No empty .Rs/.Re
[netbsd-mini2440.git] / sys / kern / sys_lwp.c
blob7e2b0fa18669587b6c05e085299165baa22b0c28
1 /* $NetBSD: sys_lwp.c,v 1.47 2009/10/22 13:12:47 rmind Exp $ */
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Lightweight process (LWP) system calls. See kern_lwp.c for a description
34 * of LWPs.
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.47 2009/10/22 13:12:47 rmind Exp $");
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/pool.h>
43 #include <sys/proc.h>
44 #include <sys/types.h>
45 #include <sys/syscallargs.h>
46 #include <sys/kauth.h>
47 #include <sys/kmem.h>
48 #include <sys/sleepq.h>
49 #include <sys/lwpctl.h>
50 #include <sys/cpu.h>
52 #include <uvm/uvm_extern.h>
54 #include "opt_sa.h"
56 #define LWP_UNPARK_MAX 1024
58 static syncobj_t lwp_park_sobj = {
59 SOBJ_SLEEPQ_LIFO,
60 sleepq_unsleep,
61 sleepq_changepri,
62 sleepq_lendpri,
63 syncobj_noowner,
66 static sleeptab_t lwp_park_tab;
68 void
69 lwp_sys_init(void)
71 sleeptab_init(&lwp_park_tab);
74 int
75 sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
76 register_t *retval)
78 /* {
79 syscallarg(const ucontext_t *) ucp;
80 syscallarg(u_long) flags;
81 syscallarg(lwpid_t *) new_lwp;
82 } */
83 struct proc *p = l->l_proc;
84 struct lwp *l2;
85 vaddr_t uaddr;
86 ucontext_t *newuc;
87 int error, lid;
89 #ifdef KERN_SA
90 mutex_enter(p->p_lock);
91 if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) {
92 mutex_exit(p->p_lock);
93 return EINVAL;
95 mutex_exit(p->p_lock);
96 #endif
98 newuc = pool_get(&lwp_uc_pool, PR_WAITOK);
100 error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
101 if (error) {
102 pool_put(&lwp_uc_pool, newuc);
103 return error;
106 /* XXX check against resource limits */
108 uaddr = uvm_uarea_alloc();
109 if (__predict_false(uaddr == 0)) {
110 pool_put(&lwp_uc_pool, newuc);
111 return ENOMEM;
114 error = lwp_create(l, p, uaddr, SCARG(uap, flags) & LWP_DETACHED,
115 NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class);
116 if (__predict_false(error)) {
117 uvm_uarea_free(uaddr);
118 pool_put(&lwp_uc_pool, newuc);
119 return error;
122 lid = l2->l_lid;
123 error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid));
124 if (error) {
125 lwp_exit(l2);
126 pool_put(&lwp_uc_pool, newuc);
127 return error;
131 * Set the new LWP running, unless the caller has requested that
132 * it be created in suspended state. If the process is stopping,
133 * then the LWP is created stopped.
135 mutex_enter(p->p_lock);
136 lwp_lock(l2);
137 if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 &&
138 (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
139 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0)
140 l2->l_stat = LSSTOP;
141 else {
142 KASSERT(lwp_locked(l2, l2->l_cpu->ci_schedstate.spc_mutex));
143 p->p_nrlwps++;
144 l2->l_stat = LSRUN;
145 sched_enqueue(l2, false);
147 lwp_unlock(l2);
148 } else {
149 l2->l_stat = LSSUSPENDED;
150 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_lwplock);
152 mutex_exit(p->p_lock);
154 return 0;
158 sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
161 lwp_exit(l);
162 return 0;
166 sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
169 *retval = l->l_lid;
170 return 0;
174 sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
177 *retval = (uintptr_t)l->l_private;
178 return 0;
182 sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
183 register_t *retval)
185 /* {
186 syscallarg(void *) ptr;
187 } */
189 l->l_private = SCARG(uap, ptr);
190 #ifdef __HAVE_CPU_LWP_SETPRIVATE
191 cpu_lwp_setprivate(l, SCARG(uap, ptr));
192 #endif
194 return 0;
198 sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
199 register_t *retval)
201 /* {
202 syscallarg(lwpid_t) target;
203 } */
204 struct proc *p = l->l_proc;
205 struct lwp *t;
206 int error;
208 mutex_enter(p->p_lock);
210 #ifdef KERN_SA
211 if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) {
212 mutex_exit(p->p_lock);
213 return EINVAL;
215 #endif
217 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
218 mutex_exit(p->p_lock);
219 return ESRCH;
223 * Check for deadlock, which is only possible when we're suspending
224 * ourself. XXX There is a short race here, as p_nrlwps is only
225 * incremented when an LWP suspends itself on the kernel/user
226 * boundary. It's still possible to kill -9 the process so we
227 * don't bother checking further.
