No empty .Rs/.Re
[netbsd-mini2440.git] / sys / kern / vfs_bio.c
blobda138390bb1a08ef4f305c1112e76cd13e23feae
1 /* $NetBSD: vfs_bio.c,v 1.221 2009/11/11 09:15:42 rmind Exp $ */
3 /*-
4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, and by Wasabi Systems, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 /*-
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 * (c) UNIX System Laboratories, Inc.
36 * All or some portions of this file are derived from material licensed
37 * to the University of California by American Telephone and Telegraph
38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39 * the permission of UNIX System Laboratories, Inc.
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
68 /*-
69 * Copyright (c) 1994 Christopher G. Demetriou
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions
73 * are met:
74 * 1. Redistributions of source code must retain the above copyright
75 * notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce the above copyright
77 * notice, this list of conditions and the following disclaimer in the
78 * documentation and/or other materials provided with the distribution.
79 * 3. All advertising materials mentioning features or use of this software
80 * must display the following acknowledgement:
81 * This product includes software developed by the University of
82 * California, Berkeley and its contributors.
83 * 4. Neither the name of the University nor the names of its contributors
84 * may be used to endorse or promote products derived from this software
85 * without specific prior written permission.
87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97 * SUCH DAMAGE.
99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
103 * The buffer cache subsystem.
105 * Some references:
106 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
107 * Leffler, et al.: The Design and Implementation of the 4.3BSD
108 * UNIX Operating System (Addison Welley, 1989)
110 * Locking
112 * There are three locks:
113 * - bufcache_lock: protects global buffer cache state.
114 * - BC_BUSY: a long term per-buffer lock.
115 * - buf_t::b_objlock: lock on completion (biowait vs biodone).
117 * For buffers associated with vnodes (a most common case) b_objlock points
118 * to the vnode_t::v_interlock. Otherwise, it points to generic buffer_lock.
120 * Lock order:
121 * bufcache_lock ->
122 * buf_t::b_objlock
125 #include <sys/cdefs.h>
126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.221 2009/11/11 09:15:42 rmind Exp $");
128 #include "fs_ffs.h"
129 #include "opt_bufcache.h"
131 #include <sys/param.h>
132 #include <sys/systm.h>
133 #include <sys/kernel.h>
134 #include <sys/proc.h>
135 #include <sys/buf.h>
136 #include <sys/vnode.h>
137 #include <sys/mount.h>
138 #include <sys/resourcevar.h>
139 #include <sys/sysctl.h>
140 #include <sys/conf.h>
141 #include <sys/kauth.h>
142 #include <sys/fstrans.h>
143 #include <sys/intr.h>
144 #include <sys/cpu.h>
145 #include <sys/wapbl.h>
147 #include <uvm/uvm.h>
149 #include <miscfs/specfs/specdev.h>
151 #ifndef BUFPAGES
152 # define BUFPAGES 0
153 #endif
155 #ifdef BUFCACHE
156 # if (BUFCACHE < 5) || (BUFCACHE > 95)
157 # error BUFCACHE is not between 5 and 95
158 # endif
159 #else
160 # define BUFCACHE 15
161 #endif
163 u_int nbuf; /* desired number of buffer headers */
164 u_int bufpages = BUFPAGES; /* optional hardwired count */
165 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */
167 /* Function prototypes */
168 struct bqueue;
170 static void buf_setwm(void);
171 static int buf_trim(void);
172 static void *bufpool_page_alloc(struct pool *, int);
173 static void bufpool_page_free(struct pool *, void *);
174 static buf_t *bio_doread(struct vnode *, daddr_t, int,
175 kauth_cred_t, int);
176 static buf_t *getnewbuf(int, int, int);
177 static int buf_lotsfree(void);
178 static int buf_canrelease(void);
179 static u_long buf_mempoolidx(u_long);
180 static u_long buf_roundsize(u_long);
181 static void *buf_malloc(size_t);
182 static void buf_mrelease(void *, size_t);
183 static void binsheadfree(buf_t *, struct bqueue *);
184 static void binstailfree(buf_t *, struct bqueue *);
185 int count_lock_queue(void); /* XXX */
186 #ifdef DEBUG
187 static int checkfreelist(buf_t *, struct bqueue *, int);
188 #endif
189 static void biointr(void *);
190 static void biodone2(buf_t *);
191 static void bref(buf_t *);
192 static void brele(buf_t *);
193 static void sysctl_kern_buf_setup(void);
194 static void sysctl_vm_buf_setup(void);
197 * Definitions for the buffer hash lists.
199 #define BUFHASH(dvp, lbn) \
200 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
201 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
202 u_long bufhash;
203 struct bqueue bufqueues[BQUEUES];
205 static kcondvar_t needbuffer_cv;
208 * Buffer queue lock.
210 kmutex_t bufcache_lock;
211 kmutex_t buffer_lock;
213 /* Software ISR for completed transfers. */
214 static void *biodone_sih;
216 /* Buffer pool for I/O buffers. */
217 static pool_cache_t buf_cache;
218 static pool_cache_t bufio_cache;
220 /* XXX - somewhat gross.. */
221 #if MAXBSIZE == 0x2000
222 #define NMEMPOOLS 5
223 #elif MAXBSIZE == 0x4000
224 #define NMEMPOOLS 6
225 #elif MAXBSIZE == 0x8000
226 #define NMEMPOOLS 7
227 #else
228 #define NMEMPOOLS 8
229 #endif
231 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */
232 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
233 #error update vfs_bio buffer memory parameters
234 #endif
236 /* Buffer memory pools */
237 static struct pool bmempools[NMEMPOOLS];
239 static struct vm_map *buf_map;
242 * Buffer memory pool allocator.
244 static void *
245 bufpool_page_alloc(struct pool *pp, int flags)
248 return (void *)uvm_km_alloc(buf_map,
249 MAXBSIZE, MAXBSIZE,
250 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
251 | UVM_KMF_WIRED);
254 static void
255 bufpool_page_free(struct pool *pp, void *v)
258 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
261 static struct pool_allocator bufmempool_allocator = {
262 .pa_alloc = bufpool_page_alloc,
263 .pa_free = bufpool_page_free,
264 .pa_pagesz = MAXBSIZE,
267 /* Buffer memory management variables */
268 u_long bufmem_valimit;
269 u_long bufmem_hiwater;
270 u_long bufmem_lowater;
271 u_long bufmem;
274 * MD code can call this to set a hard limit on the amount
275 * of virtual memory used by the buffer cache.
