No empty .Rs/.Re
[netbsd-mini2440.git] / sys / netinet / ip_mroute.c
blob5577bf973f7238f38891b3ffcdd8a6251634160d
1 /* $NetBSD: ip_mroute.c,v 1.117 2008/12/19 18:49:39 cegger Exp $ */
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Stephen Deering of Stanford University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
38 * Copyright (c) 1989 Stephen Deering
40 * This code is derived from software contributed to Berkeley by
41 * Stephen Deering of Stanford University.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
75 * IP multicast forwarding procedures
77 * Written by David Waitzman, BBN Labs, August 1988.
78 * Modified by Steve Deering, Stanford, February 1989.
79 * Modified by Mark J. Steiglitz, Stanford, May, 1991
80 * Modified by Van Jacobson, LBL, January 1993
81 * Modified by Ajit Thyagarajan, PARC, August 1993
82 * Modified by Bill Fenner, PARC, April 1994
83 * Modified by Charles M. Hannum, NetBSD, May 1995.
84 * Modified by Ahmed Helmy, SGI, June 1996
85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
87 * Modified by Hitoshi Asaeda, WIDE, August 2000
88 * Modified by Pavlin Radoslavov, ICSI, October 2002
90 * MROUTING Revision: 1.2
91 * and PIM-SMv2 and PIM-DM support, advanced API support,
92 * bandwidth metering and signaling
95 #include <sys/cdefs.h>
96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.117 2008/12/19 18:49:39 cegger Exp $");
98 #include "opt_inet.h"
99 #include "opt_ipsec.h"
100 #include "opt_pim.h"
102 #ifdef PIM
103 #define _PIM_VT 1
104 #endif
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/mbuf.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/protosw.h>
113 #include <sys/errno.h>
114 #include <sys/time.h>
115 #include <sys/kernel.h>
116 #include <sys/ioctl.h>
117 #include <sys/syslog.h>
119 #include <net/if.h>
120 #include <net/route.h>
121 #include <net/raw_cb.h>
123 #include <netinet/in.h>
124 #include <netinet/in_var.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/udp.h>
130 #include <netinet/igmp.h>
131 #include <netinet/igmp_var.h>
132 #include <netinet/ip_mroute.h>
133 #ifdef PIM
134 #include <netinet/pim.h>
135 #include <netinet/pim_var.h>
136 #endif
137 #include <netinet/ip_encap.h>
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #endif
144 #ifdef FAST_IPSEC
145 #include <netipsec/ipsec.h>
146 #include <netipsec/key.h>
147 #endif
149 #include <machine/stdarg.h>
151 #define IP_MULTICASTOPTS 0
152 #define M_PULLUP(m, len) \
153 do { \
154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
155 (m) = m_pullup((m), (len)); \
156 } while (/*CONSTCOND*/ 0)
159 * Globals. All but ip_mrouter and ip_mrtproto could be static,
160 * except for netstat or debugging purposes.
162 struct socket *ip_mrouter = NULL;
163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
165 #define NO_RTE_FOUND 0x1
166 #define RTE_FOUND 0x2
168 #define MFCHASH(a, g) \
169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
172 u_long mfchash;
174 u_char nexpire[MFCTBLSIZ];
175 struct vif viftable[MAXVIFS];
176 struct mrtstat mrtstat;
177 u_int mrtdebug = 0; /* debug level */
178 #define DEBUG_MFC 0x02
179 #define DEBUG_FORWARD 0x04
180 #define DEBUG_EXPIRE 0x08
181 #define DEBUG_XMIT 0x10
182 #define DEBUG_PIM 0x20
184 #define VIFI_INVALID ((vifi_t) -1)
186 u_int tbfdebug = 0; /* tbf debug level */
187 #ifdef RSVP_ISI
188 u_int rsvpdebug = 0; /* rsvp debug level */
189 extern struct socket *ip_rsvpd;
190 extern int rsvp_on;
191 #endif /* RSVP_ISI */
193 /* vif attachment using sys/netinet/ip_encap.c */
194 static void vif_input(struct mbuf *, ...);
195 static int vif_encapcheck(struct mbuf *, int, int, void *);
197 static const struct protosw vif_protosw =
198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
199 vif_input, rip_output, 0, rip_ctloutput,
200 rip_usrreq,
201 0, 0, 0, 0,
204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
205 #define UPCALL_EXPIRE 6 /* number of timeouts */
208 * Define the token bucket filter structures
211 #define TBF_REPROCESS (hz / 100) /* 100x / second */
213 static int get_sg_cnt(struct sioc_sg_req *);
214 static int get_vif_cnt(struct sioc_vif_req *);
215 static int ip_mrouter_init(struct socket *, int);
216 static int set_assert(int);
217 static int add_vif(struct vifctl *);
218 static int del_vif(vifi_t *);
219 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
220 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
221 static void expire_mfc(struct mfc *);
222 static int add_mfc(struct sockopt *);
223 #ifdef UPCALL_TIMING
224 static void collate(struct timeval *);
225 #endif
226 static int del_mfc(struct sockopt *);
227 static int set_api_config(struct sockopt *); /* chose API capabilities */
228 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
229 static void expire_upcalls(void *);
230 #ifdef RSVP_ISI
231 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
232 #else
233 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
234 #endif
235 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
236 static void encap_send(struct ip *, struct vif *, struct mbuf *);
237 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
238 static void tbf_queue(struct vif *, struct mbuf *);
239 static void tbf_process_q(struct vif *);
240 static void tbf_reprocess_q(void *);
241 static int tbf_dq_sel(struct vif *, struct ip *);
242 static void tbf_send_packet(struct vif *, struct mbuf *);
243 static void tbf_update_tokens(struct vif *);
244 static int priority(struct vif *, struct ip *);
247 * Bandwidth monitoring
249 static void free_bw_list(struct bw_meter *);
250 static int add_bw_upcall(struct bw_upcall *);
251 static int del_bw_upcall(struct bw_upcall *);
252 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
253 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
254 static void bw_upcalls_send(void);
255 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
256 static void unschedule_bw_meter(struct bw_meter *);
257 static void bw_meter_process(void);
258 static void expire_bw_upcalls_send(void *);
259 static void expire_bw_meter_process(void *);
261 #ifdef PIM
262 static int pim_register_send(struct ip *, struct vif *,
263 struct mbuf *, struct mfc *);
264 static int pim_register_send_rp(struct ip *, struct vif *,
265 struct mbuf *, struct mfc *);
266 static int pim_register_send_upcall(struct ip *, struct vif *,
267 struct mbuf *, struct mfc *);
268 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
269 #endif
272 * 'Interfaces' associated with decapsulator (so we can tell
273 * packets that went through it from ones that get reflected
274 * by a broken gateway). These interfaces are never linked into
275 * the system ifnet list & no routes point to them. I.e., packets
276 * can't be sent this way. They only exist as a placeholder for
277 * multicast source verification.
279 #if 0
280 struct ifnet multicast_decap_if[MAXVIFS];
281 #endif
283 #define ENCAP_TTL 64
284 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
286 /* prototype IP hdr for encapsulated packets */
287 struct ip multicast_encap_iphdr = {
288 .ip_hl = sizeof(struct ip) >> 2,
289 .ip_v = IPVERSION,
290 .ip_len = sizeof(struct ip),
291 .ip_ttl = ENCAP_TTL,
292 .ip_p = ENCAP_PROTO,
296 * Bandwidth meter variables and constants
300 * Pending timeouts are stored in a hash table, the key being the
301 * expiration time. Periodically, the entries are analysed and processed.
303 #define BW_METER_BUCKETS 1024
304 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
305 struct callout bw_meter_ch;
306 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
309 * Pending upcalls are stored in a vector which is flushed when
310 * full, or periodically
312 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
313 static u_int bw_upcalls_n; /* # of pending upcalls */
314 struct callout bw_upcalls_ch;
315 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
317 #ifdef PIM
318 struct pimstat pimstat;
321 * Note: the PIM Register encapsulation adds the following in front of a
322 * data packet:
324 * struct pim_encap_hdr {
325 * struct ip ip;
326 * struct pim_encap_pimhdr pim;
331 struct pim_encap_pimhdr {
332 struct pim pim;
333 uint32_t flags;
336 static struct ip pim_encap_iphdr = {
337 .ip_v = IPVERSION,
338 .ip_hl = sizeof(struct ip) >> 2,
339 .ip_len = sizeof(struct ip),
340 .ip_ttl = ENCAP_TTL,
341 .ip_p = IPPROTO_PIM,
344 static struct pim_encap_pimhdr pim_encap_pimhdr = {
346 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
347 0, /* reserved */
348 0, /* checksum */
350 0 /* flags */
353 static struct ifnet multicast_register_if;
354 static vifi_t reg_vif_num = VIFI_INVALID;
355 #endif /* PIM */
359 * Private variables.
361 static vifi_t numvifs = 0;
363 static struct callout expire_upcalls_ch;
366 * whether or not special PIM assert processing is enabled.
368 static int pim_assert;
370 * Rate limit for assert notification messages, in usec
372 #define ASSERT_MSG_TIME 3000000
375 * Kernel multicast routing API capabilities and setup.
376 * If more API capabilities are added to the kernel, they should be
377 * recorded in `mrt_api_support'.
379 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
380 MRT_MFC_FLAGS_BORDER_VIF |
381 MRT_MFC_RP |
382 MRT_MFC_BW_UPCALL);
383 static u_int32_t mrt_api_config = 0;
386 * Find a route for a given origin IP address and Multicast group address
387 * Type of service parameter to be added in the future!!!
388 * Statistics are updated by the caller if needed
389 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
391 static struct mfc *
392 mfc_find(struct in_addr *o, struct in_addr *g)
394 struct mfc *rt;
396 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
397 if (in_hosteq(rt->mfc_origin, *o) &&
398 in_hosteq(rt->mfc_mcastgrp, *g) &&
399 (rt->mfc_stall == NULL))
400 break;
403 return (rt);
407 * Macros to compute elapsed time efficiently
408 * Borrowed from Van Jacobson's scheduling code
410 #define TV_DELTA(a, b, delta) do { \
411 int xxs; \
412 delta = (a).tv_usec - (b).tv_usec; \
413 xxs = (a).tv_sec - (b).tv_sec; \
414 switch (xxs) { \
415 case 2: \
416 delta += 1000000; \
417 /* fall through */ \
418 case 1: \
419 delta += 1000000; \
420 /* fall through */ \
421 case 0: \
422 break; \
423 default: \
424 delta += (1000000 * xxs); \
425 break; \
427 } while (/*CONSTCOND*/ 0)
429 #ifdef UPCALL_TIMING
430 u_int32_t upcall_data[51];
431 #endif /* UPCALL_TIMING */
434 * Handle MRT setsockopt commands to modify the multicast routing tables.
