No empty .Rs/.Re
[netbsd-mini2440.git] / sys / net / radix.c
blob0be4306194d3dda51d2f1bcf156153ce34662cc3
1 /* $NetBSD: radix.c,v 1.42 2009/03/15 20:30:05 cegger Exp $ */
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
31 * @(#)radix.c 8.6 (Berkeley) 10/17/95
35 * Routines to build and maintain radix trees for routing lookups.
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.42 2009/03/15 20:30:05 cegger Exp $");
41 #ifndef _NET_RADIX_H_
42 #include <sys/param.h>
43 #include <sys/queue.h>
44 #include <sys/kmem.h>
45 #ifdef _KERNEL
46 #include "opt_inet.h"
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #define M_DONTWAIT M_NOWAIT
51 #include <sys/domain.h>
52 #else
53 #include <stdlib.h>
54 #endif
55 #include <machine/stdarg.h>
56 #include <sys/syslog.h>
57 #include <net/radix.h>
58 #endif
60 typedef void (*rn_printer_t)(void *, const char *fmt, ...);
62 int max_keylen;
63 struct radix_mask *rn_mkfreelist;
64 struct radix_node_head *mask_rnhead;
65 static char *addmask_key;
66 static const char normal_chars[] =
67 {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
68 static char *rn_zeros, *rn_ones;
70 #define rn_masktop (mask_rnhead->rnh_treetop)
72 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
73 static int rn_lexobetter(const void *, const void *);
74 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
75 struct radix_mask *);
76 static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
77 void *);
78 static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
79 void *);
80 static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
81 const char *);
83 #define SUBTREE_OPEN "[ "
84 #define SUBTREE_CLOSE " ]"
86 #ifdef RN_DEBUG
87 static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
88 #endif /* RN_DEBUG */
91 * The data structure for the keys is a radix tree with one way
92 * branching removed. The index rn_b at an internal node n represents a bit
93 * position to be tested. The tree is arranged so that all descendants
94 * of a node n have keys whose bits all agree up to position rn_b - 1.
95 * (We say the index of n is rn_b.)
97 * There is at least one descendant which has a one bit at position rn_b,
98 * and at least one with a zero there.
100 * A route is determined by a pair of key and mask. We require that the
101 * bit-wise logical and of the key and mask to be the key.
102 * We define the index of a route to associated with the mask to be
103 * the first bit number in the mask where 0 occurs (with bit number 0
104 * representing the highest order bit).
106 * We say a mask is normal if every bit is 0, past the index of the mask.
107 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
108 * and m is a normal mask, then the route applies to every descendant of n.
109 * If the index(m) < rn_b, this implies the trailing last few bits of k
110 * before bit b are all 0, (and hence consequently true of every descendant
111 * of n), so the route applies to all descendants of the node as well.
113 * Similar logic shows that a non-normal mask m such that
114 * index(m) <= index(n) could potentially apply to many children of n.
115 * Thus, for each non-host route, we attach its mask to a list at an internal
116 * node as high in the tree as we can go.
118 * The present version of the code makes use of normal routes in short-
119 * circuiting an explicit mask and compare operation when testing whether
120 * a key satisfies a normal route, and also in remembering the unique leaf
121 * that governs a subtree.