278 buf_setvalimit(vsize_t sz)
281 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
282 if (sz < NMEMPOOLS * MAXBSIZE)
283 return EINVAL;
285 bufmem_valimit = sz;
286 return 0;
289 static void
290 buf_setwm(void)
293 bufmem_hiwater = buf_memcalc();
294 /* lowater is approx. 2% of memory (with bufcache = 15) */
295 #define BUFMEM_WMSHIFT 3
296 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT)
297 if (bufmem_hiwater < BUFMEM_HIWMMIN)
298 /* Ensure a reasonable minimum value */
299 bufmem_hiwater = BUFMEM_HIWMMIN;
300 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
303 #ifdef DEBUG
304 int debug_verify_freelist = 0;
305 static int
306 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
308 buf_t *b;
310 if (!debug_verify_freelist)
311 return 1;
313 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
314 if (b == bp)
315 return ison ? 1 : 0;
318 return ison ? 0 : 1;
320 #endif
323 * Insq/Remq for the buffer hash lists.
324 * Call with buffer queue locked.
326 static void
327 binsheadfree(buf_t *bp, struct bqueue *dp)
330 KASSERT(mutex_owned(&bufcache_lock));
331 KASSERT(bp->b_freelistindex == -1);
332 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
333 dp->bq_bytes += bp->b_bufsize;
334 bp->b_freelistindex = dp - bufqueues;
337 static void
338 binstailfree(buf_t *bp, struct bqueue *dp)
341 KASSERT(mutex_owned(&bufcache_lock));
342 KASSERT(bp->b_freelistindex == -1);
343 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
344 dp->bq_bytes += bp->b_bufsize;
345 bp->b_freelistindex = dp - bufqueues;
348 void
349 bremfree(buf_t *bp)
351 struct bqueue *dp;
352 int bqidx = bp->b_freelistindex;
354 KASSERT(mutex_owned(&bufcache_lock));
356 KASSERT(bqidx != -1);
357 dp = &bufqueues[bqidx];
358 KDASSERT(checkfreelist(bp, dp, 1));
359 KASSERT(dp->bq_bytes >= bp->b_bufsize);
360 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
361 dp->bq_bytes -= bp->b_bufsize;
363 /* For the sysctl helper. */
364 if (bp == dp->bq_marker)
365 dp->bq_marker = NULL;
367 #if defined(DIAGNOSTIC)
368 bp->b_freelistindex = -1;
369 #endif /* defined(DIAGNOSTIC) */
373 * Add a reference to an buffer structure that came from buf_cache.
375 static inline void
376 bref(buf_t *bp)
379 KASSERT(mutex_owned(&bufcache_lock));
380 KASSERT(bp->b_refcnt > 0);
382 bp->b_refcnt++;
386 * Free an unused buffer structure that came from buf_cache.
388 static inline void
389 brele(buf_t *bp)
392 KASSERT(mutex_owned(&bufcache_lock));
393 KASSERT(bp->b_refcnt > 0);
395 if (bp->b_refcnt-- == 1) {
396 buf_destroy(bp);
397 #ifdef DEBUG
398 memset((char *)bp, 0, sizeof(*bp));
399 #endif
400 pool_cache_put(buf_cache, bp);
405 * note that for some ports this is used by pmap bootstrap code to
406 * determine kva size.
408 u_long
409 buf_memcalc(void)
411 u_long n;
414 * Determine the upper bound of memory to use for buffers.
416 * - If bufpages is specified, use that as the number
417 * pages.
419 * - Otherwise, use bufcache as the percentage of
420 * physical memory.
422 if (bufpages != 0) {
423 n = bufpages;
424 } else {
425 if (bufcache < 5) {
426 printf("forcing bufcache %d -> 5", bufcache);
427 bufcache = 5;
429 if (bufcache > 95) {
430 printf("forcing bufcache %d -> 95", bufcache);
431 bufcache = 95;
433 n = calc_cache_size(buf_map, bufcache,
434 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
435 / PAGE_SIZE;
438 n <<= PAGE_SHIFT;
439 if (bufmem_valimit != 0 && n > bufmem_valimit)
440 n = bufmem_valimit;
442 return (n);
446 * Initialize buffers and hash links for buffers.
448 void
449 bufinit(void)
451 struct bqueue *dp;
452 int use_std;
453 u_int i;
455 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
456 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
457 cv_init(&needbuffer_cv, "needbuf");
459 if (bufmem_valimit != 0) {
460 vaddr_t minaddr = 0, maxaddr;
461 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
462 bufmem_valimit, 0, false, 0);
463 if (buf_map == NULL)
464 panic("bufinit: cannot allocate submap");
465 } else
466 buf_map = kernel_map;
469 * Initialize buffer cache memory parameters.
471 bufmem = 0;
472 buf_setwm();
474 /* On "small" machines use small pool page sizes where possible */
475 use_std = (physmem < atop(16*1024*1024));
478 * Also use them on systems that can map the pool pages using
479 * a direct-mapped segment.
481 #ifdef PMAP_MAP_POOLPAGE
482 use_std = 1;
483 #endif
485 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
486 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
487 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
488 "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
490 bufmempool_allocator.pa_backingmap = buf_map;
491 for (i = 0; i < NMEMPOOLS; i++) {
492 struct pool_allocator *pa;
493 struct pool *pp = &bmempools[i];
494 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
495 char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
496 if (__predict_true(size >= 1024))
497 (void)snprintf(name, 8, "buf%dk", size / 1024);
498 else
499 (void)snprintf(name, 8, "buf%db", size);
500 pa = (size <= PAGE_SIZE && use_std)
501 ? &pool_allocator_nointr
502 : &bufmempool_allocator;
503 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
504 pool_setlowat(pp, 1);
505 pool_sethiwat(pp, 1);
508 /* Initialize the buffer queues */
509 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
510 TAILQ_INIT(&dp->bq_queue);
511 dp->bq_bytes = 0;
515 * Estimate hash table size based on the amount of memory we
516 * intend to use for the buffer cache. The average buffer
517 * size is dependent on our clients (i.e. filesystems).
519 * For now, use an empirical 3K per buffer.
521 nbuf = (bufmem_hiwater / 1024) / 3;
522 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
524 sysctl_kern_buf_setup();
525 sysctl_vm_buf_setup();
528 void
529 bufinit2(void)
532 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
533 NULL);
534 if (biodone_sih == NULL)
535 panic("bufinit2: can't establish soft interrupt");
538 static int
539 buf_lotsfree(void)
541 int try, thresh;
543 /* Always allocate if less than the low water mark. */
544 if (bufmem < bufmem_lowater)
545 return 1;
547 /* Never allocate if greater than the high water mark. */
548 if (bufmem > bufmem_hiwater)
549 return 0;
551 /* If there's anything on the AGE list, it should be eaten. */
552 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
553 return 0;
556 * The probabily of getting a new allocation is inversely
557 * proportional to the current size of the cache, using
558 * a granularity of 16 steps.