437 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
439 int error;
440 int optval;
441 struct vifctl vifc;
442 vifi_t vifi;
443 struct bw_upcall bwuc;
445 if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
446 error = ENOPROTOOPT;
447 else {
448 switch (sopt->sopt_name) {
449 case MRT_INIT:
450 error = sockopt_getint(sopt, &optval);
451 if (error)
452 break;
454 error = ip_mrouter_init(so, optval);
455 break;
456 case MRT_DONE:
457 error = ip_mrouter_done();
458 break;
459 case MRT_ADD_VIF:
460 error = sockopt_get(sopt, &vifc, sizeof(vifc));
461 if (error)
462 break;
463 error = add_vif(&vifc);
464 break;
465 case MRT_DEL_VIF:
466 error = sockopt_get(sopt, &vifi, sizeof(vifi));
467 if (error)
468 break;
469 error = del_vif(&vifi);
470 break;
471 case MRT_ADD_MFC:
472 error = add_mfc(sopt);
473 break;
474 case MRT_DEL_MFC:
475 error = del_mfc(sopt);
476 break;
477 case MRT_ASSERT:
478 error = sockopt_getint(sopt, &optval);
479 if (error)
480 break;
481 error = set_assert(optval);
482 break;
483 case MRT_API_CONFIG:
484 error = set_api_config(sopt);
485 break;
486 case MRT_ADD_BW_UPCALL:
487 error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
488 if (error)
489 break;
490 error = add_bw_upcall(&bwuc);
491 break;
492 case MRT_DEL_BW_UPCALL:
493 error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
494 if (error)
495 break;
496 error = del_bw_upcall(&bwuc);
497 break;
498 default:
499 error = ENOPROTOOPT;
500 break;
503 return (error);
507 * Handle MRT getsockopt commands
510 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
512 int error;
514 if (so != ip_mrouter)
515 error = ENOPROTOOPT;
516 else {
517 switch (sopt->sopt_name) {
518 case MRT_VERSION:
519 error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
520 break;
521 case MRT_ASSERT:
522 error = sockopt_setint(sopt, pim_assert);
523 break;
524 case MRT_API_SUPPORT:
525 error = sockopt_set(sopt, &mrt_api_support,
526 sizeof(mrt_api_support));
527 break;
528 case MRT_API_CONFIG:
529 error = sockopt_set(sopt, &mrt_api_config,
530 sizeof(mrt_api_config));
531 break;
532 default:
533 error = ENOPROTOOPT;
534 break;
537 return (error);
541 * Handle ioctl commands to obtain information from the cache
544 mrt_ioctl(struct socket *so, u_long cmd, void *data)
546 int error;
548 if (so != ip_mrouter)
549 error = EINVAL;
550 else
551 switch (cmd) {
552 case SIOCGETVIFCNT:
553 error = get_vif_cnt((struct sioc_vif_req *)data);
554 break;
555 case SIOCGETSGCNT:
556 error = get_sg_cnt((struct sioc_sg_req *)data);
557 break;
558 default:
559 error = EINVAL;
560 break;
563 return (error);
567 * returns the packet, byte, rpf-failure count for the source group provided
569 static int
570 get_sg_cnt(struct sioc_sg_req *req)
572 int s;
573 struct mfc *rt;
575 s = splsoftnet();
576 rt = mfc_find(&req->src, &req->grp);
577 if (rt == NULL) {
578 splx(s);
579 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
580 return (EADDRNOTAVAIL);
582 req->pktcnt = rt->mfc_pkt_cnt;
583 req->bytecnt = rt->mfc_byte_cnt;
584 req->wrong_if = rt->mfc_wrong_if;
585 splx(s);
587 return (0);
591 * returns the input and output packet and byte counts on the vif provided
593 static int
594 get_vif_cnt(struct sioc_vif_req *req)
596 vifi_t vifi = req->vifi;
598 if (vifi >= numvifs)
599 return (EINVAL);
601 req->icount = viftable[vifi].v_pkt_in;
602 req->ocount = viftable[vifi].v_pkt_out;
603 req->ibytes = viftable[vifi].v_bytes_in;
604 req->obytes = viftable[vifi].v_bytes_out;
606 return (0);
610 * Enable multicast routing
612 static int
613 ip_mrouter_init(struct socket *so, int v)
615 if (mrtdebug)
616 log(LOG_DEBUG,
617 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
618 so->so_type, so->so_proto->pr_protocol);
620 if (so->so_type != SOCK_RAW ||
621 so->so_proto->pr_protocol != IPPROTO_IGMP)
622 return (EOPNOTSUPP);
624 if (v != 1)
625 return (EINVAL);
627 if (ip_mrouter != NULL)
628 return (EADDRINUSE);
630 ip_mrouter = so;
632 mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
633 memset((void *)nexpire, 0, sizeof(nexpire));
635 pim_assert = 0;
637 callout_init(&expire_upcalls_ch, 0);
638 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
639 expire_upcalls, NULL);
641 callout_init(&bw_upcalls_ch, 0);
642 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
643 expire_bw_upcalls_send, NULL);
645 callout_init(&bw_meter_ch, 0);
646 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
647 expire_bw_meter_process, NULL);
649 if (mrtdebug)
650 log(LOG_DEBUG, "ip_mrouter_init\n");
652 return (0);
656 * Disable multicast routing
659 ip_mrouter_done(void)
661 vifi_t vifi;
662 struct vif *vifp;
663 int i;
664 int s;
666 s = splsoftnet();
668 /* Clear out all the vifs currently in use. */
669 for (vifi = 0; vifi < numvifs; vifi++) {
670 vifp = &viftable[vifi];
671 if (!in_nullhost(vifp->v_lcl_addr))
672 reset_vif(vifp);
675 numvifs = 0;
676 pim_assert = 0;
677 mrt_api_config = 0;
679 callout_stop(&expire_upcalls_ch);
680 callout_stop(&bw_upcalls_ch);
681 callout_stop(&bw_meter_ch);
684 * Free all multicast forwarding cache entries.
686 for (i = 0; i < MFCTBLSIZ; i++) {
687 struct mfc *rt, *nrt;
689 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
690 nrt = LIST_NEXT(rt, mfc_hash);
692 expire_mfc(rt);
696 memset((void *)nexpire, 0, sizeof(nexpire));
697 hashdone(mfchashtbl, HASH_LIST, mfchash);
698 mfchashtbl = NULL;
700 bw_upcalls_n = 0;
701 memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
703 /* Reset de-encapsulation cache. */
705 ip_mrouter = NULL;
707 splx(s);
709 if (mrtdebug)
710 log(LOG_DEBUG, "ip_mrouter_done\n");
712 return (0);
715 void
716 ip_mrouter_detach(struct ifnet *ifp)
718 int vifi, i;
719 struct vif *vifp;
720 struct mfc *rt;
721 struct rtdetq *rte;
723 /* XXX not sure about side effect to userland routing daemon */
724 for (vifi = 0; vifi < numvifs; vifi++) {
725 vifp = &viftable[vifi];
726 if (vifp->v_ifp == ifp)
727 reset_vif(vifp);
729 for (i = 0; i < MFCTBLSIZ; i++) {
730 if (nexpire[i] == 0)
731 continue;
732 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
733 for (rte = rt->mfc_stall; rte; rte = rte->next) {
734 if (rte->ifp == ifp)
735 rte->ifp = NULL;
742 * Set PIM assert processing global
744 static int
745 set_assert(int i)
747 pim_assert = !!i;
748 return (0);
752 * Configure API capabilities
754 static int
755 set_api_config(struct sockopt *sopt)
757 u_int32_t apival;
758 int i, error;
761 * We can set the API capabilities only if it is the first operation
762 * after MRT_INIT. I.e.:
763 * - there are no vifs installed
764 * - pim_assert is not enabled
765 * - the MFC table is empty
767 error = sockopt_get(sopt, &apival, sizeof(apival));
768 if (error)
769 return (error);
770 if (numvifs > 0)
771 return (EPERM);
772 if (pim_assert)
773 return (EPERM);
774 for (i = 0; i < MFCTBLSIZ; i++) {
775 if (LIST_FIRST(&mfchashtbl[i]) != NULL)
776 return (EPERM);
779 mrt_api_config = apival & mrt_api_support;
780 return (0);
784 * Add a vif to the vif table
786 static int
787 add_vif(struct vifctl *vifcp)
789 struct vif *vifp;
790 struct ifaddr *ifa;
791 struct ifnet *ifp;
792 struct ifreq ifr;
793 int error, s;
794 struct sockaddr_in sin;
796 if (vifcp->vifc_vifi >= MAXVIFS)
797 return (EINVAL);
798 if (in_nullhost(vifcp->vifc_lcl_addr))
799 return (EADDRNOTAVAIL);
801 vifp = &viftable[vifcp->vifc_vifi];
802 if (!in_nullhost(vifp->v_lcl_addr))
803 return (EADDRINUSE);
805 /* Find the interface with an address in AF_INET family. */
806 #ifdef PIM
807 if (vifcp->vifc_flags & VIFF_REGISTER) {
809 * XXX: Because VIFF_REGISTER does not really need a valid
810 * local interface (e.g. it could be 127.0.0.2), we don't
811 * check its address.
813 ifp = NULL;
814 } else
815 #endif
817 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
818 ifa = ifa_ifwithaddr(sintosa(&sin));
819 if (ifa == NULL)
820 return (EADDRNOTAVAIL);
821 ifp = ifa->ifa_ifp;
824 if (vifcp->vifc_flags & VIFF_TUNNEL) {
825 if (vifcp->vifc_flags & VIFF_SRCRT) {
826 log(LOG_ERR, "source routed tunnels not supported\n");
827 return (EOPNOTSUPP);
830 /* attach this vif to decapsulator dispatch table */
832 * XXX Use addresses in registration so that matching
833 * can be done with radix tree in decapsulator. But,
834 * we need to check inner header for multicast, so
835 * this requires both radix tree lookup and then a
836 * function to check, and this is not supported yet.