229 lwp_lock(t);
230 if ((t == l && p->p_nrlwps == 1) ||
231 (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
232 lwp_unlock(t);
233 mutex_exit(p->p_lock);
234 return EDEADLK;
238 * Suspend the LWP. XXX If it's on a different CPU, we should wait
239 * for it to be preempted, where it will put itself to sleep.
241 * Suspension of the current LWP will happen on return to userspace.
243 error = lwp_suspend(l, t);
244 if (error) {
245 mutex_exit(p->p_lock);
246 return error;
250 * Wait for:
251 * o process exiting
252 * o target LWP suspended
253 * o target LWP not suspended and L_WSUSPEND clear
254 * o target LWP exited
256 for (;;) {
257 error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
258 if (error) {
259 error = ERESTART;
260 break;
262 if (lwp_find(p, SCARG(uap, target)) == NULL) {
263 error = ESRCH;
264 break;
266 if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
267 error = ERESTART;
268 break;
270 if (t->l_stat == LSSUSPENDED ||
271 (t->l_flag & LW_WSUSPEND) == 0)
272 break;
274 mutex_exit(p->p_lock);
276 return error;
280 sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
281 register_t *retval)
283 /* {
284 syscallarg(lwpid_t) target;
285 } */
286 int error;
287 struct proc *p = l->l_proc;
288 struct lwp *t;
290 error = 0;
292 mutex_enter(p->p_lock);
293 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
294 mutex_exit(p->p_lock);
295 return ESRCH;
298 lwp_lock(t);
299 lwp_continue(t);
300 mutex_exit(p->p_lock);
302 return error;
306 sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
307 register_t *retval)
309 /* {
310 syscallarg(lwpid_t) target;
311 } */
312 struct lwp *t;
313 struct proc *p;
314 int error;
316 p = l->l_proc;
317 mutex_enter(p->p_lock);
319 if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
320 mutex_exit(p->p_lock);
321 return ESRCH;
324 lwp_lock(t);
325 t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
327 if (t->l_stat != LSSLEEP) {
328 lwp_unlock(t);
329 error = ENODEV;
330 } else if ((t->l_flag & LW_SINTR) == 0) {
331 lwp_unlock(t);
332 error = EBUSY;
333 } else {
334 /* Wake it up. lwp_unsleep() will release the LWP lock. */
335 lwp_unsleep(t, true);
336 error = 0;
339 mutex_exit(p->p_lock);
341 return error;
345 sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
346 register_t *retval)
348 /* {
349 syscallarg(lwpid_t) wait_for;
350 syscallarg(lwpid_t *) departed;
351 } */
352 struct proc *p = l->l_proc;
353 int error;
354 lwpid_t dep;
356 mutex_enter(p->p_lock);
357 error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0);
358 mutex_exit(p->p_lock);
360 if (error)
361 return error;
363 if (SCARG(uap, departed)) {
364 error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
365 if (error)
366 return error;
369 return 0;
373 sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
374 register_t *retval)
376 /* {
377 syscallarg(lwpid_t) target;
378 syscallarg(int) signo;
379 } */
380 struct proc *p = l->l_proc;
381 struct lwp *t;
382 ksiginfo_t ksi;
383 int signo = SCARG(uap, signo);
384 int error = 0;
