,
1435 * otherwise continues sleeping).
1437 if ((prop & SA_CONT) != 0 && action == SIG_DFL) {
1438 KASSERT(signo != SIGKILL);
1439 goto deliver;
1441 } else if ((prop & SA_STOP) != 0) {
1443 * Already stopped, don't need to stop again.
1444 * (If we did the shell could get confused.)
1446 goto out;
1450 * Make signal pending.
1452 KASSERT((p->p_slflag & PSL_TRACED) == 0);
1453 sigput(&p->p_sigpend, p, kp);
1455 deliver:
1457 * Before we set LW_PENDSIG on any LWP, ensure that the signal is
1458 * visible on the per process list (for sigispending()). This
1459 * is unlikely to be needed in practice, but...
1461 membar_producer();
1464 * Try to find an LWP that can take the signal.
1466 #if KERN_SA
1467 if ((p->p_sa != NULL) && !toall) {
1468 struct sadata_vp *vp;
1470 * If we're in this delivery path, we are delivering a
1471 * signal that needs to go to one thread in the process.
1473 * In the SA case, we try to find an idle LWP that can take
1474 * the signal. If that fails, only then do we consider
1475 * interrupting active LWPs. Since the signal's going to
1476 * just one thread, we need only look at "blessed" lwps,
1477 * so scan the vps for them.
1479 l = NULL;
1480 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1481 l = vp->savp_lwp;
1482 if (sigpost(l, action, prop, kp->ksi_signo, 1))
1483 break;
1486 if (l == NULL) {
1487 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1488 l = vp->savp_lwp;
1489 if (sigpost(l, action, prop, kp->ksi_signo, 0))
1490 break;
1493 /* Delivered, skip next. */
1494 goto out;
1496 #endif
1497 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1498 if (sigpost(l, action, prop, kp->ksi_signo, 0) && !toall)
1499 break;
1501 out:
1503 * If the ksiginfo wasn't used, then bin it. XXXSMP freeing memory
1504 * with locks held. The caller should take care of this.
1506 ksiginfo_free(kp);
1509 void
1510 kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
1512 struct proc *p = l->l_proc;
1513 #ifdef KERN_SA
1514 struct lwp *le, *li;
1515 siginfo_t *si;
1516 int f;
1517 #endif /* KERN_SA */
1519 KASSERT(mutex_owned(p->p_lock));
1521 #ifdef KERN_SA
1522 if (p->p_sflag & PS_SA) {
1523 /* f indicates if we should clear LP_SA_NOBLOCK */
1524 f = ~l->l_pflag & LP_SA_NOBLOCK;
1525 l->l_pflag |= LP_SA_NOBLOCK;
1527 mutex_exit(p->p_lock);
1528 /* XXXUPSXXX What if not on sa_vp? */
1530 * WRS: I think it won't matter, beyond the
1531 * question of what exactly we do with a signal
1532 * to a blocked user thread. Also, we try hard to always
1533 * send signals to blessed lwps, so we would only send
1534 * to a non-blessed lwp under special circumstances.
1536 si = siginfo_alloc(PR_WAITOK);
1538 si->_info = ksi->ksi_info;
1541 * Figure out if we're the innocent victim or the main
1542 * perpitrator.
1544 le = li = NULL;
1545 if (KSI_TRAP_P(ksi))
1546 le = l;
1547 else
1548 li = l;
1549 if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
1550 sizeof(*si), si, siginfo_free) != 0) {
1551 siginfo_free(si);
1552 #if 0
1553 if (KSI_TRAP_P(ksi))
1554 /* XXX What dowe do here? The signal
1555 * didn't make it
1557 #endif
1559 l->l_pflag ^= f;
1560 mutex_enter(p->p_lock);
1561 return;
1563 #endif /* KERN_SA */
1565 (*p->p_emul->e_sendsig)(ksi, mask);
1569 * Stop any LWPs sleeping interruptably.
1571 static void
1572 proc_stop_lwps(struct proc *p)
1574 struct lwp *l;
1576 KASSERT(mutex_owned(p->p_lock));
1577 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1579 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1580 lwp_lock(l);
1581 if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) {
1582 l->l_stat = LSSTOP;
1583 p->p_nrlwps--;
1585 lwp_unlock(l);
1590 * Finish stopping of a process. Mark it stopped and notify the parent.