124 struct radix_node *
125 rn_search(
126 const void *v_arg,
127 struct radix_node *head)
129 const u_char * const v = v_arg;
130 struct radix_node *x;
132 for (x = head; x->rn_b >= 0;) {
133 if (x->rn_bmask & v[x->rn_off])
134 x = x->rn_r;
135 else
136 x = x->rn_l;
138 return x;
141 struct radix_node *
142 rn_search_m(
143 const void *v_arg,
144 struct radix_node *head,
145 const void *m_arg)
147 struct radix_node *x;
148 const u_char * const v = v_arg;
149 const u_char * const m = m_arg;
151 for (x = head; x->rn_b >= 0;) {
152 if ((x->rn_bmask & m[x->rn_off]) &&
153 (x->rn_bmask & v[x->rn_off]))
154 x = x->rn_r;
155 else
156 x = x->rn_l;
158 return x;
162 rn_refines(
163 const void *m_arg,
164 const void *n_arg)
166 const char *m = m_arg;
167 const char *n = n_arg;
168 const char *lim = n + *(const u_char *)n;
169 const char *lim2 = lim;
170 int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
171 int masks_are_equal = 1;
173 if (longer > 0)
174 lim -= longer;
175 while (n < lim) {
176 if (*n & ~(*m))
177 return 0;
178 if (*n++ != *m++)
179 masks_are_equal = 0;
181 while (n < lim2)
182 if (*n++)
183 return 0;
184 if (masks_are_equal && (longer < 0))
185 for (lim2 = m - longer; m < lim2; )
186 if (*m++)
187 return 1;
188 return !masks_are_equal;
191 struct radix_node *
192 rn_lookup(
193 const void *v_arg,
194 const void *m_arg,
195 struct radix_node_head *head)
197 struct radix_node *x;
198 const char *netmask = NULL;
200 if (m_arg) {
201 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
202 return NULL;
203 netmask = x->rn_key;
205 x = rn_match(v_arg, head);
206 if (x != NULL && netmask != NULL) {
207 while (x != NULL && x->rn_mask != netmask)
208 x = x->rn_dupedkey;
210 return x;
213 static int
214 rn_satisfies_leaf(
215 const char *trial,
216 struct radix_node *leaf,
217 int skip)
219 const char *cp = trial;
220 const char *cp2 = leaf->rn_key;
221 const char *cp3 = leaf->rn_mask;
222 const char *cplim;
223 int length = min(*(const u_char *)cp, *(const u_char *)cp2);
225 if (cp3 == 0)
226 cp3 = rn_ones;
227 else
228 length = min(length, *(const u_char *)cp3);
229 cplim = cp + length; cp3 += skip; cp2 += skip;
230 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
231 if ((*cp ^ *cp2) & *cp3)
232 return 0;
233 return 1;
236 struct radix_node *
237 rn_match(
238 const void *v_arg,
239 struct radix_node_head *head)
241 const char * const v = v_arg;
242 struct radix_node *t = head->rnh_treetop;
243 struct radix_node *top = t;
244 struct radix_node *x;
245 struct radix_node *saved_t;
246 const char *cp = v;
247 const char *cp2;
248 const char *cplim;
249 int off = t->rn_off;
250 int vlen = *(const u_char *)cp;
251 int matched_off;
252 int test, b, rn_b;
255 * Open code rn_search(v, top) to avoid overhead of extra
256 * subroutine call.
258 for (; t->rn_b >= 0; ) {
259 if (t->rn_bmask & cp[t->rn_off])
260 t = t->rn_r;
261 else
262 t = t->rn_l;
265 * See if we match exactly as a host destination
266 * or at least learn how many bits match, for normal mask finesse.
268 * It doesn't hurt us to limit how many bytes to check
269 * to the length of the mask, since if it matches we had a genuine
270 * match and the leaf we have is the most specific one anyway;
271 * if it didn't match with a shorter length it would fail
272 * with a long one. This wins big for class B&C netmasks which
273 * are probably the most common case...
275 if (t->rn_mask)
276 vlen = *(const u_char *)t->rn_mask;
277 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
278 for (; cp < cplim; cp++, cp2++)
279 if (*cp != *cp2)
280 goto on1;
282 * This extra grot is in case we are explicitly asked
283 * to look up the default. Ugh!
285 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
286 t = t->rn_dupedkey;
287 return t;
288 on1:
289 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
290 for (b = 7; (test >>= 1) > 0;)
291 b--;
292 matched_off = cp - v;
293 b += matched_off << 3;
294 rn_b = -1 - b;
296 * If there is a host route in a duped-key chain, it will be first.
298 if ((saved_t = t)->rn_mask == 0)
299 t = t->rn_dupedkey;
300 for (; t; t = t->rn_dupedkey)
302 * Even if we don't match exactly as a host,
303 * we may match if the leaf we wound up at is
304 * a route to a net.
306 if (t->rn_flags & RNF_NORMAL) {
307 if (rn_b <= t->rn_b)
308 return t;
309 } else if (rn_satisfies_leaf(v, t, matched_off))
310 return t;
311 t = saved_t;
312 /* start searching up the tree */
313 do {
314 struct radix_mask *m;
315 t = t->rn_p;
316 m = t->rn_mklist;
317 if (m) {
319 * If non-contiguous masks ever become important
320 * we can restore the masking and open coding of
321 * the search and satisfaction test and put the
322 * calculation of "off" back before the "do".