386 if ((u_int)signo >= NSIG)
387 return EINVAL;
389 KSI_INIT(&ksi);
390 ksi.ksi_signo = signo;
391 ksi.ksi_code = SI_LWP;
392 ksi.ksi_pid = p->p_pid;
393 ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
394 ksi.ksi_lid = SCARG(uap, target);
396 mutex_enter(proc_lock);
397 mutex_enter(p->p_lock);
398 if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
399 error = ESRCH;
400 else if (signo != 0)
401 kpsignal2(p, &ksi);
402 mutex_exit(p->p_lock);
403 mutex_exit(proc_lock);
405 return error;
409 sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
410 register_t *retval)
412 /* {
413 syscallarg(lwpid_t) target;
414 } */
415 struct proc *p;
416 struct lwp *t;
417 lwpid_t target;
418 int error;
420 target = SCARG(uap, target);
421 p = l->l_proc;
423 mutex_enter(p->p_lock);
425 if (l->l_lid == target)
426 t = l;
427 else {
429 * We can't use lwp_find() here because the target might
430 * be a zombie.
432 LIST_FOREACH(t, &p->p_lwps, l_sibling)
433 if (t->l_lid == target)
434 break;
438 * If the LWP is already detached, there's nothing to do.
439 * If it's a zombie, we need to clean up after it. LSZOMB
440 * is visible with the proc mutex held.
442 * After we have detached or released the LWP, kick any
443 * other LWPs that may be sitting in _lwp_wait(), waiting
444 * for the target LWP to exit.
446 if (t != NULL && t->l_stat != LSIDL) {
447 if ((t->l_prflag & LPR_DETACHED) == 0) {
448 p->p_ndlwps++;
449 t->l_prflag |= LPR_DETACHED;
450 if (t->l_stat == LSZOMB) {
451 /* Releases proc mutex. */
452 lwp_free(t, false, false);
453 return 0;
455 error = 0;
458 * Have any LWPs sleeping in lwp_wait() recheck
459 * for deadlock.
461 cv_broadcast(&p->p_lwpcv);
462 } else
463 error = EINVAL;
464 } else
465 error = ESRCH;
467 mutex_exit(p->p_lock);
469 return error;
472 static inline wchan_t
473 lwp_park_wchan(struct proc *p, const void *hint)
476 return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint);
480 lwp_unpark(lwpid_t target, const void *hint)
482 sleepq_t *sq;
483 wchan_t wchan;
484 kmutex_t *mp;
485 proc_t *p;
486 lwp_t *t;
489 * Easy case: search for the LWP on the sleep queue. If
490 * it's parked, remove it from the queue and set running.
492 p = curproc;
493 wchan = lwp_park_wchan(p, hint);
494 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
496 TAILQ_FOREACH(t, sq, l_sleepchain)
497 if (t->l_proc == p && t->l_lid == target)
498 break;
500 if (__predict_true(t != NULL)) {
501 sleepq_remove(sq, t);
502 mutex_spin_exit(mp);
503 return 0;
507 * The LWP hasn't parked yet. Take the hit and mark the
508 * operation as pending.
510 mutex_spin_exit(mp);
512 mutex_enter(p->p_lock);
513 if ((t = lwp_find(p, target)) == NULL) {
514 mutex_exit(p->p_lock);
515 return ESRCH;
519 * It may not have parked yet, we may have raced, or it
520 * is parked on a different user sync object.
522 lwp_lock(t);
523 if (t->l_syncobj == &lwp_park_sobj) {
524 /* Releases the LWP lock. */
525 lwp_unsleep(t, true);
526 } else {
528 * Set the operation pending. The next call to _lwp_park
529 * will return early.