1592 * Drop p_lock briefly if PS_NOTIFYSTOP is set and ppsig is true.
1594 static void
1595 proc_stop_done(struct proc *p, bool ppsig, int ppmask)
1598 KASSERT(mutex_owned(proc_lock));
1599 KASSERT(mutex_owned(p->p_lock));
1600 KASSERT((p->p_sflag & PS_STOPPING) != 0);
1601 KASSERT(p->p_nrlwps == 0 || (p->p_nrlwps == 1 && p == curproc));
1603 p->p_sflag &= ~PS_STOPPING;
1604 p->p_stat = SSTOP;
1605 p->p_waited = 0;
1606 p->p_pptr->p_nstopchild++;
1607 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
1608 if (ppsig) {
1609 /* child_psignal drops p_lock briefly. */
1610 child_psignal(p, ppmask);
1612 cv_broadcast(&p->p_pptr->p_waitcv);
1617 * Stop the current process and switch away when being stopped or traced.
1619 static void
1620 sigswitch(bool ppsig, int ppmask, int signo)
1622 struct lwp *l = curlwp;
1623 struct proc *p = l->l_proc;
1624 int biglocks;
1626 KASSERT(mutex_owned(p->p_lock));
1627 KASSERT(l->l_stat == LSONPROC);
1628 KASSERT(p->p_nrlwps > 0);
1631 * On entry we know that the process needs to stop. If it's
1632 * the result of a 'sideways' stop signal that has been sourced
1633 * through issignal(), then stop other LWPs in the process too.
1635 if (p->p_stat == SACTIVE && (p->p_sflag & PS_STOPPING) == 0) {
1636 KASSERT(signo != 0);
1637 proc_stop(p, 1, signo);
1638 KASSERT(p->p_nrlwps > 0);
1642 * If we are the last live LWP, and the stop was a result of
1643 * a new signal, then signal the parent.
1645 if ((p->p_sflag & PS_STOPPING) != 0) {
1646 if (!mutex_tryenter(proc_lock)) {
1647 mutex_exit(p->p_lock);
1648 mutex_enter(proc_lock);
1649 mutex_enter(p->p_lock);
1652 if (p->p_nrlwps == 1 && (p->p_sflag & PS_STOPPING) != 0) {
1654 * Note that proc_stop_done() can drop
1655 * p->p_lock briefly.
1657 proc_stop_done(p, ppsig, ppmask);
1660 mutex_exit(proc_lock);
1664 * Unlock and switch away.
1666 KERNEL_UNLOCK_ALL(l, &biglocks);
1667 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1668 p->p_nrlwps--;
1669 lwp_lock(l);
1670 KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSLEEP);
1671 l->l_stat = LSSTOP;
1672 lwp_unlock(l);
1675 mutex_exit(p->p_lock);
1676 lwp_lock(l);
1677 mi_switch(l);
1678 KERNEL_LOCK(biglocks, l);
1679 mutex_enter(p->p_lock);
1683 * Check for a signal from the debugger.
1685 static int
1686 sigchecktrace(void)
1688 struct lwp *l = curlwp;
1689 struct proc *p = l->l_proc;
1690 sigset_t *mask;
1691 int signo;
1693 KASSERT(mutex_owned(p->p_lock));
1695 /* If there's a pending SIGKILL, process it immediately. */
1696 if (sigismember(&p->p_sigpend.sp_set, SIGKILL))
1697 return 0;
1700 * If we are no longer being traced, or the parent didn't
1701 * give us a signal, look for more signals.
1703 if ((p->p_slflag & PSL_TRACED) == 0 || p->p_xstat == 0)
1704 return 0;
1707 * If the new signal is being masked, look for other signals.
1708 * `p->p_sigctx.ps_siglist |= mask' is done in setrunnable().