324 do {
325 if (m->rm_flags & RNF_NORMAL) {
326 if (rn_b <= m->rm_b)
327 return m->rm_leaf;
328 } else {
329 off = min(t->rn_off, matched_off);
330 x = rn_search_m(v, t, m->rm_mask);
331 while (x && x->rn_mask != m->rm_mask)
332 x = x->rn_dupedkey;
333 if (x && rn_satisfies_leaf(v, x, off))
334 return x;
336 m = m->rm_mklist;
337 } while (m);
339 } while (t != top);
340 return NULL;
343 static void
344 rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
345 const char *delim)
347 (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
348 delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
349 rn->rn_l, rn->rn_r);
352 #ifdef RN_DEBUG
353 int rn_debug = 1;
355 static void
356 rn_dbg_print(void *arg, const char *fmt, ...)
358 va_list ap;
360 va_start(ap, fmt);
361 vlog(LOG_DEBUG, fmt, ap);
362 va_end(ap);
365 static void
366 rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
368 struct radix_node *dup, *rn;
369 const char *delim;
371 if (printer == NULL)
372 return;
374 rn = rn_walkfirst(h->rnh_treetop, printer, arg);
375 for (;;) {
376 /* Process leaves */
377 delim = "";
378 for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
379 if ((dup->rn_flags & RNF_ROOT) != 0)
380 continue;
381 rn_nodeprint(dup, printer, arg, delim);
382 delim = ", ";
384 rn = rn_walknext(rn, printer, arg);
385 if (rn->rn_flags & RNF_ROOT)
386 return;
388 /* NOTREACHED */
391 #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
392 #endif /* RN_DEBUG */
394 struct radix_node *
395 rn_newpair(
396 const void *v,
397 int b,
398 struct radix_node nodes[2])
400 struct radix_node *tt = nodes;
401 struct radix_node *t = tt + 1;
402 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
403 t->rn_l = tt; t->rn_off = b >> 3;
404 tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
405 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
406 return t;
409 struct radix_node *
410 rn_insert(
411 const void *v_arg,
412 struct radix_node_head *head,
413 int *dupentry,
414 struct radix_node nodes[2])
416 struct radix_node *top = head->rnh_treetop;
417 struct radix_node *t = rn_search(v_arg, top);
418 struct radix_node *tt;
419 const char *v = v_arg;
420 int head_off = top->rn_off;
421 int vlen = *((const u_char *)v);
422 const char *cp = v + head_off;
423 int b;
425 * Find first bit at which v and t->rn_key differ
428 const char *cp2 = t->rn_key + head_off;
429 const char *cplim = v + vlen;
430 int cmp_res;
432 while (cp < cplim)
433 if (*cp2++ != *cp++)
434 goto on1;
435 *dupentry = 1;
436 return t;
437 on1:
438 *dupentry = 0;
439 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
440 for (b = (cp - v) << 3; cmp_res; b--)
441 cmp_res >>= 1;
444 struct radix_node *p, *x = top;
445 cp = v;
446 do {
447 p = x;
448 if (cp[x->rn_off] & x->rn_bmask)
449 x = x->rn_r;
450 else x = x->rn_l;
451 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
452 #ifdef RN_DEBUG
453 if (rn_debug)
454 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
455 #endif
456 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
457 if ((cp[p->rn_off] & p->rn_bmask) == 0)
458 p->rn_l = t;
459 else
460 p->rn_r = t;
461 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
462 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
463 t->rn_r = x;
464 } else {
465 t->rn_r = tt; t->rn_l = x;
467 #ifdef RN_DEBUG
468 if (rn_debug) {
469 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
470 traverse(head, p);
472 #endif /* RN_DEBUG */
474 return tt;
477 struct radix_node *
478 rn_addmask(
479 const void *n_arg,
480 int search,
481 int skip)
483 const char *netmask = n_arg;
484 const char *cp;
485 const char *cplim;
486 struct radix_node *x;
487 struct radix_node *saved_x;
488 int b = 0, mlen, j;
489 int maskduplicated, m0, isnormal;
490 static int last_zeroed = 0;
492 if ((mlen = *(const u_char *)netmask) > max_keylen)
493 mlen = max_keylen;
494 if (skip == 0)
495 skip = 1;
496 if (mlen <= skip)
497 return mask_rnhead->rnh_nodes;
498 if (skip > 1)
499 memmove(addmask_key + 1, rn_ones + 1, skip - 1);
500 if ((m0 = mlen) > skip)
501 memmove(addmask_key + skip, netmask + skip, mlen - skip);
503 * Trim trailing zeroes.
