No empty .Rs/.Re
[netbsd-mini2440.git] / sys / kern / subr_percpu.c
blob21cb48f56c52452bab303bd7555443b703bb8222
1 /* $NetBSD: subr_percpu.c,v 1.9 2008/12/15 11:59:22 ad Exp $ */
3 /*-
4 * Copyright (c)2007,2008 YAMAMOTO Takashi,
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
30 * per-cpu storage.
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.9 2008/12/15 11:59:22 ad Exp $");
36 #include <sys/param.h>
37 #include <sys/cpu.h>
38 #include <sys/kmem.h>
39 #include <sys/kernel.h>
40 #include <sys/mutex.h>
41 #include <sys/percpu.h>
42 #include <sys/rwlock.h>
43 #include <sys/vmem.h>
44 #include <sys/xcall.h>
46 #include <uvm/uvm_extern.h>
48 #define PERCPU_QUANTUM_SIZE (ALIGNBYTES + 1)
49 #define PERCPU_QCACHE_MAX 0
50 #define PERCPU_IMPORT_SIZE 2048
52 #if defined(DIAGNOSTIC)
53 #define MAGIC 0x50435055 /* "PCPU" */
54 #define percpu_encrypt(pc) ((pc) ^ MAGIC)
55 #define percpu_decrypt(pc) ((pc) ^ MAGIC)
56 #else /* defined(DIAGNOSTIC) */
57 #define percpu_encrypt(pc) (pc)
58 #define percpu_decrypt(pc) (pc)
59 #endif /* defined(DIAGNOSTIC) */
61 static krwlock_t percpu_swap_lock;
62 static kmutex_t percpu_allocation_lock;
63 static vmem_t *percpu_offset_arena;
64 static unsigned int percpu_nextoff = PERCPU_QUANTUM_SIZE;
66 static percpu_cpu_t *
67 cpu_percpu(struct cpu_info *ci)
70 return &ci->ci_data.cpu_percpu;
73 static unsigned int
74 percpu_offset(percpu_t *pc)
76 const unsigned int off = percpu_decrypt((uintptr_t)pc);
78 KASSERT(off < percpu_nextoff);
79 return off;
83 * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
86 static void
87 percpu_cpu_swap(void *p1, void *p2)
89 struct cpu_info * const ci = p1;
90 percpu_cpu_t * const newpcc = p2;
91 percpu_cpu_t * const pcc = cpu_percpu(ci);
94 * swap *pcc and *newpcc unless anyone has beaten us.
97 rw_enter(&percpu_swap_lock, RW_WRITER);
98 if (newpcc->pcc_size > pcc->pcc_size) {
99 percpu_cpu_t tmp;
100 int s;
102 tmp = *pcc;
105 * block interrupts so that we don't lose their modifications.
108 s = splhigh();
111 * copy data to new storage.
114 memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
117 * this assignment needs to be atomic for percpu_getptr_remote.
120 pcc->pcc_data = newpcc->pcc_data;
122 splx(s);
124 pcc->pcc_size = newpcc->pcc_size;
125 *newpcc = tmp;
127 rw_exit(&percpu_swap_lock);
131 * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
134 static void
135 percpu_cpu_enlarge(size_t size)
137 CPU_INFO_ITERATOR cii;
138 struct cpu_info *ci;
140 for (CPU_INFO_FOREACH(cii, ci)) {
141 percpu_cpu_t pcc;
143 pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
144 pcc.pcc_size = size;
145 if (!mp_online) {
146 percpu_cpu_swap(ci, &pcc);
147 } else {
148 uint64_t where;
150 where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
151 xc_wait(where);
153 KASSERT(pcc.pcc_size < size);
154 if (pcc.pcc_data != NULL) {
155 kmem_free(pcc.pcc_data, pcc.pcc_size);
161 * percpu_backend_alloc: vmem import callback for percpu_offset_arena
164 static vmem_addr_t
165 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
166 vm_flag_t vmflags)
168 unsigned int offset;
169 unsigned int nextoff;
171 ASSERT_SLEEPABLE();
172 KASSERT(dummy == NULL);
174 if ((vmflags & VM_NOSLEEP) != 0)
175 return VMEM_ADDR_NULL;
177 size = roundup(size, PERCPU_IMPORT_SIZE);
178 mutex_enter(&percpu_allocation_lock);
179 offset = percpu_nextoff;
180 percpu_nextoff = nextoff = percpu_nextoff + size;
181 mutex_exit(&percpu_allocation_lock);
183 percpu_cpu_enlarge(nextoff);
185 *resultsize = size;
186 return (vmem_addr_t)offset;
189 static void
190 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
192 size_t sz = (uintptr_t)vp2;
194 memset(vp, 0, sz);
198 * percpu_zero: initialize percpu storage with zero.