531 t->l_flag |= LW_UNPARKED;
532 lwp_unlock(t);
535 mutex_exit(p->p_lock);
536 return 0;
540 lwp_park(struct timespec *ts, const void *hint)
542 sleepq_t *sq;
543 kmutex_t *mp;
544 wchan_t wchan;
545 int timo, error;
546 lwp_t *l;
548 /* Fix up the given timeout value. */
549 if (ts != NULL) {
550 error = abstimeout2timo(ts, &timo);
551 if (error) {
552 return error;
554 KASSERT(timo != 0);
555 } else {
556 timo = 0;
559 /* Find and lock the sleep queue. */
560 l = curlwp;
561 wchan = lwp_park_wchan(l->l_proc, hint);
562 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
565 * Before going the full route and blocking, check to see if an
566 * unpark op is pending.
568 lwp_lock(l);
569 if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
570 l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
571 lwp_unlock(l);
572 mutex_spin_exit(mp);
573 return EALREADY;
575 lwp_unlock_to(l, mp);
576 l->l_biglocks = 0;
577 sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj);
578 error = sleepq_block(timo, true);
579 switch (error) {
580 case EWOULDBLOCK:
581 error = ETIMEDOUT;
582 break;
583 case ERESTART:
584 error = EINTR;
585 break;
586 default:
587 /* nothing */
588 break;
590 return error;
594 * 'park' an LWP waiting on a user-level synchronisation object. The LWP
595 * will remain parked until another LWP in the same process calls in and
596 * requests that it be unparked.
599 sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap,
600 register_t *retval)
602 /* {
603 syscallarg(const struct timespec *) ts;
604 syscallarg(lwpid_t) unpark;
605 syscallarg(const void *) hint;
606 syscallarg(const void *) unparkhint;
607 } */
608 struct timespec ts, *tsp;
609 int error;
611 if (SCARG(uap, ts) == NULL)
612 tsp = NULL;
613 else {
614 error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
615 if (error != 0)
616 return error;
617 tsp = &ts;
620 if (SCARG(uap, unpark) != 0) {
621 error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint));
622 if (error != 0)
623 return error;
626 return lwp_park(tsp, SCARG(uap, hint));
630 sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
631 register_t *retval)
633 /* {
634 syscallarg(lwpid_t) target;
635 syscallarg(const void *) hint;
636 } */
638 return lwp_unpark(SCARG(uap, target), SCARG(uap, hint));
642 sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
643 register_t *retval)
645 /* {
646 syscallarg(const lwpid_t *) targets;
647 syscallarg(size_t) ntargets;
648 syscallarg(const void *) hint;
649 } */
650 struct proc *p;
651 struct lwp *t;
652 sleepq_t *sq;
653 wchan_t wchan;
654 lwpid_t targets[32], *tp, *tpp, *tmax, target;
655 int error;
656 kmutex_t *mp;
657 u_int ntargets;
658 size_t sz;
660 p = l->l_proc;
661 ntargets = SCARG(uap, ntargets);
663 if (SCARG(uap, targets) == NULL) {
665 * Let the caller know how much we are willing to do, and
666 * let it unpark the LWPs in blocks.
668 *retval = LWP_UNPARK_MAX;
669 return 0;
671 if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
672 return EINVAL;
675 * Copy in the target array. If it's a small number of LWPs, then
676 * place the numbers on the stack.
678 sz = sizeof(target) * ntargets;
679 if (sz <= sizeof(targets))
680 tp = targets;
681 else {
682 tp = kmem_alloc(sz, KM_SLEEP);
683 if (tp == NULL)
684 return ENOMEM;
686 error = copyin(SCARG(uap, targets), tp, sz);
687 if (error != 0) {
688 if (tp != targets) {
689 kmem_free(tp, sz);
691 return error;
694 wchan = lwp_park_wchan(p, SCARG(uap, hint));
695 sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp);
697 for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) {
698 target = *tpp;
701 * Easy case: search for the LWP on the sleep queue. If
702 * it's parked, remove it from the queue and set running.