505 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
506 cp--;
507 mlen = cp - addmask_key;
508 if (mlen <= skip) {
509 if (m0 >= last_zeroed)
510 last_zeroed = mlen;
511 return mask_rnhead->rnh_nodes;
513 if (m0 < last_zeroed)
514 memset(addmask_key + m0, 0, last_zeroed - m0);
515 *addmask_key = last_zeroed = mlen;
516 x = rn_search(addmask_key, rn_masktop);
517 if (memcmp(addmask_key, x->rn_key, mlen) != 0)
518 x = 0;
519 if (x || search)
520 return x;
521 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
522 if ((saved_x = x) == NULL)
523 return NULL;
524 memset(x, 0, max_keylen + 2 * sizeof (*x));
525 cp = netmask = (void *)(x + 2);
526 memmove(x + 2, addmask_key, mlen);
527 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
528 if (maskduplicated) {
529 log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
530 Free(saved_x);
531 return x;
534 * Calculate index of mask, and check for normalcy.
536 cplim = netmask + mlen; isnormal = 1;
537 for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
538 cp++;
539 if (cp != cplim) {
540 for (j = 0x80; (j & *cp) != 0; j >>= 1)
541 b++;
542 if (*cp != normal_chars[b] || cp != (cplim - 1))
543 isnormal = 0;
545 b += (cp - netmask) << 3;
546 x->rn_b = -1 - b;
547 if (isnormal)
548 x->rn_flags |= RNF_NORMAL;
549 return x;
552 static int /* XXX: arbitrary ordering for non-contiguous masks */
553 rn_lexobetter(
554 const void *m_arg,
555 const void *n_arg)
557 const u_char *mp = m_arg;
558 const u_char *np = n_arg;
559 const u_char *lim;
561 if (*mp > *np)
562 return 1; /* not really, but need to check longer one first */
563 if (*mp == *np)
564 for (lim = mp + *mp; mp < lim;)
565 if (*mp++ > *np++)
566 return 1;
567 return 0;
570 static struct radix_mask *
571 rn_new_radix_mask(
572 struct radix_node *tt,
573 struct radix_mask *next)
575 struct radix_mask *m;
577 MKGet(m);
578 if (m == NULL) {
579 log(LOG_ERR, "Mask for route not entered\n");
580 return NULL;
582 memset(m, 0, sizeof(*m));
583 m->rm_b = tt->rn_b;
584 m->rm_flags = tt->rn_flags;
585 if (tt->rn_flags & RNF_NORMAL)
586 m->rm_leaf = tt;
587 else
588 m->rm_mask = tt->rn_mask;
589 m->rm_mklist = next;
590 tt->rn_mklist = m;
591 return m;
594 struct radix_node *
595 rn_addroute(
596 const void *v_arg,
597 const void *n_arg,
598 struct radix_node_head *head,
599 struct radix_node treenodes[2])
601 const char *v = v_arg, *netmask = n_arg;
602 struct radix_node *t, *x = NULL, *tt;
603 struct radix_node *saved_tt, *top = head->rnh_treetop;
604 short b = 0, b_leaf = 0;
605 int keyduplicated;
606 const char *mmask;
607 struct radix_mask *m, **mp;
610 * In dealing with non-contiguous masks, there may be
611 * many different routes which have the same mask.
612 * We will find it useful to have a unique pointer to
613 * the mask to speed avoiding duplicate references at
614 * nodes and possibly save time in calculating indices.
616 if (netmask != NULL) {
617 if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
618 return NULL;
619 b_leaf = x->rn_b;
620 b = -1 - x->rn_b;
621 netmask = x->rn_key;
624 * Deal with duplicated keys: attach node to previous instance
626 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
627 if (keyduplicated) {
628 for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
629 if (tt->rn_mask == netmask)
630 return NULL;
631 if (netmask == NULL ||
632 (tt->rn_mask != NULL &&
633 (b_leaf < tt->rn_b || /* index(netmask) > node */
634 rn_refines(netmask, tt->rn_mask) ||
635 rn_lexobetter(netmask, tt->rn_mask))))
636 break;
639 * If the mask is not duplicated, we wouldn't
640 * find it among possible duplicate key entries
641 * anyway, so the above test doesn't hurt.
643 * We sort the masks for a duplicated key the same way as
644 * in a masklist -- most specific to least specific.