838 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
839 vif_encapcheck, &vif_protosw, vifp);
840 if (!vifp->v_encap_cookie)
841 return (EINVAL);
843 /* Create a fake encapsulation interface. */
844 ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
845 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
846 "mdecap%d", vifcp->vifc_vifi);
848 /* Prepare cached route entry. */
849 memset(&vifp->v_route, 0, sizeof(vifp->v_route));
850 #ifdef PIM
851 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
852 ifp = &multicast_register_if;
853 if (mrtdebug)
854 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
855 (void *)ifp);
856 if (reg_vif_num == VIFI_INVALID) {
857 memset(ifp, 0, sizeof(*ifp));
858 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
859 "register_vif");
860 ifp->if_flags = IFF_LOOPBACK;
861 memset(&vifp->v_route, 0, sizeof(vifp->v_route));
862 reg_vif_num = vifcp->vifc_vifi;
864 #endif
865 } else {
866 /* Make sure the interface supports multicast. */
867 if ((ifp->if_flags & IFF_MULTICAST) == 0)
868 return (EOPNOTSUPP);
870 /* Enable promiscuous reception of all IP multicasts. */
871 sockaddr_in_init(&sin, &zeroin_addr, 0);
872 ifreq_setaddr(SIOCADDMULTI, &ifr, sintosa(&sin));
873 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, &ifr);
874 if (error)
875 return (error);
878 s = splsoftnet();
880 /* Define parameters for the tbf structure. */
881 vifp->tbf_q = NULL;
882 vifp->tbf_t = &vifp->tbf_q;
883 microtime(&vifp->tbf_last_pkt_t);
884 vifp->tbf_n_tok = 0;
885 vifp->tbf_q_len = 0;
886 vifp->tbf_max_q_len = MAXQSIZE;
888 vifp->v_flags = vifcp->vifc_flags;
889 vifp->v_threshold = vifcp->vifc_threshold;
890 /* scaling up here allows division by 1024 in critical code */
891 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
892 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
893 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
894 vifp->v_ifp = ifp;
895 /* Initialize per vif pkt counters. */
896 vifp->v_pkt_in = 0;
897 vifp->v_pkt_out = 0;
898 vifp->v_bytes_in = 0;
899 vifp->v_bytes_out = 0;
901 callout_init(&vifp->v_repq_ch, 0);
903 #ifdef RSVP_ISI
904 vifp->v_rsvp_on = 0;
905 vifp->v_rsvpd = NULL;
906 #endif /* RSVP_ISI */
908 splx(s);
910 /* Adjust numvifs up if the vifi is higher than numvifs. */
911 if (numvifs <= vifcp->vifc_vifi)
912 numvifs = vifcp->vifc_vifi + 1;
914 if (mrtdebug)
915 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
916 vifcp->vifc_vifi,
917 ntohl(vifcp->vifc_lcl_addr.s_addr),
918 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
919 ntohl(vifcp->vifc_rmt_addr.s_addr),
920 vifcp->vifc_threshold,
921 vifcp->vifc_rate_limit);
923 return (0);
926 void
927 reset_vif(struct vif *vifp)
929 struct mbuf *m, *n;
930 struct ifnet *ifp;
931 struct ifreq ifr;
932 struct sockaddr_in sin;
934 callout_stop(&vifp->v_repq_ch);
936 /* detach this vif from decapsulator dispatch table */
937 encap_detach(vifp->v_encap_cookie);
938 vifp->v_encap_cookie = NULL;
941 * Free packets queued at the interface
943 for (m = vifp->tbf_q; m != NULL; m = n) {
944 n = m->m_nextpkt;
945 m_freem(m);
948 if (vifp->v_flags & VIFF_TUNNEL)
949 free(vifp->v_ifp, M_MRTABLE);
950 else if (vifp->v_flags & VIFF_REGISTER) {
951 #ifdef PIM
952 reg_vif_num = VIFI_INVALID;
953 #endif
954 } else {
955 sockaddr_in_init(&sin, &zeroin_addr, 0);
956 ifreq_setaddr(SIOCDELMULTI, &ifr, sintosa(&sin));
957 ifp = vifp->v_ifp;
958 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, &ifr);
960 memset((void *)vifp, 0, sizeof(*vifp));
964 * Delete a vif from the vif table
966 static int
967 del_vif(vifi_t *vifip)
969 struct vif *vifp;
970 vifi_t vifi;
971 int s;
973 if (*vifip >= numvifs)
974 return (EINVAL);
976 vifp = &viftable[*vifip];
977 if (in_nullhost(vifp->v_lcl_addr))
978 return (EADDRNOTAVAIL);
980 s = splsoftnet();
982 reset_vif(vifp);
984 /* Adjust numvifs down */
985 for (vifi = numvifs; vifi > 0; vifi--)
986 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
987 break;
988 numvifs = vifi;
990 splx(s);
992 if (mrtdebug)
993 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
995 return (0);
999 * update an mfc entry without resetting counters and S,G addresses.
1001 static void
1002 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1004 int i;
1006 rt->mfc_parent = mfccp->mfcc_parent;
1007 for (i = 0; i < numvifs; i++) {
1008 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1009 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1010 MRT_MFC_FLAGS_ALL;
1012 /* set the RP address */
1013 if (mrt_api_config & MRT_MFC_RP)
1014 rt->mfc_rp = mfccp->mfcc_rp;
1015 else
1016 rt->mfc_rp = zeroin_addr;
1020 * fully initialize an mfc entry from the parameter.
1022 static void
1023 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1025 rt->mfc_origin = mfccp->mfcc_origin;
1026 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1028 update_mfc_params(rt, mfccp);
1030 /* initialize pkt counters per src-grp */
1031 rt->mfc_pkt_cnt = 0;
1032 rt->mfc_byte_cnt = 0;
1033 rt->mfc_wrong_if = 0;
1034 timerclear(&rt->mfc_last_assert);
1037 static void
1038 expire_mfc(struct mfc *rt)
1040 struct rtdetq *rte, *nrte;
1042 free_bw_list(rt->mfc_bw_meter);
1044 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1045 nrte = rte->next;
1046 m_freem(rte->m);
1047 free(rte, M_MRTABLE);
1050 LIST_REMOVE(rt, mfc_hash);
1051 free(rt, M_MRTABLE);
1055 * Add an mfc entry
1057 static int
1058 add_mfc(struct sockopt *sopt)
1060 struct mfcctl2 mfcctl2;
1061 struct mfcctl2 *mfccp;
1062 struct mfc *rt;
1063 u_int32_t hash = 0;
1064 struct rtdetq *rte, *nrte;
1065 u_short nstl;
1066 int s;
1067 int mfcctl_size = sizeof(struct mfcctl);
1068 int error;
1070 if (mrt_api_config & MRT_API_FLAGS_ALL)
1071 mfcctl_size = sizeof(struct mfcctl2);
1074 * select data size depending on API version.
1076 mfccp = &mfcctl2;
1077 memset(&mfcctl2, 0, sizeof(mfcctl2));
1079 if (mrt_api_config & MRT_API_FLAGS_ALL)
1080 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
1081 else
1082 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
1084 if (error)
1085 return (error);
1087 s = splsoftnet();
1088 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1090 /* If an entry already exists, just update the fields */
1091 if (rt) {
1092 if (mrtdebug & DEBUG_MFC)
1093 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1094 ntohl(mfccp->mfcc_origin.s_addr),
1095 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1096 mfccp->mfcc_parent);
1098 update_mfc_params(rt, mfccp);
1100 splx(s);
1101 return (0);
1105 * Find the entry for which the upcall was made and update
1107 nstl = 0;
1108 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1109 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1110 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1111 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1112 rt->mfc_stall != NULL) {
1113 if (nstl++)
1114 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
1115 "multiple kernel entries",
1116 ntohl(mfccp->mfcc_origin.s_addr),
1117 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1118 mfccp->mfcc_parent, rt->mfc_stall);
1120 if (mrtdebug & DEBUG_MFC)
1121 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
1122 ntohl(mfccp->mfcc_origin.s_addr),
1123 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1124 mfccp->mfcc_parent, rt->mfc_stall);
1126 rte = rt->mfc_stall;
1127 init_mfc_params(rt, mfccp);
1128 rt->mfc_stall = NULL;
1130 rt->mfc_expire = 0; /* Don't clean this guy up */
1131 nexpire[hash]--;
1133 /* free packets Qed at the end of this entry */
1134 for (; rte != NULL; rte = nrte) {
1135 nrte = rte->next;
1136 if (rte->ifp) {
1137 #ifdef RSVP_ISI
1138 ip_mdq(rte->m, rte->ifp, rt, -1);
1139 #else
1140 ip_mdq(rte->m, rte->ifp, rt);
1141 #endif /* RSVP_ISI */
1143 m_freem(rte->m);
1144 #ifdef UPCALL_TIMING
1145 collate(&rte->t);
1146 #endif /* UPCALL_TIMING */
1147 free(rte, M_MRTABLE);
1153 * It is possible that an entry is being inserted without an upcall
1155 if (nstl == 0) {
1157 * No mfc; make a new one
1159 if (mrtdebug & DEBUG_MFC)
1160 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1161 ntohl(mfccp->mfcc_origin.s_addr),
1162 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1163 mfccp->mfcc_parent);
1165 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1166 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1167 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1168 init_mfc_params(rt, mfccp);
1169 if (rt->mfc_expire)
1170 nexpire[hash]--;
1171 rt->mfc_expire = 0;
1172 break; /* XXX */
1175 if (rt == NULL) { /* no upcall, so make a new entry */
1176 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1177 M_NOWAIT);
1178 if (rt == NULL) {
1179 splx(s);
1180 return (ENOBUFS);
1183 init_mfc_params(rt, mfccp);
1184 rt->mfc_expire = 0;
1185 rt->mfc_stall = NULL;
1186 rt->mfc_bw_meter = NULL;
1188 /* insert new entry at head of hash chain */
1189 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1193 splx(s);
1194 return (0);
1197 #ifdef UPCALL_TIMING
1199 * collect delay statistics on the upcalls
1201 static void
1202 collate(struct timeval *t)
1204 u_int32_t d;
1205 struct timeval tp;
1206 u_int32_t delta;
1208 microtime(&tp);
1210 if (timercmp(t, &tp, <)) {
1211 TV_DELTA(tp, *t, delta);
1213 d = delta >> 10;
1214 if (d > 50)
1215 d = 50;
1217 ++upcall_data[d];
1220 #endif /* UPCALL_TIMING */
1223 * Delete an mfc entry
1225 static int
1226 del_mfc(struct sockopt *sopt)
1228 struct mfcctl2 mfcctl2;
1229 struct mfcctl2 *mfccp;
1230 struct mfc *rt;
1231 int s;
1232 int error;
1235 * XXX: for deleting MFC entries the information in entries
1236 * of size "struct mfcctl" is sufficient.
1239 mfccp = &mfcctl2;
1240 memset(&mfcctl2, 0, sizeof(mfcctl2));
1242 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
1243 if (error) {
1244 /* Try with the size of mfcctl2. */
1245 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
1246 if (error)
1247 return (error);
1250 if (mrtdebug & DEBUG_MFC)
1251 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1252 ntohl(mfccp->mfcc_origin.s_addr),
1253 ntohl(mfccp->mfcc_mcastgrp.s_addr));
1255 s = splsoftnet();
1257 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1258 if (rt == NULL) {
1259 splx(s);
1260 return (EADDRNOTAVAIL);
1264 * free the bw_meter entries
1266 free_bw_list(rt->mfc_bw_meter);
1267 rt->mfc_bw_meter = NULL;
1269 LIST_REMOVE(rt, mfc_hash);
1270 free(rt, M_MRTABLE);
1272 splx(s);
1273 return (0);
1276 static int
1277 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1279 if (s) {
1280 if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
1281 (struct mbuf *)NULL) != 0) {
1282 sorwakeup(s);
1283 return (0);
1286 m_freem(mm);
1287 return (-1);
1291 * IP multicast forwarding function. This function assumes that the packet
1292 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1293 * pointed to by "ifp", and the packet is to be relayed to other networks
1294 * that have members of the packet's destination IP multicast group.
1296 * The packet is returned unscathed to the caller, unless it is
1297 * erroneous, in which case a non-zero return value tells the caller to
1298 * discard it.
1301 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
1302 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1305 #ifdef RSVP_ISI
1306 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
1307 #else
1308 ip_mforward(struct mbuf *m, struct ifnet *ifp)
1309 #endif /* RSVP_ISI */
1311 struct ip *ip = mtod(m, struct ip *);
1312 struct mfc *rt;
1313 static int srctun = 0;
1314 struct mbuf *mm;
1315 struct sockaddr_in sin;
1316 int s;
1317 vifi_t vifi;
1319 if (mrtdebug & DEBUG_FORWARD)
1320 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1321 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1323 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1324 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1326 * Packet arrived via a physical interface or
1327 * an encapsulated tunnel or a register_vif.
1329 } else {
1331 * Packet arrived through a source-route tunnel.
1332 * Source-route tunnels are no longer supported.
1334 if ((srctun++ % 1000) == 0)
1335 log(LOG_ERR,
1336 "ip_mforward: received source-routed packet from %x\n",
1337 ntohl(ip->ip_src.s_addr));
1339 return (1);
1343 * Clear any in-bound checksum flags for this packet.
1345 m->m_pkthdr.csum_flags = 0;
1347 #ifdef RSVP_ISI
1348 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1349 if (ip->ip_ttl < MAXTTL)
1350 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1351 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1352 struct vif *vifp = viftable + vifi;
1353 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
1354 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1355 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1356 vifp->v_ifp->if_xname);
1358 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
1360 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1361 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1362 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1364 #endif /* RSVP_ISI */
1367 * Don't forward a packet with time-to-live of zero or one,
1368 * or a packet destined to a local-only group.