704 TAILQ_FOREACH(t, sq, l_sleepchain)
705 if (t->l_proc == p && t->l_lid == target)
706 break;
708 if (t != NULL) {
709 sleepq_remove(sq, t);
710 continue;
714 * The LWP hasn't parked yet. Take the hit and
715 * mark the operation as pending.
717 mutex_spin_exit(mp);
718 mutex_enter(p->p_lock);
719 if ((t = lwp_find(p, target)) == NULL) {
720 mutex_exit(p->p_lock);
721 mutex_spin_enter(mp);
722 continue;
724 lwp_lock(t);
727 * It may not have parked yet, we may have raced, or
728 * it is parked on a different user sync object.
730 if (t->l_syncobj == &lwp_park_sobj) {
731 /* Releases the LWP lock. */
732 lwp_unsleep(t, true);
733 } else {
735 * Set the operation pending. The next call to
736 * _lwp_park will return early.
738 t->l_flag |= LW_UNPARKED;
739 lwp_unlock(t);
742 mutex_exit(p->p_lock);
743 mutex_spin_enter(mp);
746 mutex_spin_exit(mp);
747 if (tp != targets)
748 kmem_free(tp, sz);
750 return 0;
754 sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
755 register_t *retval)
757 /* {
758 syscallarg(lwpid_t) target;
759 syscallarg(const char *) name;
760 } */
761 char *name, *oname;
762 lwpid_t target;
763 proc_t *p;
764 lwp_t *t;
765 int error;
767 if ((target = SCARG(uap, target)) == 0)
768 target = l->l_lid;
770 name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
771 if (name == NULL)
772 return ENOMEM;
773 error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
774 switch (error) {
775 case ENAMETOOLONG:
776 case 0:
777 name[MAXCOMLEN - 1] = '\0';
778 break;
779 default:
780 kmem_free(name, MAXCOMLEN);
781 return error;
784 p = curproc;
785 mutex_enter(p->p_lock);
786 if ((t = lwp_find(p, target)) == NULL) {
787 mutex_exit(p->p_lock);
788 kmem_free(name, MAXCOMLEN);
789 return ESRCH;
791 lwp_lock(t);
792 oname = t->l_name;
793 t->l_name = name;
794 lwp_unlock(t);
795 mutex_exit(p->p_lock);
797 if (oname != NULL)
798 kmem_free(oname, MAXCOMLEN);
800 return 0;
804 sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
805 register_t *retval)
807 /* {
808 syscallarg(lwpid_t) target;
809 syscallarg(char *) name;
810 syscallarg(size_t) len;
811 } */
812 char name[MAXCOMLEN];
813 lwpid_t target;
814 proc_t *p;
815 lwp_t *t;
817 if ((target = SCARG(uap, target)) == 0)
818 target = l->l_lid;
820 p = curproc;
821 mutex_enter(p->p_lock);
822 if ((t = lwp_find(p, target)) == NULL) {
823 mutex_exit(p->p_lock);
824 return ESRCH;
826 lwp_lock(t);
827 if (t->l_name == NULL)
828 name[0] = '\0';
829 else
830 strcpy(name, t->l_name);
831 lwp_unlock(t);
832 mutex_exit(p->p_lock);
834 return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL);
838 sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
839 register_t *retval)
841 /* {
842 syscallarg(int) features;
843 syscallarg(struct lwpctl **) address;
844 } */
845 int error, features;
846 vaddr_t vaddr;
848 features = SCARG(uap, features);
849 features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
850 if (features != 0)
851 return ENODEV;
852 if ((error = lwp_ctl_alloc(&vaddr)) != 0)
853 return error;
854 return copyout(&vaddr, SCARG(uap, address), sizeof(void *));