645 * This may require the unfortunate nuisance of relocating
646 * the head of the list.
648 * We also reverse, or doubly link the list through the
649 * parent pointer.
651 if (tt == saved_tt) {
652 struct radix_node *xx = x;
653 /* link in at head of list */
654 (tt = treenodes)->rn_dupedkey = t;
655 tt->rn_flags = t->rn_flags;
656 tt->rn_p = x = t->rn_p;
657 t->rn_p = tt;
658 if (x->rn_l == t)
659 x->rn_l = tt;
660 else
661 x->rn_r = tt;
662 saved_tt = tt;
663 x = xx;
664 } else {
665 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
666 t->rn_dupedkey = tt;
667 tt->rn_p = t;
668 if (tt->rn_dupedkey)
669 tt->rn_dupedkey->rn_p = tt;
671 tt->rn_key = v;
672 tt->rn_b = -1;
673 tt->rn_flags = RNF_ACTIVE;
676 * Put mask in tree.
678 if (netmask != NULL) {
679 tt->rn_mask = netmask;
680 tt->rn_b = x->rn_b;
681 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
683 t = saved_tt->rn_p;
684 if (keyduplicated)
685 goto on2;
686 b_leaf = -1 - t->rn_b;
687 if (t->rn_r == saved_tt)
688 x = t->rn_l;
689 else
690 x = t->rn_r;
691 /* Promote general routes from below */
692 if (x->rn_b < 0) {
693 for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
694 if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
695 x->rn_mklist == NULL) {
696 *mp = m = rn_new_radix_mask(x, NULL);
697 if (m != NULL)
698 mp = &m->rm_mklist;
701 } else if (x->rn_mklist != NULL) {
703 * Skip over masks whose index is > that of new node
705 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
706 if (m->rm_b >= b_leaf)
707 break;
708 t->rn_mklist = m;
709 *mp = NULL;
711 on2:
712 /* Add new route to highest possible ancestor's list */
713 if (netmask == NULL || b > t->rn_b)
714 return tt; /* can't lift at all */
715 b_leaf = tt->rn_b;
716 do {
717 x = t;
718 t = t->rn_p;
719 } while (b <= t->rn_b && x != top);
721 * Search through routes associated with node to
722 * insert new route according to index.
723 * Need same criteria as when sorting dupedkeys to avoid
724 * double loop on deletion.
726 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
727 if (m->rm_b < b_leaf)
728 continue;
729 if (m->rm_b > b_leaf)
730 break;
731 if (m->rm_flags & RNF_NORMAL) {
732 mmask = m->rm_leaf->rn_mask;
733 if (tt->rn_flags & RNF_NORMAL) {
734 log(LOG_ERR, "Non-unique normal route,"
735 " mask not entered\n");
736 return tt;
738 } else
739 mmask = m->rm_mask;
740 if (mmask == netmask) {
741 m->rm_refs++;
742 tt->rn_mklist = m;
743 return tt;
745 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
746 break;
748 *mp = rn_new_radix_mask(tt, *mp);
749 return tt;
752 struct radix_node *
753 rn_delete1(
754 const void *v_arg,
755 const void *netmask_arg,
756 struct radix_node_head *head,
757 struct radix_node *rn)
759 struct radix_node *t, *p, *x, *tt;
760 struct radix_mask *m, *saved_m, **mp;
761 struct radix_node *dupedkey, *saved_tt, *top;
762 const char *v, *netmask;
763 int b, head_off, vlen;
765 v = v_arg;
766 netmask = netmask_arg;
767 x = head->rnh_treetop;
768 tt = rn_search(v, x);
769 head_off = x->rn_off;
770 vlen = *(const u_char *)v;
771 saved_tt = tt;
772 top = x;
773 if (tt == NULL ||
774 memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
775 return NULL;
777 * Delete our route from mask lists.