1370 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1371 return (0);
1374 * Determine forwarding vifs from the forwarding cache table
1376 s = splsoftnet();
1377 ++mrtstat.mrts_mfc_lookups;
1378 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1380 /* Entry exists, so forward if necessary */
1381 if (rt != NULL) {
1382 splx(s);
1383 #ifdef RSVP_ISI
1384 return (ip_mdq(m, ifp, rt, -1));
1385 #else
1386 return (ip_mdq(m, ifp, rt));
1387 #endif /* RSVP_ISI */
1388 } else {
1390 * If we don't have a route for packet's origin,
1391 * Make a copy of the packet & send message to routing daemon
1394 struct mbuf *mb0;
1395 struct rtdetq *rte;
1396 u_int32_t hash;
1397 int hlen = ip->ip_hl << 2;
1398 #ifdef UPCALL_TIMING
1399 struct timeval tp;
1401 microtime(&tp);
1402 #endif /* UPCALL_TIMING */
1404 ++mrtstat.mrts_mfc_misses;
1406 mrtstat.mrts_no_route++;
1407 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1408 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1409 ntohl(ip->ip_src.s_addr),
1410 ntohl(ip->ip_dst.s_addr));
1413 * Allocate mbufs early so that we don't do extra work if we are
1414 * just going to fail anyway. Make sure to pullup the header so
1415 * that other people can't step on it.
1417 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
1418 M_NOWAIT);
1419 if (rte == NULL) {
1420 splx(s);
1421 return (ENOBUFS);
1423 mb0 = m_copypacket(m, M_DONTWAIT);
1424 M_PULLUP(mb0, hlen);
1425 if (mb0 == NULL) {
1426 free(rte, M_MRTABLE);
1427 splx(s);
1428 return (ENOBUFS);
1431 /* is there an upcall waiting for this flow? */
1432 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1433 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1434 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1435 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1436 rt->mfc_stall != NULL)
1437 break;
1440 if (rt == NULL) {
1441 int i;
1442 struct igmpmsg *im;
1445 * Locate the vifi for the incoming interface for
1446 * this packet.
1447 * If none found, drop packet.
1449 for (vifi = 0; vifi < numvifs &&
1450 viftable[vifi].v_ifp != ifp; vifi++)
1452 if (vifi >= numvifs) /* vif not found, drop packet */
1453 goto non_fatal;
1455 /* no upcall, so make a new entry */
1456 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1457 M_NOWAIT);
1458 if (rt == NULL)
1459 goto fail;
1462 * Make a copy of the header to send to the user level
1463 * process
1465 mm = m_copym(m, 0, hlen, M_DONTWAIT);
1466 M_PULLUP(mm, hlen);
1467 if (mm == NULL)
1468 goto fail1;
1471 * Send message to routing daemon to install
1472 * a route into the kernel table
1475 im = mtod(mm, struct igmpmsg *);
1476 im->im_msgtype = IGMPMSG_NOCACHE;
1477 im->im_mbz = 0;
1478 im->im_vif = vifi;
1480 mrtstat.mrts_upcalls++;
1482 sockaddr_in_init(&sin, &ip->ip_src, 0);
1483 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1484 log(LOG_WARNING,
1485 "ip_mforward: ip_mrouter socket queue full\n");
1486 ++mrtstat.mrts_upq_sockfull;
1487 fail1:
1488 free(rt, M_MRTABLE);
1489 fail:
1490 free(rte, M_MRTABLE);
1491 m_freem(mb0);
1492 splx(s);
1493 return (ENOBUFS);
1496 /* insert new entry at head of hash chain */
1497 rt->mfc_origin = ip->ip_src;
1498 rt->mfc_mcastgrp = ip->ip_dst;
1499 rt->mfc_pkt_cnt = 0;
1500 rt->mfc_byte_cnt = 0;
1501 rt->mfc_wrong_if = 0;
1502 rt->mfc_expire = UPCALL_EXPIRE;
1503 nexpire[hash]++;
1504 for (i = 0; i < numvifs; i++) {
1505 rt->mfc_ttls[i] = 0;
1506 rt->mfc_flags[i] = 0;
1508 rt->mfc_parent = -1;
1510 /* clear the RP address */
1511 rt->mfc_rp = zeroin_addr;
1513 rt->mfc_bw_meter = NULL;
1515 /* link into table */
1516 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1517 /* Add this entry to the end of the queue */
1518 rt->mfc_stall = rte;
1519 } else {
1520 /* determine if q has overflowed */
1521 struct rtdetq **p;
1522 int npkts = 0;
1525 * XXX ouch! we need to append to the list, but we
1526 * only have a pointer to the front, so we have to
1527 * scan the entire list every time.
1529 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1530 if (++npkts > MAX_UPQ) {
1531 mrtstat.mrts_upq_ovflw++;
1532 non_fatal:
1533 free(rte, M_MRTABLE);
1534 m_freem(mb0);
1535 splx(s);
1536 return (0);
1539 /* Add this entry to the end of the queue */
1540 *p = rte;
1543 rte->next = NULL;
1544 rte->m = mb0;
1545 rte->ifp = ifp;
1546 #ifdef UPCALL_TIMING
1547 rte->t = tp;
1548 #endif /* UPCALL_TIMING */
1550 splx(s);
1552 return (0);
1557 /*ARGSUSED*/
1558 static void
1559 expire_upcalls(void *v)
1561 int i;
1562 int s;
1564 s = splsoftnet();
1566 for (i = 0; i < MFCTBLSIZ; i++) {
1567 struct mfc *rt, *nrt;
1569 if (nexpire[i] == 0)
1570 continue;
1572 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1573 nrt = LIST_NEXT(rt, mfc_hash);
1575 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1576 continue;
1577 nexpire[i]--;
1580 * free the bw_meter entries
1582 while (rt->mfc_bw_meter != NULL) {
1583 struct bw_meter *x = rt->mfc_bw_meter;
1585 rt->mfc_bw_meter = x->bm_mfc_next;
1586 free(x, M_BWMETER);
1589 ++mrtstat.mrts_cache_cleanups;
1590 if (mrtdebug & DEBUG_EXPIRE)
1591 log(LOG_DEBUG,
1592 "expire_upcalls: expiring (%x %x)\n",
1593 ntohl(rt->mfc_origin.s_addr),
1594 ntohl(rt->mfc_mcastgrp.s_addr));
1596 expire_mfc(rt);
1600 splx(s);
1601 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1602 expire_upcalls, NULL);
1606 * Packet forwarding routine once entry in the cache is made
1608 static int
1609 #ifdef RSVP_ISI
1610 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1611 #else
1612 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
1613 #endif /* RSVP_ISI */
1615 struct ip *ip = mtod(m, struct ip *);
1616 vifi_t vifi;
1617 struct vif *vifp;
1618 struct sockaddr_in sin;
1619 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1622 * Macro to send packet on vif. Since RSVP packets don't get counted on
1623 * input, they shouldn't get counted on output, so statistics keeping is
1624 * separate.
1626 #define MC_SEND(ip, vifp, m) do { \
1627 if ((vifp)->v_flags & VIFF_TUNNEL) \
1628 encap_send((ip), (vifp), (m)); \
1629 else \
1630 phyint_send((ip), (vifp), (m)); \
1631 } while (/*CONSTCOND*/ 0)
1633 #ifdef RSVP_ISI
1635 * If xmt_vif is not -1, send on only the requested vif.
1637 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1639 if (xmt_vif < numvifs) {
1640 #ifdef PIM
1641 if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1642 pim_register_send(ip, viftable + xmt_vif, m, rt);
1643 else
1644 #endif
1645 MC_SEND(ip, viftable + xmt_vif, m);
1646 return (1);
1648 #endif /* RSVP_ISI */
1651 * Don't forward if it didn't arrive from the parent vif for its origin.
1653 vifi = rt->mfc_parent;
1654 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1655 /* came in the wrong interface */
1656 if (mrtdebug & DEBUG_FORWARD)
1657 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1658 ifp, vifi,
1659 vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1660 ++mrtstat.mrts_wrong_if;
1661 ++rt->mfc_wrong_if;
1663 * If we are doing PIM assert processing, send a message
1664 * to the routing daemon.
1666 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1667 * can complete the SPT switch, regardless of the type
1668 * of the iif (broadcast media, GRE tunnel, etc).
1670 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1671 struct timeval now;
1672 u_int32_t delta;
1674 #ifdef PIM
1675 if (ifp == &multicast_register_if)
1676 pimstat.pims_rcv_registers_wrongiif++;
1677 #endif
1679 /* Get vifi for the incoming packet */
1680 for (vifi = 0;
1681 vifi < numvifs && viftable[vifi].v_ifp != ifp;
1682 vifi++)
1684 if (vifi >= numvifs) {
1685 /* The iif is not found: ignore the packet. */
1686 return (0);
1689 if (rt->mfc_flags[vifi] &
1690 MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1691 /* WRONGVIF disabled: ignore the packet */
1692 return (0);
1695 microtime(&now);
1697 TV_DELTA(rt->mfc_last_assert, now, delta);
1699 if (delta > ASSERT_MSG_TIME) {
1700 struct igmpmsg *im;
1701 int hlen = ip->ip_hl << 2;
1702 struct mbuf *mm =
1703 m_copym(m, 0, hlen, M_DONTWAIT);
1705 M_PULLUP(mm, hlen);
1706 if (mm == NULL)
1707 return (ENOBUFS);
1709 rt->mfc_last_assert = now;
1711 im = mtod(mm, struct igmpmsg *);
1712 im->im_msgtype = IGMPMSG_WRONGVIF;
1713 im->im_mbz = 0;
1714 im->im_vif = vifi;
1716 mrtstat.mrts_upcalls++;
1718 sockaddr_in_init(&sin, &im->im_src, 0);
1719 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1720 log(LOG_WARNING,
1721 "ip_mforward: ip_mrouter socket queue full\n");
1722 ++mrtstat.mrts_upq_sockfull;
1723 return (ENOBUFS);
1727 return (0);
1730 /* If I sourced this packet, it counts as output, else it was input. */
1731 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1732 viftable[vifi].v_pkt_out++;
1733 viftable[vifi].v_bytes_out += plen;
1734 } else {
1735 viftable[vifi].v_pkt_in++;
1736 viftable[vifi].v_bytes_in += plen;
1738 rt->mfc_pkt_cnt++;
1739 rt->mfc_byte_cnt += plen;
1742 * For each vif, decide if a copy of the packet should be forwarded.
1743 * Forward if:
1744 * - the ttl exceeds the vif's threshold
1745 * - there are group members downstream on interface
1747 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1748 if ((rt->mfc_ttls[vifi] > 0) &&
1749 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1750 vifp->v_pkt_out++;
1751 vifp->v_bytes_out += plen;
1752 #ifdef PIM
1753 if (vifp->v_flags & VIFF_REGISTER)
1754 pim_register_send(ip, vifp, m, rt);
1755 else
1756 #endif
1757 MC_SEND(ip, vifp, m);
1761 * Perform upcall-related bw measuring.
1763 if (rt->mfc_bw_meter != NULL) {
1764 struct bw_meter *x;
1765 struct timeval now;
1767 microtime(&now);
1768 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1769 bw_meter_receive_packet(x, plen, &now);
1772 return (0);
1775 #ifdef RSVP_ISI
1777 * check if a vif number is legal/ok. This is used by ip_output.