1710 signo = p->p_xstat;
1711 p->p_xstat = 0;
1712 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
1713 if (sigismember(mask, signo))
1714 signo = 0;
1716 return signo;
1720 * If the current process has received a signal (should be caught or cause
1721 * termination, should interrupt current syscall), return the signal number.
1723 * Stop signals with default action are processed immediately, then cleared;
1724 * they aren't returned. This is checked after each entry to the system for
1725 * a syscall or trap.
1727 * We will also return -1 if the process is exiting and the current LWP must
1728 * follow suit.
1731 issignal(struct lwp *l)
1733 struct proc *p;
1734 int signo, prop;
1735 sigpend_t *sp;
1736 sigset_t ss;
1738 p = l->l_proc;
1739 sp = NULL;
1740 signo = 0;
1742 KASSERT(p == curproc);
1743 KASSERT(mutex_owned(p->p_lock));
1745 for (;;) {
1746 /* Discard any signals that we have decided not to take. */
1747 if (signo != 0)
1748 (void)sigget(sp, NULL, signo, NULL);
1750 /* Bail out if we do not own the virtual processor */
1751 if (l->l_flag & LW_SA && l->l_savp->savp_lwp != l)
1752 break;
1755 * If the process is stopped/stopping, then stop ourselves
1756 * now that we're on the kernel/userspace boundary. When
1757 * we awaken, check for a signal from the debugger.
1759 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1760 sigswitch(true, PS_NOCLDSTOP, 0);
1761 signo = sigchecktrace();
1762 } else
1763 signo = 0;
1765 /* Signals from the debugger are "out of band". */
1766 sp = NULL;
1769 * If the debugger didn't provide a signal, find a pending
1770 * signal from our set. Check per-LWP signals first, and
1771 * then per-process.
1773 if (signo == 0) {
1774 sp = &l->l_sigpend;
1775 ss = sp->sp_set;
1776 if ((p->p_lflag & PL_PPWAIT) != 0)
1777 sigminusset(&stopsigmask, &ss);
1778 sigminusset(&l->l_sigmask, &ss);
1780 if ((signo = firstsig(&ss)) == 0) {
1781 sp = &p->p_sigpend;
1782 ss = sp->sp_set;
1783 if ((p->p_lflag & PL_PPWAIT) != 0)
1784 sigminusset(&stopsigmask, &ss);
1785 sigminusset(&l->l_sigmask, &ss);
1787 if ((signo = firstsig(&ss)) == 0) {
1789 * No signal pending - clear the
1790 * indicator and bail out.
1792 lwp_lock(l);
1793 l->l_flag &= ~LW_PENDSIG;
1794 lwp_unlock(l);
1795 sp = NULL;
1796 break;
1802 * We should see pending but ignored signals only if
1803 * we are being traced.
1805 if (sigismember(&p->p_sigctx.ps_sigignore, signo) &&
1806 (p->p_slflag & PSL_TRACED) == 0) {
1807 /* Discard the signal. */
1808 continue;
1812 * If traced, always stop, and stay stopped until released
1813 * by the debugger. If the our parent process is waiting
1814 * for us, don't hang as we could deadlock.
1816 if ((p->p_slflag & PSL_TRACED) != 0 &&
1817 (p->p_lflag & PL_PPWAIT) == 0 && signo != SIGKILL) {
1818 /* Take the signal. */
1819 (void)sigget(sp, NULL, signo, NULL);
1820 p->p_xstat = signo;
1822 /* Emulation-specific handling of signal trace */
1823 if (p->p_emul->e_tracesig == NULL ||
1824 (*p->p_emul->e_tracesig)(p, signo) == 0)
1825 sigswitch(!(p->p_slflag & PSL_FSTRACE), 0,
1826 signo);
1828 /* Check for a signal from the debugger. */
1829 if ((signo = sigchecktrace()) == 0)
1830 continue;
1832 /* Signals from the debugger are "out of band". */
1833 sp = NULL;
1836 prop = sigprop[signo];
1839 * Decide whether the signal should be returned.
1841 switch ((long)SIGACTION(p, signo).sa_handler) {
1842 case (long)SIG_DFL:
1844 * Don't take default actions on system processes.