779 if (netmask != NULL) {
780 if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
781 return NULL;
782 netmask = x->rn_key;
783 while (tt->rn_mask != netmask)
784 if ((tt = tt->rn_dupedkey) == NULL)
785 return NULL;
787 if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
788 goto on1;
789 if (tt->rn_flags & RNF_NORMAL) {
790 if (m->rm_leaf != tt || m->rm_refs > 0) {
791 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
792 return NULL; /* dangling ref could cause disaster */
794 } else {
795 if (m->rm_mask != tt->rn_mask) {
796 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
797 goto on1;
799 if (--m->rm_refs >= 0)
800 goto on1;
802 b = -1 - tt->rn_b;
803 t = saved_tt->rn_p;
804 if (b > t->rn_b)
805 goto on1; /* Wasn't lifted at all */
806 do {
807 x = t;
808 t = t->rn_p;
809 } while (b <= t->rn_b && x != top);
810 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
811 if (m == saved_m) {
812 *mp = m->rm_mklist;
813 MKFree(m);
814 break;
817 if (m == NULL) {
818 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
819 if (tt->rn_flags & RNF_NORMAL)
820 return NULL; /* Dangling ref to us */
822 on1:
824 * Eliminate us from tree
826 if (tt->rn_flags & RNF_ROOT)
827 return NULL;
828 #ifdef RN_DEBUG
829 if (rn_debug)
830 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
831 #endif
832 t = tt->rn_p;
833 dupedkey = saved_tt->rn_dupedkey;
834 if (dupedkey != NULL) {
836 * Here, tt is the deletion target, and
837 * saved_tt is the head of the dupedkey chain.
839 if (tt == saved_tt) {
840 x = dupedkey;
841 x->rn_p = t;
842 if (t->rn_l == tt)
843 t->rn_l = x;
844 else
845 t->rn_r = x;
846 } else {
847 /* find node in front of tt on the chain */
848 for (x = p = saved_tt;
849 p != NULL && p->rn_dupedkey != tt;)
850 p = p->rn_dupedkey;
851 if (p != NULL) {
852 p->rn_dupedkey = tt->rn_dupedkey;
853 if (tt->rn_dupedkey != NULL)
854 tt->rn_dupedkey->rn_p = p;
855 } else
856 log(LOG_ERR, "rn_delete: couldn't find us\n");
858 t = tt + 1;
859 if (t->rn_flags & RNF_ACTIVE) {
860 *++x = *t;
861 p = t->rn_p;
862 if (p->rn_l == t)
863 p->rn_l = x;
864 else
865 p->rn_r = x;
866 x->rn_l->rn_p = x;
867 x->rn_r->rn_p = x;
869 goto out;
871 if (t->rn_l == tt)
872 x = t->rn_r;
873 else
874 x = t->rn_l;
875 p = t->rn_p;
876 if (p->rn_r == t)
877 p->rn_r = x;
878 else
879 p->rn_l = x;
880 x->rn_p = p;
882 * Demote routes attached to us.
884 if (t->rn_mklist == NULL)
886 else if (x->rn_b >= 0) {
887 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
889 *mp = t->rn_mklist;
890 } else {
891 /* If there are any key,mask pairs in a sibling
892 duped-key chain, some subset will appear sorted
893 in the same order attached to our mklist */
894 for (m = t->rn_mklist;
895 m != NULL && x != NULL;
896 x = x->rn_dupedkey) {
897 if (m == x->rn_mklist) {
898 struct radix_mask *mm = m->rm_mklist;
899 x->rn_mklist = NULL;
900 if (--(m->rm_refs) < 0)
901 MKFree(m);
902 m = mm;
905 if (m != NULL) {
906 log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
907 m, x);
911 * We may be holding an active internal node in the tree.
913 x = tt + 1;
914 if (t != x) {
915 *t = *x;
916 t->rn_l->rn_p = t;
917 t->rn_r->rn_p = t;
918 p = x->rn_p;
919 if (p->rn_l == x)
920 p->rn_l = t;
921 else
922 p->rn_r = t;
924 out:
925 #ifdef RN_DEBUG
926 if (rn_debug) {
927 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
928 traverse(head, tt);
930 #endif /* RN_DEBUG */
931 tt->rn_flags &= ~RNF_ACTIVE;
932 tt[1].rn_flags &= ~RNF_ACTIVE;
933 return tt;
936 struct radix_node *
937 rn_delete(
938 const void *v_arg,
939 const void *netmask_arg,
940 struct radix_node_head *head)
942 return rn_delete1(v_arg, netmask_arg, head, NULL);
945 static struct radix_node *
946 rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
948 /* If at right child go back up, otherwise, go right */
949 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
950 if (printer != NULL)
951 (*printer)(arg, SUBTREE_CLOSE);
952 rn = rn->rn_p;
954 if (printer)
955 rn_nodeprint(rn->rn_p, printer, arg, "");
956 /* Find the next *leaf* since next node might vanish, too */
957 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
958 if (printer != NULL)
959 (*printer)(arg, SUBTREE_OPEN);
960 rn = rn->rn_l;
962 return rn;
965 static struct radix_node *
966 rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
968 /* First time through node, go left */
969 while (rn->rn_b >= 0) {
970 if (printer != NULL)
971 (*printer)(arg, SUBTREE_OPEN);
972 rn = rn->rn_l;
974 return rn;
978 rn_walktree(
979 struct radix_node_head *h,
980 int (*f)(struct radix_node *, void *),
981 void *w)
983 int error;
984 struct radix_node *base, *next, *rn;
986 * This gets complicated because we may delete the node
987 * while applying the function f to it, so we need to calculate
988 * the successor node in advance.