1780 legal_vif_num(int vif)
1782 if (vif >= 0 && vif < numvifs)
1783 return (1);
1784 else
1785 return (0);
1787 #endif /* RSVP_ISI */
1789 static void
1790 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1792 struct mbuf *mb_copy;
1793 int hlen = ip->ip_hl << 2;
1796 * Make a new reference to the packet; make sure that
1797 * the IP header is actually copied, not just referenced,
1798 * so that ip_output() only scribbles on the copy.
1800 mb_copy = m_copypacket(m, M_DONTWAIT);
1801 M_PULLUP(mb_copy, hlen);
1802 if (mb_copy == NULL)
1803 return;
1805 if (vifp->v_rate_limit <= 0)
1806 tbf_send_packet(vifp, mb_copy);
1807 else
1808 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1809 ntohs(ip->ip_len));
1812 static void
1813 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1815 struct mbuf *mb_copy;
1816 struct ip *ip_copy;
1817 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1819 /* Take care of delayed checksums */
1820 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1821 in_delayed_cksum(m);
1822 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1826 * copy the old packet & pullup it's IP header into the
1827 * new mbuf so we can modify it. Try to fill the new
1828 * mbuf since if we don't the ethernet driver will.
1830 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1831 if (mb_copy == NULL)
1832 return;
1833 mb_copy->m_data += max_linkhdr;
1834 mb_copy->m_pkthdr.len = len;
1835 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1837 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1838 m_freem(mb_copy);
1839 return;
1841 i = MHLEN - max_linkhdr;
1842 if (i > len)
1843 i = len;
1844 mb_copy = m_pullup(mb_copy, i);
1845 if (mb_copy == NULL)
1846 return;
1849 * fill in the encapsulating IP header.
1851 ip_copy = mtod(mb_copy, struct ip *);
1852 *ip_copy = multicast_encap_iphdr;
1853 if (len < IP_MINFRAGSIZE)
1854 ip_copy->ip_id = 0;
1855 else
1856 ip_copy->ip_id = ip_newid(NULL);
1857 ip_copy->ip_len = htons(len);
1858 ip_copy->ip_src = vifp->v_lcl_addr;
1859 ip_copy->ip_dst = vifp->v_rmt_addr;
1862 * turn the encapsulated IP header back into a valid one.
1864 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
1865 --ip->ip_ttl;
1866 ip->ip_sum = 0;
1867 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1868 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1869 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1871 if (vifp->v_rate_limit <= 0)
1872 tbf_send_packet(vifp, mb_copy);
1873 else
1874 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1878 * De-encapsulate a packet and feed it back through ip input.
1880 static void
1881 vif_input(struct mbuf *m, ...)
1883 int off, proto;
1884 va_list ap;
1885 struct vif *vifp;
1886 int s;
1887 struct ifqueue *ifq;
1889 va_start(ap, m);
1890 off = va_arg(ap, int);
1891 proto = va_arg(ap, int);
1892 va_end(ap);
1894 vifp = (struct vif *)encap_getarg(m);
1895 if (!vifp || proto != ENCAP_PROTO) {
1896 m_freem(m);
1897 mrtstat.mrts_bad_tunnel++;
1898 return;
1901 m_adj(m, off);
1902 m->m_pkthdr.rcvif = vifp->v_ifp;
1903 ifq = &ipintrq;
1904 s = splnet();
1905 if (IF_QFULL(ifq)) {
1906 IF_DROP(ifq);
1907 m_freem(m);
1908 } else {
1909 IF_ENQUEUE(ifq, m);
1911 * normally we would need a "schednetisr(NETISR_IP)"
1912 * here but we were called by ip_input and it is going
1913 * to loop back & try to dequeue the packet we just
1914 * queued as soon as we return so we avoid the
1915 * unnecessary software interrrupt.
1918 splx(s);
1922 * Check if the packet should be received on the vif denoted by arg.
1923 * (The encap selection code will call this once per vif since each is
1924 * registered separately.)
1926 static int
1927 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
1929 struct vif *vifp;
1930 struct ip ip;
1932 #ifdef DIAGNOSTIC
1933 if (!arg || proto != IPPROTO_IPV4)
1934 panic("unexpected arg in vif_encapcheck");
1935 #endif
1938 * Accept the packet only if the inner heaader is multicast
1939 * and the outer header matches a tunnel-mode vif. Order
1940 * checks in the hope that common non-matching packets will be
1941 * rejected quickly. Assume that unicast IPv4 traffic in a
1942 * parallel tunnel (e.g. gif(4)) is unlikely.
1945 /* Obtain the outer IP header and the vif pointer. */
1946 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
1947 vifp = (struct vif *)arg;
1950 * The outer source must match the vif's remote peer address.
1951 * For a multicast router with several tunnels, this is the
1952 * only check that will fail on packets in other tunnels,
1953 * assuming the local address is the same.
1955 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
1956 return 0;
1958 /* The outer destination must match the vif's local address. */
1959 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
1960 return 0;
1962 /* The vif must be of tunnel type. */
1963 if ((vifp->v_flags & VIFF_TUNNEL) == 0)
1964 return 0;
1966 /* Check that the inner destination is multicast. */
1967 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
1968 if (!IN_MULTICAST(ip.ip_dst.s_addr))
1969 return 0;
1972 * We have checked that both the outer src and dst addresses
1973 * match the vif, and that the inner destination is multicast
1974 * (224/5). By claiming more than 64, we intend to
1975 * preferentially take packets that also match a parallel
1976 * gif(4).
1978 return 32 + 32 + 5;
1982 * Token bucket filter module
1984 static void
1985 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
1988 if (len > MAX_BKT_SIZE) {
1989 /* drop if packet is too large */
1990 mrtstat.mrts_pkt2large++;
1991 m_freem(m);
1992 return;
1995 tbf_update_tokens(vifp);
1998 * If there are enough tokens, and the queue is empty, send this packet
1999 * out immediately. Otherwise, try to insert it on this vif's queue.
2001 if (vifp->tbf_q_len == 0) {
2002 if (len <= vifp->tbf_n_tok) {
2003 vifp->tbf_n_tok -= len;
2004 tbf_send_packet(vifp, m);
2005 } else {
2006 /* queue packet and timeout till later */
2007 tbf_queue(vifp, m);
2008 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2009 tbf_reprocess_q, vifp);
2011 } else {
2012 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
2013 !tbf_dq_sel(vifp, ip)) {
2014 /* queue full, and couldn't make room */
2015 mrtstat.mrts_q_overflow++;
2016 m_freem(m);
2017 } else {
2018 /* queue length low enough, or made room */
2019 tbf_queue(vifp, m);
2020 tbf_process_q(vifp);
2026 * adds a packet to the queue at the interface
2028 static void
2029 tbf_queue(struct vif *vifp, struct mbuf *m)
2031 int s = splsoftnet();
2033 /* insert at tail */
2034 *vifp->tbf_t = m;
2035 vifp->tbf_t = &m->m_nextpkt;
2036 vifp->tbf_q_len++;
2038 splx(s);
2043 * processes the queue at the interface
2045 static void
2046 tbf_process_q(struct vif *vifp)
2048 struct mbuf *m;
2049 int len;
2050 int s = splsoftnet();
2053 * Loop through the queue at the interface and send as many packets
2054 * as possible.
2056 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
2057 len = ntohs(mtod(m, struct ip *)->ip_len);
2059 /* determine if the packet can be sent */
2060 if (len <= vifp->tbf_n_tok) {
2061 /* if so,
2062 * reduce no of tokens, dequeue the packet,
2063 * send the packet.
2065 if ((vifp->tbf_q = m->m_nextpkt) == NULL)
2066 vifp->tbf_t = &vifp->tbf_q;
2067 --vifp->tbf_q_len;
2069 m->m_nextpkt = NULL;
2070 vifp->tbf_n_tok -= len;
2071 tbf_send_packet(vifp, m);
2072 } else
2073 break;
2075 splx(s);
2078 static void
2079 tbf_reprocess_q(void *arg)
2081 struct vif *vifp = arg;
2083 if (ip_mrouter == NULL)
2084 return;
2086 tbf_update_tokens(vifp);
2087 tbf_process_q(vifp);
2089 if (vifp->tbf_q_len != 0)
2090 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2091 tbf_reprocess_q, vifp);
2094 /* function that will selectively discard a member of the queue
2095 * based on the precedence value and the priority
2097 static int
2098 tbf_dq_sel(struct vif *vifp, struct ip *ip)
2100 u_int p;
2101 struct mbuf **mp, *m;
2102 int s = splsoftnet();
2104 p = priority(vifp, ip);
2106 for (mp = &vifp->tbf_q, m = *mp;
2107 m != NULL;
2108 mp = &m->m_nextpkt, m = *mp) {
2109 if (p > priority(vifp, mtod(m, struct ip *))) {
2110 if ((*mp = m->m_nextpkt) == NULL)
2111 vifp->tbf_t = mp;
2112 --vifp->tbf_q_len;
2114 m_freem(m);
2115 mrtstat.mrts_drop_sel++;
2116 splx(s);
2117 return (1);
2120 splx(s);
2121 return (0);
2124 static void
2125 tbf_send_packet(struct vif *vifp, struct mbuf *m)
2127 int error;
2128 int s = splsoftnet();
2130 if (vifp->v_flags & VIFF_TUNNEL) {
2131 /* If tunnel options */
2132 ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
2133 IP_FORWARDING, (struct ip_moptions *)NULL,
2134 (struct socket *)NULL);
2135 } else {
2136 /* if physical interface option, extract the options and then send */
2137 struct ip_moptions imo;
2139 imo.imo_multicast_ifp = vifp->v_ifp;
2140 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
2141 imo.imo_multicast_loop = 1;
2142 #ifdef RSVP_ISI
2143 imo.imo_multicast_vif = -1;
2144 #endif
2146 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
2147 &imo, NULL);
2149 if (mrtdebug & DEBUG_XMIT)
2150 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
2151 (long)(vifp - viftable), error);
2153 splx(s);
2156 /* determine the current time and then
2157 * the elapsed time (between the last time and time now)
2158 * in milliseconds & update the no. of tokens in the bucket
2160 static void
2161 tbf_update_tokens(struct vif *vifp)
2163 struct timeval tp;
2164 u_int32_t tm;
2165 int s = splsoftnet();
2167 microtime(&tp);
2169 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
2172 * This formula is actually
2173 * "time in seconds" * "bytes/second".
2175 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2177 * The (1000/1024) was introduced in add_vif to optimize
2178 * this divide into a shift.
2180 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
2181 vifp->tbf_last_pkt_t = tp;
2183 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
2184 vifp->tbf_n_tok = MAX_BKT_SIZE;
2186 splx(s);
2189 static int
2190 priority(struct vif *vifp, struct ip *ip)
2192 int prio = 50; /* the lowest priority -- default case */
2194 /* temporary hack; may add general packet classifier some day */
2197 * The UDP port space is divided up into four priority ranges:
2198 * [0, 16384) : unclassified - lowest priority
2199 * [16384, 32768) : audio - highest priority
2200 * [32768, 49152) : whiteboard - medium priority
2201 * [49152, 65536) : video - low priority
2203 if (ip->ip_p == IPPROTO_UDP) {
2204 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2206 switch (ntohs(udp->uh_dport) & 0xc000) {
2207 case 0x4000:
2208 prio = 70;
2209 break;
2210 case 0x8000:
2211 prio = 60;
2212 break;
2213 case 0xc000:
2214 prio = 55;
2215 break;
2218 if (tbfdebug > 1)
2219 log(LOG_DEBUG, "port %x prio %d\n",
2220 ntohs(udp->uh_dport), prio);
2223 return (prio);
2227 * End of token bucket filter modifications
2229 #ifdef RSVP_ISI
2231 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
2233 int vifi, s;
2235 if (rsvpdebug)
2236 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2237 so->so_type, so->so_proto->pr_protocol);
2239 if (so->so_type != SOCK_RAW ||
2240 so->so_proto->pr_protocol != IPPROTO_RSVP)
2241 return (EOPNOTSUPP);
2243 /* Check mbuf. */
2244 if (m == NULL || m->m_len != sizeof(int)) {
2245 return (EINVAL);
2247 vifi = *(mtod(m, int *));
2249 if (rsvpdebug)
2250 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
2251 vifi, rsvp_on);
2253 s = splsoftnet();
2255 /* Check vif. */
2256 if (!legal_vif_num(vifi)) {
2257 splx(s);
2258 return (EADDRNOTAVAIL);
2261 /* Check if socket is available. */
2262 if (viftable[vifi].v_rsvpd != NULL) {
2263 splx(s);
2264 return (EADDRINUSE);
2267 viftable[vifi].v_rsvpd = so;
2269 * This may seem silly, but we need to be sure we don't over-increment
2270 * the RSVP counter, in case something slips up.