1846 if (p->p_pid <= 1) {
1847 #ifdef DIAGNOSTIC
1849 * Are you sure you want to ignore SIGSEGV
1850 * in init? XXX
1852 printf_nolog("Process (pid %d) got sig %d\n",
1853 p->p_pid, signo);
1854 #endif
1855 continue;
1859 * If there is a pending stop signal to process with
1860 * default action, stop here, then clear the signal.
1861 * However, if process is member of an orphaned
1862 * process group, ignore tty stop signals.
1864 if (prop & SA_STOP) {
1866 * XXX Don't hold proc_lock for p_lflag,
1867 * but it's not a big deal.
1869 if (p->p_slflag & PSL_TRACED ||
1870 ((p->p_lflag & PL_ORPHANPG) != 0 &&
1871 prop & SA_TTYSTOP)) {
1872 /* Ignore the signal. */
1873 continue;
1875 /* Take the signal. */
1876 (void)sigget(sp, NULL, signo, NULL);
1877 p->p_xstat = signo;
1878 signo = 0;
1879 sigswitch(true, PS_NOCLDSTOP, p->p_xstat);
1880 } else if (prop & SA_IGNORE) {
1882 * Except for SIGCONT, shouldn't get here.
1883 * Default action is to ignore; drop it.
1885 continue;
1887 break;
1889 case (long)SIG_IGN:
1890 #ifdef DEBUG_ISSIGNAL
1892 * Masking above should prevent us ever trying
1893 * to take action on an ignored signal other
1894 * than SIGCONT, unless process is traced.
1896 if ((prop & SA_CONT) == 0 &&
1897 (p->p_slflag & PSL_TRACED) == 0)
1898 printf_nolog("issignal\n");
1899 #endif
1900 continue;
1902 default:
1904 * This signal has an action, let postsig() process
1905 * it.
1907 break;
1910 break;
1913 l->l_sigpendset = sp;
1914 return signo;
1918 * Take the action for the specified signal
1919 * from the current set of pending signals.
1921 void
1922 postsig(int signo)
1924 struct lwp *l;
1925 struct proc *p;
1926 struct sigacts *ps;
1927 sig_t action;
1928 sigset_t *returnmask;
1929 ksiginfo_t ksi;
1931 l = curlwp;
1932 p = l->l_proc;
1933 ps = p->p_sigacts;
1935 KASSERT(mutex_owned(p->p_lock));
1936 KASSERT(signo > 0);
1939 * Set the new mask value and also defer further occurrences of this
1940 * signal.
1942 * Special case: user has done a sigsuspend. Here the current mask is
1943 * not of interest, but rather the mask from before the sigsuspend is
1944 * what we want restored after the signal processing is completed.
1946 if (l->l_sigrestore) {
1947 returnmask = &l->l_sigoldmask;
1948 l->l_sigrestore = 0;
1949 } else
1950 returnmask = &l->l_sigmask;
1953 * Commit to taking the signal before releasing the mutex.
1955 action = SIGACTION_PS(ps, signo).sa_handler;
1956 l->l_ru.ru_nsignals++;
1957 sigget(l->l_sigpendset, &ksi, signo, NULL);
1959 if (ktrpoint(KTR_PSIG)) {
1960 mutex_exit(p->p_lock);
1961 ktrpsig(signo, action, returnmask, &ksi);
1962 mutex_enter(p->p_lock);
1965 if (action == SIG_DFL) {
1967 * Default action, where the default is to kill
1968 * the process. (Other cases were ignored above.)
1970 sigexit(l, signo);
1971 return;
1975 * If we get here, the signal must be caught.
1977 #ifdef DIAGNOSTIC
1978 if (action == SIG_IGN || sigismember(&l->l_sigmask, signo))
1979 panic("postsig action");
1980 #endif
1982 kpsendsig(l, &ksi, returnmask);
1986 * sendsig:
1988 * Default signal delivery method for NetBSD.