560 try = random() & 0x0000000fL;
562 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
563 thresh = (bufmem - bufmem_lowater) /
564 ((bufmem_hiwater - bufmem_lowater) / 16);
566 if (try >= thresh)
567 return 1;
569 /* Otherwise don't allocate. */
570 return 0;
574 * Return estimate of bytes we think need to be
575 * released to help resolve low memory conditions.
577 * => called with bufcache_lock held.
579 static int
580 buf_canrelease(void)
582 int pagedemand, ninvalid = 0;
584 KASSERT(mutex_owned(&bufcache_lock));
586 if (bufmem < bufmem_lowater)
587 return 0;
589 if (bufmem > bufmem_hiwater)
590 return bufmem - bufmem_hiwater;
592 ninvalid += bufqueues[BQ_AGE].bq_bytes;
594 pagedemand = uvmexp.freetarg - uvmexp.free;
595 if (pagedemand < 0)
596 return ninvalid;
597 return MAX(ninvalid, MIN(2 * MAXBSIZE,
598 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
602 * Buffer memory allocation helper functions
604 static u_long
605 buf_mempoolidx(u_long size)
607 u_int n = 0;
609 size -= 1;
610 size >>= MEMPOOL_INDEX_OFFSET;
611 while (size) {
612 size >>= 1;
613 n += 1;
615 if (n >= NMEMPOOLS)
616 panic("buf mem pool index %d", n);
617 return n;
620 static u_long
621 buf_roundsize(u_long size)
623 /* Round up to nearest power of 2 */
624 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
627 static void *
628 buf_malloc(size_t size)
630 u_int n = buf_mempoolidx(size);
631 void *addr;
633 while (1) {
634 addr = pool_get(&bmempools[n], PR_NOWAIT);
635 if (addr != NULL)
636 break;
638 /* No memory, see if we can free some. If so, try again */
639 mutex_enter(&bufcache_lock);
640 if (buf_drain(1) > 0) {
641 mutex_exit(&bufcache_lock);
642 continue;
645 if (curlwp == uvm.pagedaemon_lwp) {
646 mutex_exit(&bufcache_lock);
647 return NULL;
650 /* Wait for buffers to arrive on the LRU queue */
651 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
652 mutex_exit(&bufcache_lock);
655 return addr;
658 static void
659 buf_mrelease(void *addr, size_t size)
662 pool_put(&bmempools[buf_mempoolidx(size)], addr);
666 * bread()/breadn() helper.
668 static buf_t *
669 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
670 int async)
672 buf_t *bp;
673 struct mount *mp;
675 bp = getblk(vp, blkno, size, 0, 0);
677 #ifdef DIAGNOSTIC
678 if (bp == NULL) {
679 panic("bio_doread: no such buf");
681 #endif
684 * If buffer does not have data valid, start a read.
685 * Note that if buffer is BC_INVAL, getblk() won't return it.
686 * Therefore, it's valid if its I/O has completed or been delayed.
688 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
689 /* Start I/O for the buffer. */
690 SET(bp->b_flags, B_READ | async);
691 if (async)
692 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
693 else
694 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
695 VOP_STRATEGY(vp, bp);
697 /* Pay for the read. */
698 curlwp->l_ru.ru_inblock++;
699 } else if (async)
700 brelse(bp, 0);
702 if (vp->v_type == VBLK)
703 mp = vp->v_specmountpoint;
704 else
705 mp = vp->v_mount;
708 * Collect statistics on synchronous and asynchronous reads.
709 * Reads from block devices are charged to their associated
710 * filesystem (if any).
712 if (mp != NULL) {
713 if (async == 0)
714 mp->mnt_stat.f_syncreads++;
715 else
716 mp->mnt_stat.f_asyncreads++;
719 return (bp);
723 * Read a disk block.
724 * This algorithm described in Bach (p.54).
727 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
728 int flags, buf_t **bpp)
730 buf_t *bp;
731 int error;
733 /* Get buffer for block. */
734 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
736 /* Wait for the read to complete, and return result. */
737 error = biowait(bp);
738 if (error == 0 && (flags & B_MODIFY) != 0)
739 error = fscow_run(bp, true);
741 return error;
745 * Read-ahead multiple disk blocks. The first is sync, the rest async.
746 * Trivial modification to the breada algorithm presented in Bach (p.55).
749 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
750 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
752 buf_t *bp;
753 int error, i;
755 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
758 * For each of the read-ahead blocks, start a read, if necessary.
760 mutex_enter(&bufcache_lock);
761 for (i = 0; i < nrablks; i++) {
762 /* If it's in the cache, just go on to next one. */
763 if (incore(vp, rablks[i]))
764 continue;
766 /* Get a buffer for the read-ahead block */
767 mutex_exit(&bufcache_lock);
768 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
769 mutex_enter(&bufcache_lock);
771 mutex_exit(&bufcache_lock);
773 /* Otherwise, we had to start a read for it; wait until it's valid. */
774 error = biowait(bp);
775 if (error == 0 && (flags & B_MODIFY) != 0)
776 error = fscow_run(bp, true);
777 return error;
781 * Block write. Described in Bach (p.56)
784 bwrite(buf_t *bp)
786 int rv, sync, wasdelayed;
787 struct vnode *vp;
788 struct mount *mp;
790 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
791 KASSERT(!cv_has_waiters(&bp->b_done));
793 vp = bp->b_vp;
794 if (vp != NULL) {
795 KASSERT(bp->b_objlock == &vp->v_interlock);
796 if (vp->v_type == VBLK)
797 mp = vp->v_specmountpoint;
798 else
799 mp = vp->v_mount;
800 } else {
801 mp = NULL;
804 if (mp && mp->mnt_wapbl) {
805 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
806 bdwrite(bp);
807 return 0;
812 * Remember buffer type, to switch on it later. If the write was
813 * synchronous, but the file system was mounted with MNT_ASYNC,
814 * convert it to a delayed write.
815 * XXX note that this relies on delayed tape writes being converted
816 * to async, not sync writes (which is safe, but ugly).
818 sync = !ISSET(bp->b_flags, B_ASYNC);
819 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
820 bdwrite(bp);
821 return (0);
825 * Collect statistics on synchronous and asynchronous writes.
826 * Writes to block devices are charged to their associated
827 * filesystem (if any).
829 if (mp != NULL) {
830 if (sync)
831 mp->mnt_stat.f_syncwrites++;
832 else
833 mp->mnt_stat.f_asyncwrites++;
837 * Pay for the I/O operation and make sure the buf is on the correct
838 * vnode queue.