2272 if (!viftable[vifi].v_rsvp_on) {
2273 viftable[vifi].v_rsvp_on = 1;
2274 rsvp_on++;
2277 splx(s);
2278 return (0);
2282 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
2284 int vifi, s;
2286 if (rsvpdebug)
2287 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2288 so->so_type, so->so_proto->pr_protocol);
2290 if (so->so_type != SOCK_RAW ||
2291 so->so_proto->pr_protocol != IPPROTO_RSVP)
2292 return (EOPNOTSUPP);
2294 /* Check mbuf. */
2295 if (m == NULL || m->m_len != sizeof(int)) {
2296 return (EINVAL);
2298 vifi = *(mtod(m, int *));
2300 s = splsoftnet();
2302 /* Check vif. */
2303 if (!legal_vif_num(vifi)) {
2304 splx(s);
2305 return (EADDRNOTAVAIL);
2308 if (rsvpdebug)
2309 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
2310 viftable[vifi].v_rsvpd, so);
2312 viftable[vifi].v_rsvpd = NULL;
2314 * This may seem silly, but we need to be sure we don't over-decrement
2315 * the RSVP counter, in case something slips up.
2317 if (viftable[vifi].v_rsvp_on) {
2318 viftable[vifi].v_rsvp_on = 0;
2319 rsvp_on--;
2322 splx(s);
2323 return (0);
2326 void
2327 ip_rsvp_force_done(struct socket *so)
2329 int vifi, s;
2331 /* Don't bother if it is not the right type of socket. */
2332 if (so->so_type != SOCK_RAW ||
2333 so->so_proto->pr_protocol != IPPROTO_RSVP)
2334 return;
2336 s = splsoftnet();
2339 * The socket may be attached to more than one vif...this
2340 * is perfectly legal.
2342 for (vifi = 0; vifi < numvifs; vifi++) {
2343 if (viftable[vifi].v_rsvpd == so) {
2344 viftable[vifi].v_rsvpd = NULL;
2346 * This may seem silly, but we need to be sure we don't
2347 * over-decrement the RSVP counter, in case something
2348 * slips up.
2350 if (viftable[vifi].v_rsvp_on) {
2351 viftable[vifi].v_rsvp_on = 0;
2352 rsvp_on--;
2357 splx(s);
2358 return;
2361 void
2362 rsvp_input(struct mbuf *m, struct ifnet *ifp)
2364 int vifi, s;
2365 struct ip *ip = mtod(m, struct ip *);
2366 struct sockaddr_in rsvp_src;
2368 if (rsvpdebug)
2369 printf("rsvp_input: rsvp_on %d\n", rsvp_on);
2372 * Can still get packets with rsvp_on = 0 if there is a local member
2373 * of the group to which the RSVP packet is addressed. But in this
2374 * case we want to throw the packet away.
2376 if (!rsvp_on) {
2377 m_freem(m);
2378 return;
2382 * If the old-style non-vif-associated socket is set, then use
2383 * it and ignore the new ones.
2385 if (ip_rsvpd != NULL) {
2386 if (rsvpdebug)
2387 printf("rsvp_input: "
2388 "Sending packet up old-style socket\n");
2389 rip_input(m); /*XXX*/
2390 return;
2393 s = splsoftnet();
2395 if (rsvpdebug)
2396 printf("rsvp_input: check vifs\n");
2398 /* Find which vif the packet arrived on. */
2399 for (vifi = 0; vifi < numvifs; vifi++) {
2400 if (viftable[vifi].v_ifp == ifp)
2401 break;
2404 if (vifi == numvifs) {
2405 /* Can't find vif packet arrived on. Drop packet. */
2406 if (rsvpdebug)
2407 printf("rsvp_input: "
2408 "Can't find vif for packet...dropping it.\n");
2409 m_freem(m);
2410 splx(s);
2411 return;
2414 if (rsvpdebug)
2415 printf("rsvp_input: check socket\n");
2417 if (viftable[vifi].v_rsvpd == NULL) {
2419 * drop packet, since there is no specific socket for this
2420 * interface
2422 if (rsvpdebug)
2423 printf("rsvp_input: No socket defined for vif %d\n",
2424 vifi);
2425 m_freem(m);
2426 splx(s);
2427 return;
2430 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0);
2432 if (rsvpdebug && m)
2433 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2434 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2436 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2437 if (rsvpdebug)
2438 printf("rsvp_input: Failed to append to socket\n");
2439 else
2440 if (rsvpdebug)
2441 printf("rsvp_input: send packet up\n");
2443 splx(s);
2445 #endif /* RSVP_ISI */
2448 * Code for bandwidth monitors
2452 * Define common interface for timeval-related methods
2454 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2455 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2456 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2458 static uint32_t
2459 compute_bw_meter_flags(struct bw_upcall *req)
2461 uint32_t flags = 0;
2463 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2464 flags |= BW_METER_UNIT_PACKETS;
2465 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2466 flags |= BW_METER_UNIT_BYTES;
2467 if (req->bu_flags & BW_UPCALL_GEQ)
2468 flags |= BW_METER_GEQ;
2469 if (req->bu_flags & BW_UPCALL_LEQ)
2470 flags |= BW_METER_LEQ;
2472 return flags;
2476 * Add a bw_meter entry
2478 static int
2479 add_bw_upcall(struct bw_upcall *req)
2481 int s;
2482 struct mfc *mfc;
2483 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2484 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2485 struct timeval now;
2486 struct bw_meter *x;
2487 uint32_t flags;
2489 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2490 return EOPNOTSUPP;
2492 /* Test if the flags are valid */
2493 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2494 return EINVAL;
2495 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2496 return EINVAL;
2497 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2498 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2499 return EINVAL;
2501 /* Test if the threshold time interval is valid */
2502 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2503 return EINVAL;
2505 flags = compute_bw_meter_flags(req);
2508 * Find if we have already same bw_meter entry
2510 s = splsoftnet();
2511 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2512 if (mfc == NULL) {
2513 splx(s);
2514 return EADDRNOTAVAIL;
2516 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2517 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2518 &req->bu_threshold.b_time, ==)) &&
2519 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2520 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2521 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
2522 splx(s);
2523 return 0; /* XXX Already installed */
2527 /* Allocate the new bw_meter entry */
2528 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2529 if (x == NULL) {
2530 splx(s);
2531 return ENOBUFS;
2534 /* Set the new bw_meter entry */
2535 x->bm_threshold.b_time = req->bu_threshold.b_time;
2536 microtime(&now);
2537 x->bm_start_time = now;
2538 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2539 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2540 x->bm_measured.b_packets = 0;
2541 x->bm_measured.b_bytes = 0;
2542 x->bm_flags = flags;
2543 x->bm_time_next = NULL;
2544 x->bm_time_hash = BW_METER_BUCKETS;
2546 /* Add the new bw_meter entry to the front of entries for this MFC */
2547 x->bm_mfc = mfc;
2548 x->bm_mfc_next = mfc->mfc_bw_meter;
2549 mfc->mfc_bw_meter = x;
2550 schedule_bw_meter(x, &now);
2551 splx(s);
2553 return 0;
2556 static void
2557 free_bw_list(struct bw_meter *list)
2559 while (list != NULL) {
2560 struct bw_meter *x = list;
2562 list = list->bm_mfc_next;
2563 unschedule_bw_meter(x);
2564 free(x, M_BWMETER);
2569 * Delete one or multiple bw_meter entries
2571 static int
2572 del_bw_upcall(struct bw_upcall *req)
2574 int s;
2575 struct mfc *mfc;
2576 struct bw_meter *x;
2578 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2579 return EOPNOTSUPP;
2581 s = splsoftnet();
2582 /* Find the corresponding MFC entry */
2583 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2584 if (mfc == NULL) {
2585 splx(s);
2586 return EADDRNOTAVAIL;
2587 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2589 * Delete all bw_meter entries for this mfc
2591 struct bw_meter *list;
2593 list = mfc->mfc_bw_meter;
2594 mfc->mfc_bw_meter = NULL;
2595 free_bw_list(list);
2596 splx(s);
2597 return 0;
2598 } else { /* Delete a single bw_meter entry */
2599 struct bw_meter *prev;
2600 uint32_t flags = 0;
2602 flags = compute_bw_meter_flags(req);
2604 /* Find the bw_meter entry to delete */
2605 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2606 prev = x, x = x->bm_mfc_next) {
2607 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2608 &req->bu_threshold.b_time, ==)) &&
2609 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2610 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2611 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2612 break;
2614 if (x != NULL) { /* Delete entry from the list for this MFC */
2615 if (prev != NULL)
2616 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
2617 else
2618 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2620 unschedule_bw_meter(x);
2621 splx(s);
2622 /* Free the bw_meter entry */
2623 free(x, M_BWMETER);
2624 return 0;
2625 } else {
2626 splx(s);
2627 return EINVAL;
2630 /* NOTREACHED */
2634 * Perform bandwidth measurement processing that may result in an upcall
2636 static void
2637 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2639 struct timeval delta;
2641 delta = *nowp;
2642 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2644 if (x->bm_flags & BW_METER_GEQ) {
2646 * Processing for ">=" type of bw_meter entry
2648 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2649 /* Reset the bw_meter entry */
2650 x->bm_start_time = *nowp;
2651 x->bm_measured.b_packets = 0;
2652 x->bm_measured.b_bytes = 0;
2653 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2656 /* Record that a packet is received */
2657 x->bm_measured.b_packets++;
2658 x->bm_measured.b_bytes += plen;
2661 * Test if we should deliver an upcall
2663 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2664 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2665 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2666 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2667 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2668 /* Prepare an upcall for delivery */
2669 bw_meter_prepare_upcall(x, nowp);
2670 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2673 } else if (x->bm_flags & BW_METER_LEQ) {
2675 * Processing for "<=" type of bw_meter entry
2677 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2679 * We are behind time with the multicast forwarding table
2680 * scanning for "<=" type of bw_meter entries, so test now
2681 * if we should deliver an upcall.