1990 void
1991 sendsig(const struct ksiginfo *ksi, const sigset_t *mask)
1993 struct sigacts *sa;
1994 int sig;
1996 sig = ksi->ksi_signo;
1997 sa = curproc->p_sigacts;
1999 switch (sa->sa_sigdesc[sig].sd_vers) {
2000 case 0:
2001 case 1:
2002 /* Compat for 1.6 and earlier. */
2003 if (sendsig_sigcontext_vec == NULL) {
2004 break;
2006 (*sendsig_sigcontext_vec)(ksi, mask);
2007 return;
2008 case 2:
2009 case 3:
2010 sendsig_siginfo(ksi, mask);
2011 return;
2012 default:
2013 break;
2016 printf("sendsig: bad version %d\n", sa->sa_sigdesc[sig].sd_vers);
2017 sigexit(curlwp, SIGILL);
2021 * sendsig_reset:
2023 * Reset the signal action. Called from emulation specific sendsig()
2024 * before unlocking to deliver the signal.
2026 void
2027 sendsig_reset(struct lwp *l, int signo)
2029 struct proc *p = l->l_proc;
2030 struct sigacts *ps = p->p_sigacts;
2031 sigset_t *mask;
2033 KASSERT(mutex_owned(p->p_lock));
2035 p->p_sigctx.ps_lwp = 0;
2036 p->p_sigctx.ps_code = 0;
2037 p->p_sigctx.ps_signo = 0;
2039 mask = (p->p_sa != NULL) ? &p->p_sa->sa_sigmask : &l->l_sigmask;
2041 mutex_enter(&ps->sa_mutex);
2042 sigplusset(&SIGACTION_PS(ps, signo).sa_mask, mask);
2043 if (SIGACTION_PS(ps, signo).sa_flags & SA_RESETHAND) {
2044 sigdelset(&p->p_sigctx.ps_sigcatch, signo);
2045 if (signo != SIGCONT && sigprop[signo] & SA_IGNORE)
2046 sigaddset(&p->p_sigctx.ps_sigignore, signo);
2047 SIGACTION_PS(ps, signo).sa_handler = SIG_DFL;
2049 mutex_exit(&ps->sa_mutex);
2053 * Kill the current process for stated reason.
2055 void
2056 killproc(struct proc *p, const char *why)
2059 KASSERT(mutex_owned(proc_lock));
2061 log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
2062 uprintf_locked("sorry, pid %d was killed: %s\n", p->p_pid, why);
2063 psignal(p, SIGKILL);
2067 * Force the current process to exit with the specified signal, dumping core
2068 * if appropriate. We bypass the normal tests for masked and caught
2069 * signals, allowing unrecoverable failures to terminate the process without
2070 * changing signal state. Mark the accounting record with the signal
2071 * termination. If dumping core, save the signal number for the debugger.
2072 * Calls exit and does not return.
2074 void
2075 sigexit(struct lwp *l, int signo)
2077 int exitsig, error, docore;
2078 struct proc *p;
2079 struct lwp *t;
2081 p = l->l_proc;
2083 KASSERT(mutex_owned(p->p_lock));
2084 KERNEL_UNLOCK_ALL(l, NULL);
2087 * Don't permit coredump() multiple times in the same process.
2088 * Call back into sigexit, where we will be suspended until
2089 * the deed is done. Note that this is a recursive call, but
2090 * LW_WCORE will prevent us from coming back this way.
2092 if ((p->p_sflag & PS_WCORE) != 0) {
2093 lwp_lock(l);
2094 l->l_flag |= (LW_WCORE | LW_WEXIT | LW_WSUSPEND);
2095 lwp_unlock(l);
2096 mutex_exit(p->p_lock);
2097 lwp_userret(l);
2098 panic("sigexit 1");
2099 /* NOTREACHED */
2102 /* If process is already on the way out, then bail now. */
2103 if ((p->p_sflag & PS_WEXIT) != 0) {
2104 mutex_exit(p->p_lock);
2105 lwp_exit(l);
2106 panic("sigexit 2");
2107 /* NOTREACHED */
2111 * Prepare all other LWPs for exit. If dumping core, suspend them
2112 * so that their registers are available long enough to be dumped.