840 bp->b_error = 0;
841 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
842 CLR(bp->b_flags, B_READ);
843 if (wasdelayed) {
844 mutex_enter(&bufcache_lock);
845 mutex_enter(bp->b_objlock);
846 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
847 reassignbuf(bp, bp->b_vp);
848 mutex_exit(&bufcache_lock);
849 } else {
850 curlwp->l_ru.ru_oublock++;
851 mutex_enter(bp->b_objlock);
852 CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
854 if (vp != NULL)
855 vp->v_numoutput++;
856 mutex_exit(bp->b_objlock);
858 /* Initiate disk write. */
859 if (sync)
860 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
861 else
862 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
864 VOP_STRATEGY(vp, bp);
866 if (sync) {
867 /* If I/O was synchronous, wait for it to complete. */
868 rv = biowait(bp);
870 /* Release the buffer. */
871 brelse(bp, 0);
873 return (rv);
874 } else {
875 return (0);
880 vn_bwrite(void *v)
882 struct vop_bwrite_args *ap = v;
884 return (bwrite(ap->a_bp));
888 * Delayed write.
890 * The buffer is marked dirty, but is not queued for I/O.
891 * This routine should be used when the buffer is expected
892 * to be modified again soon, typically a small write that
893 * partially fills a buffer.
895 * NB: magnetic tapes cannot be delayed; they must be
896 * written in the order that the writes are requested.
898 * Described in Leffler, et al. (pp. 208-213).
900 void
901 bdwrite(buf_t *bp)
904 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
905 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
906 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
907 KASSERT(!cv_has_waiters(&bp->b_done));
909 /* If this is a tape block, write the block now. */
910 if (bdev_type(bp->b_dev) == D_TAPE) {
911 bawrite(bp);
912 return;
915 if (wapbl_vphaswapbl(bp->b_vp)) {
916 struct mount *mp = wapbl_vptomp(bp->b_vp);
918 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
919 WAPBL_ADD_BUF(mp, bp);
924 * If the block hasn't been seen before:
925 * (1) Mark it as having been seen,
926 * (2) Charge for the write,
927 * (3) Make sure it's on its vnode's correct block list.
929 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
931 if (!ISSET(bp->b_oflags, BO_DELWRI)) {
932 mutex_enter(&bufcache_lock);
933 mutex_enter(bp->b_objlock);
934 SET(bp->b_oflags, BO_DELWRI);
935 curlwp->l_ru.ru_oublock++;
936 reassignbuf(bp, bp->b_vp);
937 mutex_exit(&bufcache_lock);
938 } else {
939 mutex_enter(bp->b_objlock);
941 /* Otherwise, the "write" is done, so mark and release the buffer. */
942 CLR(bp->b_oflags, BO_DONE);
943 mutex_exit(bp->b_objlock);
945 brelse(bp, 0);
949 * Asynchronous block write; just an asynchronous bwrite().
951 void
952 bawrite(buf_t *bp)
955 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
957 SET(bp->b_flags, B_ASYNC);
958 VOP_BWRITE(bp);
962 * Release a buffer on to the free lists.
963 * Described in Bach (p. 46).
965 void
966 brelsel(buf_t *bp, int set)
968 struct bqueue *bufq;
969 struct vnode *vp;
971 KASSERT(mutex_owned(&bufcache_lock));
972 KASSERT(!cv_has_waiters(&bp->b_done));
973 KASSERT(bp->b_refcnt > 0);
975 SET(bp->b_cflags, set);
977 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
978 KASSERT(bp->b_iodone == NULL);
980 /* Wake up any processes waiting for any buffer to become free. */
981 cv_signal(&needbuffer_cv);
983 /* Wake up any proceeses waiting for _this_ buffer to become */
984 if (ISSET(bp->b_cflags, BC_WANTED))
985 CLR(bp->b_cflags, BC_WANTED|BC_AGE);
988 * Determine which queue the buffer should be on, then put it there.
991 /* If it's locked, don't report an error; try again later. */
992 if (ISSET(bp->b_flags, B_LOCKED))
993 bp->b_error = 0;
995 /* If it's not cacheable, or an error, mark it invalid. */
996 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
997 SET(bp->b_cflags, BC_INVAL);
999 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1001 * This is a delayed write buffer that was just flushed to
1002 * disk. It is still on the LRU queue. If it's become
1003 * invalid, then we need to move it to a different queue;
1004 * otherwise leave it in its current position.
1006 CLR(bp->b_cflags, BC_VFLUSH);
1007 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1008 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1009 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1010 goto already_queued;
1011 } else {
1012 bremfree(bp);
1016 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1017 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1018 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1020 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1022 * If it's invalid or empty, dissociate it from its vnode
1023 * and put on the head of the appropriate queue.
1025 if (ISSET(bp->b_flags, B_LOCKED)) {
1026 if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1027 struct mount *mp = wapbl_vptomp(vp);
1029 KASSERT(bp->b_iodone
1030 != mp->mnt_wapbl_op->wo_wapbl_biodone);
1031 WAPBL_REMOVE_BUF(mp, bp);
1035 mutex_enter(bp->b_objlock);
1036 CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1037 if ((vp = bp->b_vp) != NULL) {
1038 KASSERT(bp->b_objlock == &vp->v_interlock);
1039 reassignbuf(bp, bp->b_vp);
1040 brelvp(bp);
1041 mutex_exit(&vp->v_interlock);
1042 } else {
1043 KASSERT(bp->b_objlock == &buffer_lock);
1044 mutex_exit(bp->b_objlock);
1047 if (bp->b_bufsize <= 0)
1048 /* no data */
1049 goto already_queued;
1050 else
1051 /* invalid data */
1052 bufq = &bufqueues[BQ_AGE];
1053 binsheadfree(bp, bufq);
1054 } else {
1056 * It has valid data. Put it on the end of the appropriate
1057 * queue, so that it'll stick around for as long as possible.
1058 * If buf is AGE, but has dependencies, must put it on last
1059 * bufqueue to be scanned, ie LRU. This protects against the
1060 * livelock where BQ_AGE only has buffers with dependencies,
1061 * and we thus never get to the dependent buffers in BQ_LRU.
1063 if (ISSET(bp->b_flags, B_LOCKED)) {
1064 /* locked in core */
1065 bufq = &bufqueues[BQ_LOCKED];
1066 } else if (!ISSET(bp->b_cflags, BC_AGE)) {
1067 /* valid data */
1068 bufq = &bufqueues[BQ_LRU];
1069 } else {
1070 /* stale but valid data */
1071 bufq = &bufqueues[BQ_AGE];
1073 binstailfree(bp, bufq);
1075 already_queued:
1076 /* Unlock the buffer. */
1077 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1078 CLR(bp->b_flags, B_ASYNC);
1079 cv_broadcast(&bp->b_busy);
1081 if (bp->b_bufsize <= 0)
1082 brele(bp);
1085 void
1086 brelse(buf_t *bp, int set)
1089 mutex_enter(&bufcache_lock);
1090 brelsel(bp, set);
1091 mutex_exit(&bufcache_lock);
1095 * Determine if a block is in the cache.