2683 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2684 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2685 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2686 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2687 /* Prepare an upcall for delivery */
2688 bw_meter_prepare_upcall(x, nowp);
2690 /* Reschedule the bw_meter entry */
2691 unschedule_bw_meter(x);
2692 schedule_bw_meter(x, nowp);
2695 /* Record that a packet is received */
2696 x->bm_measured.b_packets++;
2697 x->bm_measured.b_bytes += plen;
2700 * Test if we should restart the measuring interval
2702 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2703 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2704 (x->bm_flags & BW_METER_UNIT_BYTES &&
2705 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2706 /* Don't restart the measuring interval */
2707 } else {
2708 /* Do restart the measuring interval */
2710 * XXX: note that we don't unschedule and schedule, because this
2711 * might be too much overhead per packet. Instead, when we process
2712 * all entries for a given timer hash bin, we check whether it is
2713 * really a timeout. If not, we reschedule at that time.
2715 x->bm_start_time = *nowp;
2716 x->bm_measured.b_packets = 0;
2717 x->bm_measured.b_bytes = 0;
2718 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2724 * Prepare a bandwidth-related upcall
2726 static void
2727 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2729 struct timeval delta;
2730 struct bw_upcall *u;
2733 * Compute the measured time interval
2735 delta = *nowp;
2736 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2739 * If there are too many pending upcalls, deliver them now
2741 if (bw_upcalls_n >= BW_UPCALLS_MAX)
2742 bw_upcalls_send();
2745 * Set the bw_upcall entry
2747 u = &bw_upcalls[bw_upcalls_n++];
2748 u->bu_src = x->bm_mfc->mfc_origin;
2749 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2750 u->bu_threshold.b_time = x->bm_threshold.b_time;
2751 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2752 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2753 u->bu_measured.b_time = delta;
2754 u->bu_measured.b_packets = x->bm_measured.b_packets;
2755 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2756 u->bu_flags = 0;
2757 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2758 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2759 if (x->bm_flags & BW_METER_UNIT_BYTES)
2760 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2761 if (x->bm_flags & BW_METER_GEQ)
2762 u->bu_flags |= BW_UPCALL_GEQ;
2763 if (x->bm_flags & BW_METER_LEQ)
2764 u->bu_flags |= BW_UPCALL_LEQ;
2768 * Send the pending bandwidth-related upcalls
2770 static void
2771 bw_upcalls_send(void)
2773 struct mbuf *m;
2774 int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2775 struct sockaddr_in k_igmpsrc = {
2776 .sin_len = sizeof(k_igmpsrc),
2777 .sin_family = AF_INET,
2779 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2780 0, /* unused2 */
2781 IGMPMSG_BW_UPCALL,/* im_msgtype */
2782 0, /* im_mbz */
2783 0, /* im_vif */
2784 0, /* unused3 */
2785 { 0 }, /* im_src */
2786 { 0 } }; /* im_dst */
2788 if (bw_upcalls_n == 0)
2789 return; /* No pending upcalls */
2791 bw_upcalls_n = 0;
2794 * Allocate a new mbuf, initialize it with the header and
2795 * the payload for the pending calls.
2797 MGETHDR(m, M_DONTWAIT, MT_HEADER);
2798 if (m == NULL) {
2799 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2800 return;
2803 m->m_len = m->m_pkthdr.len = 0;
2804 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
2805 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
2808 * Send the upcalls
2809 * XXX do we need to set the address in k_igmpsrc ?
2811 mrtstat.mrts_upcalls++;
2812 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2813 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2814 ++mrtstat.mrts_upq_sockfull;
2819 * Compute the timeout hash value for the bw_meter entries
2821 #define BW_METER_TIMEHASH(bw_meter, hash) \
2822 do { \
2823 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2825 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2826 (hash) = next_timeval.tv_sec; \
2827 if (next_timeval.tv_usec) \
2828 (hash)++; /* XXX: make sure we don't timeout early */ \
2829 (hash) %= BW_METER_BUCKETS; \
2830 } while (/*CONSTCOND*/ 0)
2833 * Schedule a timer to process periodically bw_meter entry of type "<="
2834 * by linking the entry in the proper hash bucket.
2836 static void
2837 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2839 int time_hash;
2841 if (!(x->bm_flags & BW_METER_LEQ))
2842 return; /* XXX: we schedule timers only for "<=" entries */
2845 * Reset the bw_meter entry
2847 x->bm_start_time = *nowp;
2848 x->bm_measured.b_packets = 0;
2849 x->bm_measured.b_bytes = 0;
2850 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2853 * Compute the timeout hash value and insert the entry
2855 BW_METER_TIMEHASH(x, time_hash);
2856 x->bm_time_next = bw_meter_timers[time_hash];
2857 bw_meter_timers[time_hash] = x;
2858 x->bm_time_hash = time_hash;
2862 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2863 * by removing the entry from the proper hash bucket.
2865 static void
2866 unschedule_bw_meter(struct bw_meter *x)
2868 int time_hash;
2869 struct bw_meter *prev, *tmp;
2871 if (!(x->bm_flags & BW_METER_LEQ))
2872 return; /* XXX: we schedule timers only for "<=" entries */
2875 * Compute the timeout hash value and delete the entry
2877 time_hash = x->bm_time_hash;
2878 if (time_hash >= BW_METER_BUCKETS)
2879 return; /* Entry was not scheduled */
2881 for (prev = NULL, tmp = bw_meter_timers[time_hash];
2882 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2883 if (tmp == x)
2884 break;
2886 if (tmp == NULL)
2887 panic("unschedule_bw_meter: bw_meter entry not found");
2889 if (prev != NULL)
2890 prev->bm_time_next = x->bm_time_next;
2891 else
2892 bw_meter_timers[time_hash] = x->bm_time_next;
2894 x->bm_time_next = NULL;
2895 x->bm_time_hash = BW_METER_BUCKETS;
2899 * Process all "<=" type of bw_meter that should be processed now,
2900 * and for each entry prepare an upcall if necessary. Each processed
2901 * entry is rescheduled again for the (periodic) processing.
2903 * This is run periodically (once per second normally). On each round,
2904 * all the potentially matching entries are in the hash slot that we are
2905 * looking at.
2907 static void
2908 bw_meter_process(void)
2910 int s;
2911 static uint32_t last_tv_sec; /* last time we processed this */
2913 uint32_t loops;
2914 int i;
2915 struct timeval now, process_endtime;
2917 microtime(&now);
2918 if (last_tv_sec == now.tv_sec)
2919 return; /* nothing to do */
2921 loops = now.tv_sec - last_tv_sec;
2922 last_tv_sec = now.tv_sec;
2923 if (loops > BW_METER_BUCKETS)
2924 loops = BW_METER_BUCKETS;
2926 s = splsoftnet();
2928 * Process all bins of bw_meter entries from the one after the last
2929 * processed to the current one. On entry, i points to the last bucket
2930 * visited, so we need to increment i at the beginning of the loop.
2932 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2933 struct bw_meter *x, *tmp_list;
2935 if (++i >= BW_METER_BUCKETS)
2936 i = 0;
2938 /* Disconnect the list of bw_meter entries from the bin */
2939 tmp_list = bw_meter_timers[i];
2940 bw_meter_timers[i] = NULL;
2942 /* Process the list of bw_meter entries */
2943 while (tmp_list != NULL) {
2944 x = tmp_list;
2945 tmp_list = tmp_list->bm_time_next;
2947 /* Test if the time interval is over */
2948 process_endtime = x->bm_start_time;
2949 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2950 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2951 /* Not yet: reschedule, but don't reset */
2952 int time_hash;
2954 BW_METER_TIMEHASH(x, time_hash);
2955 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2957 * XXX: somehow the bin processing is a bit ahead of time.
2958 * Put the entry in the next bin.
2960 if (++time_hash >= BW_METER_BUCKETS)
2961 time_hash = 0;
2963 x->bm_time_next = bw_meter_timers[time_hash];
2964 bw_meter_timers[time_hash] = x;
2965 x->bm_time_hash = time_hash;
2967 continue;
2971 * Test if we should deliver an upcall
2973 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2974 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2975 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2976 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2977 /* Prepare an upcall for delivery */
2978 bw_meter_prepare_upcall(x, &now);
2982 * Reschedule for next processing
2984 schedule_bw_meter(x, &now);
2988 /* Send all upcalls that are pending delivery */
2989 bw_upcalls_send();
2991 splx(s);
2995 * A periodic function for sending all upcalls that are pending delivery
2997 static void
2998 expire_bw_upcalls_send(void *unused)
3000 int s;
3002 s = splsoftnet();
3003 bw_upcalls_send();
3004 splx(s);
3006 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
3007 expire_bw_upcalls_send, NULL);
3011 * A periodic function for periodic scanning of the multicast forwarding
3012 * table for processing all "<=" bw_meter entries.
3014 static void
3015 expire_bw_meter_process(void *unused)
3017 if (mrt_api_config & MRT_MFC_BW_UPCALL)
3018 bw_meter_process();
3020 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
3021 expire_bw_meter_process, NULL);
3025 * End of bandwidth monitoring code
3028 #ifdef PIM
3030 * Send the packet up to the user daemon, or eventually do kernel encapsulation
3032 static int
3033 pim_register_send(struct ip *ip, struct vif *vifp,
3034 struct mbuf *m, struct mfc *rt)
3036 struct mbuf *mb_copy, *mm;
3038 if (mrtdebug & DEBUG_PIM)
3039 log(LOG_DEBUG, "pim_register_send: ");
3041 mb_copy = pim_register_prepare(ip, m);
3042 if (mb_copy == NULL)
3043 return ENOBUFS;
3046 * Send all the fragments. Note that the mbuf for each fragment
3047 * is freed by the sending machinery.
3049 for (mm = mb_copy; mm; mm = mb_copy) {
3050 mb_copy = mm->m_nextpkt;
3051 mm->m_nextpkt = NULL;
3052 mm = m_pullup(mm, sizeof(struct ip));
3053 if (mm != NULL) {
3054 ip = mtod(mm, struct ip *);
3055 if ((mrt_api_config & MRT_MFC_RP) &&
3056 !in_nullhost(rt->mfc_rp)) {
3057 pim_register_send_rp(ip, vifp, mm, rt);
3058 } else {
3059 pim_register_send_upcall(ip, vifp, mm, rt);
3064 return 0;
3068 * Return a copy of the data packet that is ready for PIM Register
3069 * encapsulation.
3070 * XXX: Note that in the returned copy the IP header is a valid one.
3072 static struct mbuf *
3073 pim_register_prepare(struct ip *ip, struct mbuf *m)
3075 struct mbuf *mb_copy = NULL;
3076 int mtu;
3078 /* Take care of delayed checksums */
3079 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
3080 in_delayed_cksum(m);
3081 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
3085 * Copy the old packet & pullup its IP header into the
3086 * new mbuf so we can modify it.
3088 mb_copy = m_copypacket(m, M_DONTWAIT);
3089 if (mb_copy == NULL)
3090 return NULL;
3091 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3092 if (mb_copy == NULL)
3093 return NULL;
3095 /* take care of the TTL */
3096 ip = mtod(mb_copy, struct ip *);
3097 --ip->ip_ttl;
3099 /* Compute the MTU after the PIM Register encapsulation */
3100 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3102 if (ntohs(ip->ip_len) <= mtu) {
3103 /* Turn the IP header into a valid one */
3104 ip->ip_sum = 0;
3105 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3106 } else {
3107 /* Fragment the packet */
3108 if (ip_fragment(mb_copy, NULL, mtu) != 0) {
3109 /* XXX: mb_copy was freed by ip_fragment() */
3110 return NULL;
3113 return mb_copy;
3117 * Send an upcall with the data packet to the user-level process.