2114 if ((docore = (sigprop[signo] & SA_CORE)) != 0) {
2115 p->p_sflag |= PS_WCORE;
2116 for (;;) {
2117 LIST_FOREACH(t, &p->p_lwps, l_sibling) {
2118 lwp_lock(t);
2119 if (t == l) {
2120 t->l_flag &= ~LW_WSUSPEND;
2121 lwp_unlock(t);
2122 continue;
2124 t->l_flag |= (LW_WCORE | LW_WEXIT);
2125 lwp_suspend(l, t);
2128 if (p->p_nrlwps == 1)
2129 break;
2132 * Kick any LWPs sitting in lwp_wait1(), and wait
2133 * for everyone else to stop before proceeding.
2135 p->p_nlwpwait++;
2136 cv_broadcast(&p->p_lwpcv);
2137 cv_wait(&p->p_lwpcv, p->p_lock);
2138 p->p_nlwpwait--;
2142 exitsig = signo;
2143 p->p_acflag |= AXSIG;
2144 p->p_sigctx.ps_signo = signo;
2146 if (docore) {
2147 mutex_exit(p->p_lock);
2148 if ((error = (*coredump_vec)(l, NULL)) == 0)
2149 exitsig |= WCOREFLAG;
2151 if (kern_logsigexit) {
2152 int uid = l->l_cred ?
2153 (int)kauth_cred_geteuid(l->l_cred) : -1;
2155 if (error)
2156 log(LOG_INFO, lognocoredump, p->p_pid,
2157 p->p_comm, uid, signo, error);
2158 else
2159 log(LOG_INFO, logcoredump, p->p_pid,
2160 p->p_comm, uid, signo);
2163 #ifdef PAX_SEGVGUARD
2164 pax_segvguard(l, p->p_textvp, p->p_comm, true);
2165 #endif /* PAX_SEGVGUARD */
2166 /* Acquire the sched state mutex. exit1() will release it. */
2167 mutex_enter(p->p_lock);
2170 /* No longer dumping core. */
2171 p->p_sflag &= ~PS_WCORE;
2173 exit1(l, W_EXITCODE(0, exitsig));
2174 /* NOTREACHED */
2178 * Put process 'p' into the stopped state and optionally, notify the parent.
2180 void
2181 proc_stop(struct proc *p, int notify, int signo)
2183 struct lwp *l;
2185 KASSERT(mutex_owned(p->p_lock));
2188 * First off, set the stopping indicator and bring all sleeping
2189 * LWPs to a halt so they are included in p->p_nrlwps. We musn't
2190 * unlock between here and the p->p_nrlwps check below.
2192 p->p_sflag |= PS_STOPPING;
2193 if (notify)
2194 p->p_sflag |= PS_NOTIFYSTOP;
2195 else
2196 p->p_sflag &= ~PS_NOTIFYSTOP;
2197 membar_producer();
2199 proc_stop_lwps(p);
2202 * If there are no LWPs available to take the signal, then we
2203 * signal the parent process immediately. Otherwise, the last
2204 * LWP to stop will take care of it.
2207 if (p->p_nrlwps == 0) {
2208 proc_stop_done(p, true, PS_NOCLDSTOP);
2209 } else {
2211 * Have the remaining LWPs come to a halt, and trigger
2212 * proc_stop_callout() to ensure that they do.
2214 LIST_FOREACH(l, &p->p_lwps, l_sibling)
2215 sigpost(l, SIG_DFL, SA_STOP, signo, 0);
2216 callout_schedule(&proc_stop_ch, 1);
2221 * When stopping a process, we do not immediatly set sleeping LWPs stopped,
2222 * but wait for them to come to a halt at the kernel-user boundary. This is
2223 * to allow LWPs to release any locks that they may hold before stopping.
2225 * Non-interruptable sleeps can be long, and there is the potential for an
2226 * LWP to begin sleeping interruptably soon after the process has been set
2227 * stopping (PS_STOPPING). These LWPs will not notice that the process is
2228 * stopping, and so complete halt of the process and the return of status
2229 * information to the parent could be delayed indefinitely.
2231 * To handle this race, proc_stop_callout() runs once per tick while there
2232 * are stopping processes in the system. It sets LWPs that are sleeping
2233 * interruptably into the LSSTOP state.