1096 * Just look on what would be its hash chain. If it's there, return
1097 * a pointer to it, unless it's marked invalid. If it's marked invalid,
1098 * we normally don't return the buffer, unless the caller explicitly
1099 * wants us to.
1101 buf_t *
1102 incore(struct vnode *vp, daddr_t blkno)
1104 buf_t *bp;
1106 KASSERT(mutex_owned(&bufcache_lock));
1108 /* Search hash chain */
1109 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1110 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1111 !ISSET(bp->b_cflags, BC_INVAL)) {
1112 KASSERT(bp->b_objlock == &vp->v_interlock);
1113 return (bp);
1117 return (NULL);
1121 * Get a block of requested size that is associated with
1122 * a given vnode and block offset. If it is found in the
1123 * block cache, mark it as having been found, make it busy
1124 * and return it. Otherwise, return an empty block of the
1125 * correct size. It is up to the caller to insure that the
1126 * cached blocks be of the correct size.
1128 buf_t *
1129 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1131 int err, preserve;
1132 buf_t *bp;
1134 mutex_enter(&bufcache_lock);
1135 loop:
1136 bp = incore(vp, blkno);
1137 if (bp != NULL) {
1138 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1139 if (err != 0) {
1140 if (err == EPASSTHROUGH)
1141 goto loop;
1142 mutex_exit(&bufcache_lock);
1143 return (NULL);
1145 KASSERT(!cv_has_waiters(&bp->b_done));
1146 #ifdef DIAGNOSTIC
1147 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1148 bp->b_bcount < size && vp->v_type != VBLK)
1149 panic("getblk: block size invariant failed");
1150 #endif
1151 bremfree(bp);
1152 preserve = 1;
1153 } else {
1154 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1155 goto loop;
1157 if (incore(vp, blkno) != NULL) {
1158 /* The block has come into memory in the meantime. */
1159 brelsel(bp, 0);
1160 goto loop;
1163 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1164 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1165 mutex_enter(&vp->v_interlock);
1166 bgetvp(vp, bp);
1167 mutex_exit(&vp->v_interlock);
1168 preserve = 0;
1170 mutex_exit(&bufcache_lock);
1173 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1174 * if we re-size buffers here.
1176 if (ISSET(bp->b_flags, B_LOCKED)) {
1177 KASSERT(bp->b_bufsize >= size);
1178 } else {
1179 if (allocbuf(bp, size, preserve)) {
1180 mutex_enter(&bufcache_lock);
1181 LIST_REMOVE(bp, b_hash);
1182 mutex_exit(&bufcache_lock);
1183 brelse(bp, BC_INVAL);
1184 return NULL;
1187 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1188 return (bp);
1192 * Get an empty, disassociated buffer of given size.
1194 buf_t *
1195 geteblk(int size)
1197 buf_t *bp;
1198 int error;
1200 mutex_enter(&bufcache_lock);
1201 while ((bp = getnewbuf(0, 0, 0)) == NULL)
1204 SET(bp->b_cflags, BC_INVAL);
1205 LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1206 mutex_exit(&bufcache_lock);
1207 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1208 error = allocbuf(bp, size, 0);
1209 KASSERT(error == 0);
1210 return (bp);
1214 * Expand or contract the actual memory allocated to a buffer.
1216 * If the buffer shrinks, data is lost, so it's up to the
1217 * caller to have written it out *first*; this routine will not
1218 * start a write. If the buffer grows, it's the callers
1219 * responsibility to fill out the buffer's additional contents.
1222 allocbuf(buf_t *bp, int size, int preserve)
1224 void *addr;
1225 vsize_t oldsize, desired_size;
1226 int oldcount;
1227 int delta;
1229 desired_size = buf_roundsize(size);
1230 if (desired_size > MAXBSIZE)
1231 printf("allocbuf: buffer larger than MAXBSIZE requested");
1233 oldcount = bp->b_bcount;
1235 bp->b_bcount = size;
1237 oldsize = bp->b_bufsize;
1238 if (oldsize == desired_size) {
1240 * Do not short cut the WAPBL resize, as the buffer length
1241 * could still have changed and this would corrupt the
1242 * tracking of the transaction length.
1244 goto out;
1248 * If we want a buffer of a different size, re-allocate the
1249 * buffer's memory; copy old content only if needed.
1251 addr = buf_malloc(desired_size);
1252 if (addr == NULL)
1253 return ENOMEM;
1254 if (preserve)
1255 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1256 if (bp->b_data != NULL)
1257 buf_mrelease(bp->b_data, oldsize);
1258 bp->b_data = addr;
1259 bp->b_bufsize = desired_size;
1262 * Update overall buffer memory counter (protected by bufcache_lock)
1264 delta = (long)desired_size - (long)oldsize;
1266 mutex_enter(&bufcache_lock);
1267 if ((bufmem += delta) > bufmem_hiwater) {
1269 * Need to trim overall memory usage.
1271 while (buf_canrelease()) {
1272 if (curcpu()->ci_schedstate.spc_flags &
1273 SPCF_SHOULDYIELD) {
1274 mutex_exit(&bufcache_lock);
1275 preempt();
1276 mutex_enter(&bufcache_lock);
1278 if (buf_trim() == 0)
1279 break;
1282 mutex_exit(&bufcache_lock);
1284 out:
1285 if (wapbl_vphaswapbl(bp->b_vp))
1286 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1288 return 0;
1292 * Find a buffer which is available for use.
1293 * Select something from a free list.
1294 * Preference is to AGE list, then LRU list.
1296 * Called with the buffer queues locked.
1297 * Return buffer locked.
1299 buf_t *
1300 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1302 buf_t *bp;
1303 struct vnode *vp;
1305 start:
1306 KASSERT(mutex_owned(&bufcache_lock));
1309 * Get a new buffer from the pool.
1311 if (!from_bufq && buf_lotsfree()) {
1312 mutex_exit(&bufcache_lock);
1313 bp = pool_cache_get(buf_cache, PR_NOWAIT);
1314 if (bp != NULL) {
1315 memset((char *)bp, 0, sizeof(*bp));
1316 buf_init(bp);
1317 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
1318 mutex_enter(&bufcache_lock);
1319 #if defined(DIAGNOSTIC)
1320 bp->b_freelistindex = -1;
1321 #endif /* defined(DIAGNOSTIC) */
1322 return (bp);
1324 mutex_enter(&bufcache_lock);
1327 KASSERT(mutex_owned(&bufcache_lock));
1328 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1329 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1330 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1331 bremfree(bp);
1333 /* Buffer is no longer on free lists. */
1334 SET(bp->b_cflags, BC_BUSY);
1335 } else {
1337 * XXX: !from_bufq should be removed.