3119 static int
3120 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3121 struct mbuf *mb_copy, struct mfc *rt)
3123 struct mbuf *mb_first;
3124 int len = ntohs(ip->ip_len);
3125 struct igmpmsg *im;
3126 struct sockaddr_in k_igmpsrc = {
3127 .sin_len = sizeof(k_igmpsrc),
3128 .sin_family = AF_INET,
3132 * Add a new mbuf with an upcall header
3134 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3135 if (mb_first == NULL) {
3136 m_freem(mb_copy);
3137 return ENOBUFS;
3139 mb_first->m_data += max_linkhdr;
3140 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3141 mb_first->m_len = sizeof(struct igmpmsg);
3142 mb_first->m_next = mb_copy;
3144 /* Send message to routing daemon */
3145 im = mtod(mb_first, struct igmpmsg *);
3146 im->im_msgtype = IGMPMSG_WHOLEPKT;
3147 im->im_mbz = 0;
3148 im->im_vif = vifp - viftable;
3149 im->im_src = ip->ip_src;
3150 im->im_dst = ip->ip_dst;
3152 k_igmpsrc.sin_addr = ip->ip_src;
3154 mrtstat.mrts_upcalls++;
3156 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3157 if (mrtdebug & DEBUG_PIM)
3158 log(LOG_WARNING,
3159 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3160 ++mrtstat.mrts_upq_sockfull;
3161 return ENOBUFS;
3164 /* Keep statistics */
3165 pimstat.pims_snd_registers_msgs++;
3166 pimstat.pims_snd_registers_bytes += len;
3168 return 0;
3172 * Encapsulate the data packet in PIM Register message and send it to the RP.
3174 static int
3175 pim_register_send_rp(struct ip *ip, struct vif *vifp,
3176 struct mbuf *mb_copy, struct mfc *rt)
3178 struct mbuf *mb_first;
3179 struct ip *ip_outer;
3180 struct pim_encap_pimhdr *pimhdr;
3181 int len = ntohs(ip->ip_len);
3182 vifi_t vifi = rt->mfc_parent;
3184 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
3185 m_freem(mb_copy);
3186 return EADDRNOTAVAIL; /* The iif vif is invalid */
3190 * Add a new mbuf with the encapsulating header
3192 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3193 if (mb_first == NULL) {
3194 m_freem(mb_copy);
3195 return ENOBUFS;
3197 mb_first->m_data += max_linkhdr;
3198 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3199 mb_first->m_next = mb_copy;
3201 mb_first->m_pkthdr.len = len + mb_first->m_len;
3204 * Fill in the encapsulating IP and PIM header
3206 ip_outer = mtod(mb_first, struct ip *);
3207 *ip_outer = pim_encap_iphdr;
3208 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
3209 ip_outer->ip_id = 0;
3210 else
3211 ip_outer->ip_id = ip_newid(NULL);
3212 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
3213 sizeof(pim_encap_pimhdr));
3214 ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3215 ip_outer->ip_dst = rt->mfc_rp;
3217 * Copy the inner header TOS to the outer header, and take care of the
3218 * IP_DF bit.
3220 ip_outer->ip_tos = ip->ip_tos;
3221 if (ntohs(ip->ip_off) & IP_DF)
3222 ip_outer->ip_off |= htons(IP_DF);
3223 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
3224 + sizeof(pim_encap_iphdr));
3225 *pimhdr = pim_encap_pimhdr;
3226 /* If the iif crosses a border, set the Border-bit */
3227 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3228 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3230 mb_first->m_data += sizeof(pim_encap_iphdr);
3231 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3232 mb_first->m_data -= sizeof(pim_encap_iphdr);
3234 if (vifp->v_rate_limit == 0)
3235 tbf_send_packet(vifp, mb_first);
3236 else
3237 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
3239 /* Keep statistics */
3240 pimstat.pims_snd_registers_msgs++;
3241 pimstat.pims_snd_registers_bytes += len;
3243 return 0;
3247 * PIM-SMv2 and PIM-DM messages processing.
3248 * Receives and verifies the PIM control messages, and passes them
3249 * up to the listening socket, using rip_input().
3250 * The only message with special processing is the PIM_REGISTER message
3251 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3252 * is passed to if_simloop().
3254 void
3255 pim_input(struct mbuf *m, ...)
3257 struct ip *ip = mtod(m, struct ip *);
3258 struct pim *pim;
3259 int minlen;
3260 int datalen;
3261 int ip_tos;
3262 int proto;
3263 int iphlen;
3264 va_list ap;
3266 va_start(ap, m);
3267 iphlen = va_arg(ap, int);
3268 proto = va_arg(ap, int);
3269 va_end(ap);
3271 datalen = ntohs(ip->ip_len) - iphlen;
3273 /* Keep statistics */
3274 pimstat.pims_rcv_total_msgs++;
3275 pimstat.pims_rcv_total_bytes += datalen;
3278 * Validate lengths
3280 if (datalen < PIM_MINLEN) {
3281 pimstat.pims_rcv_tooshort++;
3282 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3283 datalen, (u_long)ip->ip_src.s_addr);
3284 m_freem(m);
3285 return;
3289 * If the packet is at least as big as a REGISTER, go agead
3290 * and grab the PIM REGISTER header size, to avoid another
3291 * possible m_pullup() later.
3293 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
3294 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3296 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3298 * Get the IP and PIM headers in contiguous memory, and
3299 * possibly the PIM REGISTER header.
3301 if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3302 (m = m_pullup(m, minlen)) == NULL) {
3303 log(LOG_ERR, "pim_input: m_pullup failure\n");
3304 return;
3306 /* m_pullup() may have given us a new mbuf so reset ip. */
3307 ip = mtod(m, struct ip *);
3308 ip_tos = ip->ip_tos;
3310 /* adjust mbuf to point to the PIM header */
3311 m->m_data += iphlen;
3312 m->m_len -= iphlen;
3313 pim = mtod(m, struct pim *);
3316 * Validate checksum. If PIM REGISTER, exclude the data packet.
3318 * XXX: some older PIMv2 implementations don't make this distinction,
3319 * so for compatibility reason perform the checksum over part of the
3320 * message, and if error, then over the whole message.
3322 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3323 /* do nothing, checksum okay */
3324 } else if (in_cksum(m, datalen)) {
3325 pimstat.pims_rcv_badsum++;
3326 if (mrtdebug & DEBUG_PIM)
3327 log(LOG_DEBUG, "pim_input: invalid checksum");
3328 m_freem(m);
3329 return;
3332 /* PIM version check */
3333 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3334 pimstat.pims_rcv_badversion++;
3335 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3336 PIM_VT_V(pim->pim_vt), PIM_VERSION);
3337 m_freem(m);
3338 return;
3341 /* restore mbuf back to the outer IP */
3342 m->m_data -= iphlen;
3343 m->m_len += iphlen;
3345 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3347 * Since this is a REGISTER, we'll make a copy of the register
3348 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3349 * routing daemon.
3351 int s;
3352 struct sockaddr_in dst = {
3353 .sin_len = sizeof(dst),
3354 .sin_family = AF_INET,
3356 struct mbuf *mcp;
3357 struct ip *encap_ip;
3358 u_int32_t *reghdr;
3359 struct ifnet *vifp;
3361 s = splsoftnet();
3362 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3363 splx(s);
3364 if (mrtdebug & DEBUG_PIM)
3365 log(LOG_DEBUG,
3366 "pim_input: register vif not set: %d\n", reg_vif_num);
3367 m_freem(m);
3368 return;
3370 /* XXX need refcnt? */
3371 vifp = viftable[reg_vif_num].v_ifp;
3372 splx(s);
3375 * Validate length
3377 if (datalen < PIM_REG_MINLEN) {
3378 pimstat.pims_rcv_tooshort++;
3379 pimstat.pims_rcv_badregisters++;
3380 log(LOG_ERR,
3381 "pim_input: register packet size too small %d from %lx\n",
3382 datalen, (u_long)ip->ip_src.s_addr);
3383 m_freem(m);
3384 return;
3387 reghdr = (u_int32_t *)(pim + 1);
3388 encap_ip = (struct ip *)(reghdr + 1);
3390 if (mrtdebug & DEBUG_PIM) {
3391 log(LOG_DEBUG,
3392 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3393 (u_long)ntohl(encap_ip->ip_src.s_addr),
3394 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3395 ntohs(encap_ip->ip_len));
3398 /* verify the version number of the inner packet */
3399 if (encap_ip->ip_v != IPVERSION) {
3400 pimstat.pims_rcv_badregisters++;
3401 if (mrtdebug & DEBUG_PIM) {
3402 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3403 "of the inner packet\n", encap_ip->ip_v);
3405 m_freem(m);
3406 return;
3409 /* verify the inner packet is destined to a mcast group */
3410 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3411 pimstat.pims_rcv_badregisters++;
3412 if (mrtdebug & DEBUG_PIM)
3413 log(LOG_DEBUG,
3414 "pim_input: inner packet of register is not "
3415 "multicast %lx\n",
3416 (u_long)ntohl(encap_ip->ip_dst.s_addr));
3417 m_freem(m);
3418 return;
3421 /* If a NULL_REGISTER, pass it to the daemon */
3422 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3423 goto pim_input_to_daemon;
3426 * Copy the TOS from the outer IP header to the inner IP header.
3428 if (encap_ip->ip_tos != ip_tos) {
3429 /* Outer TOS -> inner TOS */
3430 encap_ip->ip_tos = ip_tos;
3431 /* Recompute the inner header checksum. Sigh... */
3433 /* adjust mbuf to point to the inner IP header */
3434 m->m_data += (iphlen + PIM_MINLEN);
3435 m->m_len -= (iphlen + PIM_MINLEN);
3437 encap_ip->ip_sum = 0;
3438 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3440 /* restore mbuf to point back to the outer IP header */
3441 m->m_data -= (iphlen + PIM_MINLEN);
3442 m->m_len += (iphlen + PIM_MINLEN);
3446 * Decapsulate the inner IP packet and loopback to forward it
3447 * as a normal multicast packet. Also, make a copy of the
3448 * outer_iphdr + pimhdr + reghdr + encap_iphdr
3449 * to pass to the daemon later, so it can take the appropriate
3450 * actions (e.g., send back PIM_REGISTER_STOP).
3451 * XXX: here m->m_data points to the outer IP header.
3453 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
3454 if (mcp == NULL) {
3455 log(LOG_ERR,
3456 "pim_input: pim register: could not copy register head\n");
3457 m_freem(m);
3458 return;
3461 /* Keep statistics */
3462 /* XXX: registers_bytes include only the encap. mcast pkt */
3463 pimstat.pims_rcv_registers_msgs++;
3464 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3467 * forward the inner ip packet; point m_data at the inner ip.
3469 m_adj(m, iphlen + PIM_MINLEN);
3471 if (mrtdebug & DEBUG_PIM) {
3472 log(LOG_DEBUG,
3473 "pim_input: forwarding decapsulated register: "
3474 "src %lx, dst %lx, vif %d\n",
3475 (u_long)ntohl(encap_ip->ip_src.s_addr),
3476 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3477 reg_vif_num);
3479 /* NB: vifp was collected above; can it change on us? */
3480 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL);
3482 /* prepare the register head to send to the mrouting daemon */
3483 m = mcp;
3486 pim_input_to_daemon:
3488 * Pass the PIM message up to the daemon; if it is a Register message,
3489 * pass the 'head' only up to the daemon. This includes the
3490 * outer IP header, PIM header, PIM-Register header and the
3491 * inner IP header.
3492 * XXX: the outer IP header pkt size of a Register is not adjust to
3493 * reflect the fact that the inner multicast data is truncated.
3495 rip_input(m, iphlen, proto);
3497 return;
3499 #endif /* PIM */