201 static void
202 percpu_zero(percpu_t *pc, size_t sz)
205 percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
209 * percpu_init: subsystem initialization
212 void
213 percpu_init(void)
216 ASSERT_SLEEPABLE();
217 rw_init(&percpu_swap_lock);
218 mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE);
220 percpu_offset_arena = vmem_create("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
221 percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
222 IPL_NONE);
226 * percpu_init_cpu: cpu initialization
228 * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
231 void
232 percpu_init_cpu(struct cpu_info *ci)
234 percpu_cpu_t * const pcc = cpu_percpu(ci);
235 size_t size = percpu_nextoff; /* XXX racy */
237 ASSERT_SLEEPABLE();
238 pcc->pcc_size = size;
239 if (size) {
240 pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
245 * percpu_alloc: allocate percpu storage
247 * => called in thread context.
248 * => considered as an expensive and rare operation.
249 * => allocated storage is initialized with zeros.
252 percpu_t *
253 percpu_alloc(size_t size)
255 unsigned int offset;
256 percpu_t *pc;
258 ASSERT_SLEEPABLE();
259 offset = vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT);
260 pc = (percpu_t *)percpu_encrypt((uintptr_t)offset);
261 percpu_zero(pc, size);
262 return pc;
266 * percpu_free: free percpu storage
268 * => called in thread context.
269 * => considered as an expensive and rare operation.
272 void
273 percpu_free(percpu_t *pc, size_t size)
276 ASSERT_SLEEPABLE();
277 vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
281 * percpu_getref:
283 * => safe to be used in either thread or interrupt context
284 * => disables preemption; must be bracketed with a percpu_putref()
287 void *
288 percpu_getref(percpu_t *pc)
291 KPREEMPT_DISABLE(curlwp);
292 return percpu_getptr_remote(pc, curcpu());
296 * percpu_putref:
298 * => drops the preemption-disabled count after caller is done with per-cpu
299 * data
302 void
303 percpu_putref(percpu_t *pc)
306 KPREEMPT_ENABLE(curlwp);
310 * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
311 * helpers to access remote cpu's percpu data.
313 * => called in thread context.
314 * => percpu_traverse_enter can block low-priority xcalls.
315 * => typical usage would be:
317 * sum = 0;
318 * percpu_traverse_enter();
319 * for (CPU_INFO_FOREACH(cii, ci)) {
320 * unsigned int *p = percpu_getptr_remote(pc, ci);
321 * sum += *p;
323 * percpu_traverse_exit();
326 void
327 percpu_traverse_enter(void)
330 ASSERT_SLEEPABLE();
331 rw_enter(&percpu_swap_lock, RW_READER);
334 void
335 percpu_traverse_exit(void)
338 rw_exit(&percpu_swap_lock);
341 void *
342 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
345 return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
349 * percpu_foreach: call the specified callback function for each cpus.
351 * => called in thread context.
352 * => caller should not rely on the cpu iteration order.
353 * => the callback function should be minimum because it is executed with
354 * holding a global lock, which can block low-priority xcalls.
355 * eg. it's illegal for a callback function to sleep for memory allocation.
357 void
358 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
360 CPU_INFO_ITERATOR cii;
361 struct cpu_info *ci;
363 percpu_traverse_enter();
364 for (CPU_INFO_FOREACH(cii, ci)) {
365 (*cb)(percpu_getptr_remote(pc, ci), arg, ci);
367 percpu_traverse_exit();