1339 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1340 /* wait for a free buffer of any kind */
1341 if ((slpflag & PCATCH) != 0)
1342 (void)cv_timedwait_sig(&needbuffer_cv,
1343 &bufcache_lock, slptimeo);
1344 else
1345 (void)cv_timedwait(&needbuffer_cv,
1346 &bufcache_lock, slptimeo);
1348 return (NULL);
1351 #ifdef DIAGNOSTIC
1352 if (bp->b_bufsize <= 0)
1353 panic("buffer %p: on queue but empty", bp);
1354 #endif
1356 if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1358 * This is a delayed write buffer being flushed to disk. Make
1359 * sure it gets aged out of the queue when it's finished, and
1360 * leave it off the LRU queue.
1362 CLR(bp->b_cflags, BC_VFLUSH);
1363 SET(bp->b_cflags, BC_AGE);
1364 goto start;
1367 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1368 KASSERT(bp->b_refcnt > 0);
1369 KASSERT(!cv_has_waiters(&bp->b_done));
1372 * If buffer was a delayed write, start it and return NULL
1373 * (since we might sleep while starting the write).
1375 if (ISSET(bp->b_oflags, BO_DELWRI)) {
1377 * This buffer has gone through the LRU, so make sure it gets
1378 * reused ASAP.
1380 SET(bp->b_cflags, BC_AGE);
1381 mutex_exit(&bufcache_lock);
1382 bawrite(bp);
1383 mutex_enter(&bufcache_lock);
1384 return (NULL);
1387 vp = bp->b_vp;
1389 /* clear out various other fields */
1390 bp->b_cflags = BC_BUSY;
1391 bp->b_oflags = 0;
1392 bp->b_flags = 0;
1393 bp->b_dev = NODEV;
1394 bp->b_blkno = 0;
1395 bp->b_lblkno = 0;
1396 bp->b_rawblkno = 0;
1397 bp->b_iodone = 0;
1398 bp->b_error = 0;
1399 bp->b_resid = 0;
1400 bp->b_bcount = 0;
1402 LIST_REMOVE(bp, b_hash);
1404 /* Disassociate us from our vnode, if we had one... */
1405 if (vp != NULL) {
1406 mutex_enter(&vp->v_interlock);
1407 brelvp(bp);
1408 mutex_exit(&vp->v_interlock);
1411 return (bp);
1415 * Attempt to free an aged buffer off the queues.
1416 * Called with queue lock held.
1417 * Returns the amount of buffer memory freed.
1419 static int
1420 buf_trim(void)
1422 buf_t *bp;
1423 long size = 0;
1425 KASSERT(mutex_owned(&bufcache_lock));
1427 /* Instruct getnewbuf() to get buffers off the queues */
1428 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1429 return 0;
1431 KASSERT((bp->b_cflags & BC_WANTED) == 0);
1432 size = bp->b_bufsize;
1433 bufmem -= size;
1434 if (size > 0) {
1435 buf_mrelease(bp->b_data, size);
1436 bp->b_bcount = bp->b_bufsize = 0;
1438 /* brelse() will return the buffer to the global buffer pool */
1439 brelsel(bp, 0);
1440 return size;
1444 buf_drain(int n)
1446 int size = 0, sz;
1448 KASSERT(mutex_owned(&bufcache_lock));
1450 while (size < n && bufmem > bufmem_lowater) {
1451 sz = buf_trim();
1452 if (sz <= 0)
1453 break;
1454 size += sz;
1457 return size;
1461 * Wait for operations on the buffer to complete.
1462 * When they do, extract and return the I/O's error value.
1465 biowait(buf_t *bp)
1468 KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1469 KASSERT(bp->b_refcnt > 0);
1471 mutex_enter(bp->b_objlock);
1472 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1473 cv_wait(&bp->b_done, bp->b_objlock);
1474 mutex_exit(bp->b_objlock);
1476 return bp->b_error;
1480 * Mark I/O complete on a buffer.
1482 * If a callback has been requested, e.g. the pageout
1483 * daemon, do so. Otherwise, awaken waiting processes.
1485 * [ Leffler, et al., says on p.247:
1486 * "This routine wakes up the blocked process, frees the buffer
1487 * for an asynchronous write, or, for a request by the pagedaemon
1488 * process, invokes a procedure specified in the buffer structure" ]
1490 * In real life, the pagedaemon (or other system processes) wants
1491 * to do async stuff to, and doesn't want the buffer brelse()'d.
1492 * (for swap pager, that puts swap buffers on the free lists (!!!),
1493 * for the vn device, that puts malloc'd buffers on the free lists!)
1495 void
1496 biodone(buf_t *bp)
1498 int s;
1500 KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1502 if (cpu_intr_p()) {
1503 /* From interrupt mode: defer to a soft interrupt. */
1504 s = splvm();
1505 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1506 softint_schedule(biodone_sih);
1507 splx(s);
1508 } else {
1509 /* Process now - the buffer may be freed soon. */
1510 biodone2(bp);
1514 static void
1515 biodone2(buf_t *bp)
1517 void (*callout)(buf_t *);
1519 mutex_enter(bp->b_objlock);
1520 /* Note that the transfer is done. */
1521 if (ISSET(bp->b_oflags, BO_DONE))
1522 panic("biodone2 already");
1523 CLR(bp->b_flags, B_COWDONE);
1524 SET(bp->b_oflags, BO_DONE);
1525 BIO_SETPRIO(bp, BPRIO_DEFAULT);
1527 /* Wake up waiting writers. */
1528 if (!ISSET(bp->b_flags, B_READ))
1529 vwakeup(bp);
1531 if ((callout = bp->b_iodone) != NULL) {
1532 /* Note callout done, then call out. */
1533 KASSERT(!cv_has_waiters(&bp->b_done));
1534 KERNEL_LOCK(1, NULL); /* XXXSMP */
1535 bp->b_iodone = NULL;
1536 mutex_exit(bp->b_objlock);
1537 (*callout)(bp);
1538 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1539 } else if (ISSET(bp->b_flags, B_ASYNC)) {
1540 /* If async, release. */
1541 KASSERT(!cv_has_waiters(&bp->b_done));
1542 mutex_exit(bp->b_objlock);
1543 brelse(bp, 0);
1544 } else {
1545 /* Otherwise just wake up waiters in biowait(). */
1546 cv_broadcast(&bp->b_done);
1547 mutex_exit(bp->b_objlock);
1551 static void
1552 biointr(void *cookie)
1554 struct cpu_info *ci;
1555 buf_t *bp;
1556 int s;
1558 ci = curcpu();
1560 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1561 KASSERT(curcpu() == ci);
1563 s = splvm();
1564 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1565 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1566 splx(s);
1568 biodone2(bp);
1573 * Return a count of buffers on the "locked" queue.
1576 count_lock_queue(void)
1578 buf_t *bp;
1579 int n = 0;
1581 mutex_enter(&bufcache_lock);
1582 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1583 n++;
1584 mutex_exit(&bufcache_lock);
1585 return (n);
1589 * Wait for all buffers to complete I/O
1590 * Return the number of "stuck" buffers.