2235 * Note that we are not concerned about keeping all LWPs stopped while the
2236 * process is stopped: stopped LWPs can awaken briefly to handle signals.
2237 * What we do need to ensure is that all LWPs in a stopping process have
2238 * stopped at least once, so that notification can be sent to the parent
2239 * process.
2241 static void
2242 proc_stop_callout(void *cookie)
2244 bool more, restart;
2245 struct proc *p;
2247 (void)cookie;
2249 do {
2250 restart = false;
2251 more = false;
2253 mutex_enter(proc_lock);
2254 PROCLIST_FOREACH(p, &allproc) {
2255 if ((p->p_flag & PK_MARKER) != 0)
2256 continue;
2257 mutex_enter(p->p_lock);
2259 if ((p->p_sflag & PS_STOPPING) == 0) {
2260 mutex_exit(p->p_lock);
2261 continue;
2264 /* Stop any LWPs sleeping interruptably. */
2265 proc_stop_lwps(p);
2266 if (p->p_nrlwps == 0) {
2268 * We brought the process to a halt.
2269 * Mark it as stopped and notify the
2270 * parent.
2272 if ((p->p_sflag & PS_NOTIFYSTOP) != 0) {
2274 * Note that proc_stop_done() will
2275 * drop p->p_lock briefly.
2276 * Arrange to restart and check
2277 * all processes again.
2279 restart = true;
2281 proc_stop_done(p, true, PS_NOCLDSTOP);
2282 } else
2283 more = true;
2285 mutex_exit(p->p_lock);
2286 if (restart)
2287 break;
2289 mutex_exit(proc_lock);
2290 } while (restart);
2293 * If we noted processes that are stopping but still have
2294 * running LWPs, then arrange to check again in 1 tick.
2296 if (more)
2297 callout_schedule(&proc_stop_ch, 1);
2301 * Given a process in state SSTOP, set the state back to SACTIVE and
2302 * move LSSTOP'd LWPs to LSSLEEP or make them runnable.
2304 void
2305 proc_unstop(struct proc *p)
2307 struct lwp *l;
2308 int sig;
2310 KASSERT(mutex_owned(proc_lock));
2311 KASSERT(mutex_owned(p->p_lock));
2313 p->p_stat = SACTIVE;
2314 p->p_sflag &= ~PS_STOPPING;
2315 sig = p->p_xstat;
2317 if (!p->p_waited)
2318 p->p_pptr->p_nstopchild--;
2320 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2321 lwp_lock(l);
2322 if (l->l_stat != LSSTOP) {
2323 lwp_unlock(l);
2324 continue;
2326 if (l->l_wchan == NULL) {
2327 setrunnable(l);
2328 continue;
2330 if (sig && (l->l_flag & LW_SINTR) != 0) {
2331 setrunnable(l);
2332 sig = 0;
2333 } else {
2334 l->l_stat = LSSLEEP;
2335 p->p_nrlwps++;
2336 lwp_unlock(l);
2341 static int
2342 filt_sigattach(struct knote *kn)
2344 struct proc *p = curproc;
2346 kn->kn_obj = p;
2347 kn->kn_flags |= EV_CLEAR; /* automatically set */
2349 mutex_enter(p->p_lock);
2350 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2351 mutex_exit(p->p_lock);
2353 return 0;
2356 static void
2357 filt_sigdetach(struct knote *kn)
2359 struct proc *p = kn->kn_obj;
2361 mutex_enter(p->p_lock);
2362 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2363 mutex_exit(p->p_lock);
2367 * Signal knotes are shared with proc knotes, so we apply a mask to
2368 * the hint in order to differentiate them from process hints. This
2369 * could be avoided by using a signal-specific knote list, but probably
2370 * isn't worth the trouble.
2372 static int
2373 filt_signal(struct knote *kn, long hint)
2376 if (hint & NOTE_SIGNAL) {
2377 hint &= ~NOTE_SIGNAL;
2379 if (kn->kn_id == hint)
2380 kn->kn_data++;
2382 return (kn->kn_data != 0);
2385 const struct filterops sig_filtops = {
2386 0, filt_sigattach, filt_sigdetach, filt_signal