990 rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
991 for (;;) {
992 base = rn;
993 next = rn_walknext(rn, NULL, NULL);
994 /* Process leaves */
995 while ((rn = base) != NULL) {
996 base = rn->rn_dupedkey;
997 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
998 return error;
1000 rn = next;
1001 if (rn->rn_flags & RNF_ROOT)
1002 return 0;
1004 /* NOTREACHED */
1007 struct delayinit {
1008 void **head;
1009 int off;
1010 SLIST_ENTRY(delayinit) entries;
1012 static SLIST_HEAD(, delayinit) delayinits = SLIST_HEAD_INITIALIZER(delayheads);
1013 static int radix_initialized;
1016 * Initialize a radix tree once radix is initialized. Only for bootstrap.
1017 * Assume that no concurrency protection is necessary at this stage.
1019 void
1020 rn_delayedinit(void **head, int off)
1022 struct delayinit *di;
1024 KASSERT(radix_initialized == 0);
1026 di = kmem_alloc(sizeof(*di), KM_SLEEP);
1027 di->head = head;
1028 di->off = off;
1029 SLIST_INSERT_HEAD(&delayinits, di, entries);
1033 rn_inithead(void **head, int off)
1035 struct radix_node_head *rnh;
1037 if (*head != NULL)
1038 return 1;
1039 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1040 if (rnh == NULL)
1041 return 0;
1042 *head = rnh;
1043 return rn_inithead0(rnh, off);
1047 rn_inithead0(struct radix_node_head *rnh, int off)
1049 struct radix_node *t;
1050 struct radix_node *tt;
1051 struct radix_node *ttt;
1053 memset(rnh, 0, sizeof(*rnh));
1054 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1055 ttt = rnh->rnh_nodes + 2;
1056 t->rn_r = ttt;
1057 t->rn_p = t;
1058 tt = t->rn_l;
1059 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1060 tt->rn_b = -1 - off;
1061 *ttt = *tt;
1062 ttt->rn_key = rn_ones;
1063 rnh->rnh_addaddr = rn_addroute;
1064 rnh->rnh_deladdr = rn_delete;
1065 rnh->rnh_matchaddr = rn_match;
1066 rnh->rnh_lookup = rn_lookup;
1067 rnh->rnh_treetop = t;
1068 return 1;
1071 void
1072 rn_init(void)
1074 char *cp, *cplim;
1075 struct delayinit *di;
1076 #ifdef _KERNEL
1077 struct domain *dp;
1079 if (radix_initialized)
1080 panic("radix already initialized");
1081 radix_initialized = 1;
1083 DOMAIN_FOREACH(dp) {
1084 if (dp->dom_maxrtkey > max_keylen)
1085 max_keylen = dp->dom_maxrtkey;
1087 #endif
1088 if (max_keylen == 0) {
1089 log(LOG_ERR,
1090 "rn_init: radix functions require max_keylen be set\n");
1091 return;
1094 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1095 if (rn_zeros == NULL)
1096 panic("rn_init");
1097 memset(rn_zeros, 0, 3 * max_keylen);
1098 rn_ones = cp = rn_zeros + max_keylen;
1099 addmask_key = cplim = rn_ones + max_keylen;
1100 while (cp < cplim)
1101 *cp++ = -1;
1102 if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1103 panic("rn_init 2");
1105 while ((di = SLIST_FIRST(&delayinits)) != NULL) {
1106 if (!rn_inithead(di->head, di->off))
1107 panic("delayed rn_inithead failed");
1108 SLIST_REMOVE_HEAD(&delayinits, entries);
1109 kmem_free(di, sizeof(*di));