1593 buf_syncwait(void)
1595 buf_t *bp;
1596 int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1598 dcount = 10000;
1599 for (iter = 0; iter < 20;) {
1600 mutex_enter(&bufcache_lock);
1601 nbusy = 0;
1602 for (ihash = 0; ihash < bufhash+1; ihash++) {
1603 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1604 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1605 nbusy += ((bp->b_flags & B_READ) == 0);
1608 mutex_exit(&bufcache_lock);
1610 if (nbusy == 0)
1611 break;
1612 if (nbusy_prev == 0)
1613 nbusy_prev = nbusy;
1614 printf("%d ", nbusy);
1615 kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
1616 if (nbusy >= nbusy_prev) /* we didn't flush anything */
1617 iter++;
1618 else
1619 nbusy_prev = nbusy;
1622 if (nbusy) {
1623 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1624 printf("giving up\nPrinting vnodes for busy buffers\n");
1625 for (ihash = 0; ihash < bufhash+1; ihash++) {
1626 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1627 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1628 (bp->b_flags & B_READ) == 0)
1629 vprint(NULL, bp->b_vp);
1632 #endif
1635 return nbusy;
1638 static void
1639 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1642 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1643 o->b_error = i->b_error;
1644 o->b_prio = i->b_prio;
1645 o->b_dev = i->b_dev;
1646 o->b_bufsize = i->b_bufsize;
1647 o->b_bcount = i->b_bcount;
1648 o->b_resid = i->b_resid;
1649 o->b_addr = PTRTOUINT64(i->b_data);
1650 o->b_blkno = i->b_blkno;
1651 o->b_rawblkno = i->b_rawblkno;
1652 o->b_iodone = PTRTOUINT64(i->b_iodone);
1653 o->b_proc = PTRTOUINT64(i->b_proc);
1654 o->b_vp = PTRTOUINT64(i->b_vp);
1655 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1656 o->b_lblkno = i->b_lblkno;
1659 #define KERN_BUFSLOP 20
1660 static int
1661 sysctl_dobuf(SYSCTLFN_ARGS)
1663 buf_t *bp;
1664 struct buf_sysctl bs;
1665 struct bqueue *bq;
1666 char *dp;
1667 u_int i, op, arg;
1668 size_t len, needed, elem_size, out_size;
1669 int error, elem_count, retries;
1671 if (namelen == 1 && name[0] == CTL_QUERY)
1672 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1674 if (namelen != 4)
1675 return (EINVAL);
1677 retries = 100;
1678 retry:
1679 dp = oldp;
1680 len = (oldp != NULL) ? *oldlenp : 0;
1681 op = name[0];
1682 arg = name[1];
1683 elem_size = name[2];
1684 elem_count = name[3];
1685 out_size = MIN(sizeof(bs), elem_size);
1688 * at the moment, these are just "placeholders" to make the
1689 * API for retrieving kern.buf data more extensible in the
1690 * future.
1692 * XXX kern.buf currently has "netbsd32" issues. hopefully
1693 * these will be resolved at a later point.
1695 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1696 elem_size < 1 || elem_count < 0)
1697 return (EINVAL);
1699 error = 0;
1700 needed = 0;
1701 sysctl_unlock();
1702 mutex_enter(&bufcache_lock);
1703 for (i = 0; i < BQUEUES; i++) {
1704 bq = &bufqueues[i];
1705 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1706 bq->bq_marker = bp;
1707 if (len >= elem_size && elem_count > 0) {
1708 sysctl_fillbuf(bp, &bs);
1709 mutex_exit(&bufcache_lock);
1710 error = copyout(&bs, dp, out_size);
1711 mutex_enter(&bufcache_lock);
1712 if (error)
1713 break;
1714 if (bq->bq_marker != bp) {
1716 * This sysctl node is only for
1717 * statistics. Retry; if the
1718 * queue keeps changing, then
1719 * bail out.
1721 if (retries-- == 0) {
1722 error = EAGAIN;
1723 break;
1725 mutex_exit(&bufcache_lock);
1726 goto retry;
1728 dp += elem_size;
1729 len -= elem_size;
1731 needed += elem_size;
1732 if (elem_count > 0 && elem_count != INT_MAX)
1733 elem_count--;
1735 if (error != 0)
1736 break;
1738 mutex_exit(&bufcache_lock);
1739 sysctl_relock();
1741 *oldlenp = needed;
1742 if (oldp == NULL)
1743 *oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1745 return (error);
1748 static int
1749 sysctl_bufvm_update(SYSCTLFN_ARGS)
1751 int t, error, rv;
1752 struct sysctlnode node;
1754 node = *rnode;
1755 node.sysctl_data = &t;
1756 t = *(int *)rnode->sysctl_data;
1757 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1758 if (error || newp == NULL)
1759 return (error);
1761 if (t < 0)
1762 return EINVAL;
1763 if (rnode->sysctl_data == &bufcache) {
1764 if (t > 100)
1765 return (EINVAL);
1766 bufcache = t;
1767 buf_setwm();
1768 } else if (rnode->sysctl_data == &bufmem_lowater) {
1769 if (bufmem_hiwater - t < 16)
1770 return (EINVAL);
1771 bufmem_lowater = t;
1772 } else if (rnode->sysctl_data == &bufmem_hiwater) {
1773 if (t - bufmem_lowater < 16)
1774 return (EINVAL);
1775 bufmem_hiwater = t;
1776 } else
1777 return (EINVAL);
1779 /* Drain until below new high water mark */
1780 sysctl_unlock();
1781 mutex_enter(&bufcache_lock);
1782 while ((t = bufmem - bufmem_hiwater) >= 0) {
1783 rv = buf_drain(t / (2 * 1024));
1784 if (rv <= 0)
1785 break;
1787 mutex_exit(&bufcache_lock);
1788 sysctl_relock();
1790 return 0;
1793 static struct sysctllog *vfsbio_sysctllog;
1795 static void
1796 sysctl_kern_buf_setup(void)
1799 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1800 CTLFLAG_PERMANENT,
1801 CTLTYPE_NODE, "kern", NULL,
1802 NULL, 0, NULL, 0,
1803 CTL_KERN, CTL_EOL);
1804 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1805 CTLFLAG_PERMANENT,
1806 CTLTYPE_NODE, "buf",
1807 SYSCTL_DESCR("Kernel buffer cache information"),
1808 sysctl_dobuf, 0, NULL, 0,
1809 CTL_KERN, KERN_BUF, CTL_EOL);
1812 static void
1813 sysctl_vm_buf_setup(void)
1816 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1817 CTLFLAG_PERMANENT,
1818 CTLTYPE_NODE, "vm", NULL,
1819 NULL, 0, NULL, 0,
1820 CTL_VM, CTL_EOL);
1821 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1822 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1823 CTLTYPE_INT, "bufcache",
1824 SYSCTL_DESCR("Percentage of physical memory to use for "
1825 "buffer cache"),
1826 sysctl_bufvm_update, 0, &bufcache, 0,
1827 CTL_VM, CTL_CREATE, CTL_EOL);
1828 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1829 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1830 CTLTYPE_INT, "bufmem",
1831 SYSCTL_DESCR("Amount of kernel memory used by buffer "
1832 "cache"),
1833 NULL, 0, &bufmem, 0,
1834 CTL_VM, CTL_CREATE, CTL_EOL);
1835 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1836 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1837 CTLTYPE_INT, "bufmem_lowater",
1838 SYSCTL_DESCR("Minimum amount of kernel memory to "
1839 "reserve for buffer cache"),
1840 sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1841 CTL_VM, CTL_CREATE, CTL_EOL);
1842 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1843 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1844 CTLTYPE_INT, "bufmem_hiwater",
1845 SYSCTL_DESCR("Maximum amount of kernel memory to use "
1846 "for buffer cache"),
1847 sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1848 CTL_VM, CTL_CREATE, CTL_EOL);
1851 #ifdef DEBUG
1853 * Print out statistics on the current allocation of the buffer pool.
1854 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1855 * in vfs_syscalls.c using sysctl.
1857 void
1858 vfs_bufstats(void)
1860 int i, j, count;
1861 buf_t *bp;
1862 struct bqueue *dp;
1863 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1864 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1866 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1867 count = 0;
1868 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1869 counts[j] = 0;
1870 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1871 counts[bp->b_bufsize/PAGE_SIZE]++;
1872 count++;
1874 printf("%s: total-%d", bname[i], count);
1875 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1876 if (counts[j] != 0)
1877 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1878 printf("\n");
1881 #endif /* DEBUG */
1883 /* ------------------------------ */
1885 buf_t *
1886 getiobuf(struct vnode *vp, bool waitok)
1888 buf_t *bp;
1890 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1891 if (bp == NULL)
1892 return bp;
1894 buf_init(bp);
1896 if ((bp->b_vp = vp) == NULL)
1897 bp->b_objlock = &buffer_lock;
1898 else
1899 bp->b_objlock = &vp->v_interlock;
1901 return bp;
1904 void
1905 putiobuf(buf_t *bp)
1908 buf_destroy(bp);
1909 pool_cache_put(bufio_cache, bp);
1913 * nestiobuf_iodone: b_iodone callback for nested buffers.
1916 void
1917 nestiobuf_iodone(buf_t *bp)
1919 buf_t *mbp = bp->b_private;
1920 int error;
1921 int donebytes;
1923 KASSERT(bp->b_bcount <= bp->b_bufsize);
1924 KASSERT(mbp != bp);
1926 error = bp->b_error;
1927 if (bp->b_error == 0 &&
1928 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1930 * Not all got transfered, raise an error. We have no way to
1931 * propagate these conditions to mbp.
1933 error = EIO;
1936 donebytes = bp->b_bufsize;
1938 putiobuf(bp);
1939 nestiobuf_done(mbp, donebytes, error);
1943 * nestiobuf_setup: setup a "nested" buffer.
1945 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1946 * => 'bp' should be a buffer allocated by getiobuf.
1947 * => 'offset' is a byte offset in the master buffer.
1948 * => 'size' is a size in bytes of this nested buffer.
1951 void
1952 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1954 const int b_read = mbp->b_flags & B_READ;
1955 struct vnode *vp = mbp->b_vp;
1957 KASSERT(mbp->b_bcount >= offset + size);
1958 bp->b_vp = vp;
1959 bp->b_dev = mbp->b_dev;
1960 bp->b_objlock = mbp->b_objlock;
1961 bp->b_cflags = BC_BUSY;
1962 bp->b_flags = B_ASYNC | b_read;
1963 bp->b_iodone = nestiobuf_iodone;
1964 bp->b_data = (char *)mbp->b_data + offset;
1965 bp->b_resid = bp->b_bcount = size;
1966 bp->b_bufsize = bp->b_bcount;
1967 bp->b_private = mbp;
1968 BIO_COPYPRIO(bp, mbp);
1969 if (!b_read && vp != NULL) {
1970 mutex_enter(&vp->v_interlock);
1971 vp->v_numoutput++;
1972 mutex_exit(&vp->v_interlock);
1977 * nestiobuf_done: propagate completion to the master buffer.
1979 * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
1980 * => 'error' is an errno(2) that 'donebytes' has been completed with.
1983 void
1984 nestiobuf_done(buf_t *mbp, int donebytes, int error)
1987 if (donebytes == 0) {
1988 return;
1990 mutex_enter(mbp->b_objlock);
1991 KASSERT(mbp->b_resid >= donebytes);
1992 mbp->b_resid -= donebytes;
1993 if (error)
1994 mbp->b_error = error;
1995 if (mbp->b_resid == 0) {
1996 mutex_exit(mbp->b_objlock);
1997 biodone(mbp);
1998 } else
1999 mutex_exit(mbp->b_objlock);
2002 void
2003 buf_init(buf_t *bp)
2006 cv_init(&bp->b_busy, "biolock");
2007 cv_init(&bp->b_done, "biowait");
2008 bp->b_dev = NODEV;
2009 bp->b_error = 0;
2010 bp->b_flags = 0;
2011 bp->b_cflags = 0;
2012 bp->b_oflags = 0;
2013 bp->b_objlock = &buffer_lock;
2014 bp->b_iodone = NULL;
2015 bp->b_refcnt = 1;
2016 bp->b_dev = NODEV;
2017 bp->b_vnbufs.le_next = NOLIST;
2018 BIO_SETPRIO(bp, BPRIO_DEFAULT);
2021 void
2022 buf_destroy(buf_t *bp)
2025 cv_destroy(&bp->b_done);
2026 cv_destroy(&bp->b_busy);
2030 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2032 int error;
2034 KASSERT(mutex_owned(&bufcache_lock));
2036 if ((bp->b_cflags & BC_BUSY) != 0) {
2037 if (curlwp == uvm.pagedaemon_lwp)
2038 return EDEADLK;
2039 bp->b_cflags |= BC_WANTED;
2040 bref(bp);
2041 if (interlock != NULL)
2042 mutex_exit(interlock);
2043 if (intr) {
2044 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2045 timo);
2046 } else {
2047 error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2048 timo);
2050 brele(bp);
2051 if (interlock != NULL)
2052 mutex_enter(interlock);
2053 if (error != 0)
2054 return error;
2055 return EPASSTHROUGH;
2057 bp->b_cflags |= BC_BUSY;
2059 return 0;