No empty .Rs/.Re
[netbsd-mini2440.git] / sys / netinet / tcp_input.c
blob6632934c0a793bbe5b964d7c3c877e9f338ccd4b
1 /* $NetBSD: tcp_input.c,v 1.298 2009/07/18 23:09:53 minskim Exp $ */
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
93 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
94 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
95 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
96 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
97 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
98 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
99 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
100 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
101 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
103 * POSSIBILITY OF SUCH DAMAGE.
107 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108 * The Regents of the University of California. All rights reserved.
110 * Redistribution and use in source and binary forms, with or without
111 * modification, are permitted provided that the following conditions
112 * are met:
113 * 1. Redistributions of source code must retain the above copyright
114 * notice, this list of conditions and the following disclaimer.
115 * 2. Redistributions in binary form must reproduce the above copyright
116 * notice, this list of conditions and the following disclaimer in the
117 * documentation and/or other materials provided with the distribution.
118 * 3. Neither the name of the University nor the names of its contributors
119 * may be used to endorse or promote products derived from this software
120 * without specific prior written permission.
122 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132 * SUCH DAMAGE.
134 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 * TODO list for SYN cache stuff:
140 * Find room for a "state" field, which is needed to keep a
141 * compressed state for TIME_WAIT TCBs. It's been noted already
142 * that this is fairly important for very high-volume web and
143 * mail servers, which use a large number of short-lived
144 * connections.
147 #include <sys/cdefs.h>
148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.298 2009/07/18 23:09:53 minskim Exp $");
150 #include "opt_inet.h"
151 #include "opt_ipsec.h"
152 #include "opt_inet_csum.h"
153 #include "opt_tcp_debug.h"
155 #include <sys/param.h>
156 #include <sys/systm.h>
157 #include <sys/malloc.h>
158 #include <sys/mbuf.h>
159 #include <sys/protosw.h>
160 #include <sys/socket.h>
161 #include <sys/socketvar.h>
162 #include <sys/errno.h>
163 #include <sys/syslog.h>
164 #include <sys/pool.h>
165 #include <sys/domain.h>
166 #include <sys/kernel.h>
167 #ifdef TCP_SIGNATURE
168 #include <sys/md5.h>
169 #endif
170 #include <sys/lwp.h> /* for lwp0 */
172 #include <net/if.h>
173 #include <net/route.h>
174 #include <net/if_types.h>
176 #include <netinet/in.h>
177 #include <netinet/in_systm.h>
178 #include <netinet/ip.h>
179 #include <netinet/in_pcb.h>
180 #include <netinet/in_var.h>
181 #include <netinet/ip_var.h>
182 #include <netinet/in_offload.h>
184 #ifdef INET6
185 #ifndef INET
186 #include <netinet/in.h>
187 #endif
188 #include <netinet/ip6.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_pcb.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_var.h>
193 #include <netinet/icmp6.h>
194 #include <netinet6/nd6.h>
195 #ifdef TCP_SIGNATURE
196 #include <netinet6/scope6_var.h>
197 #endif
198 #endif
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcp_private.h>
211 #include <netinet/tcpip.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
215 #include <machine/stdarg.h>
217 #ifdef IPSEC
218 #include <netinet6/ipsec.h>
219 #include <netinet6/ipsec_private.h>
220 #include <netkey/key.h>
221 #endif /*IPSEC*/
222 #ifdef INET6
223 #include "faith.h"
224 #if defined(NFAITH) && NFAITH > 0
225 #include <net/if_faith.h>
226 #endif
227 #endif /* IPSEC */
229 #ifdef FAST_IPSEC
230 #include <netipsec/ipsec.h>
231 #include <netipsec/ipsec_var.h>
232 #include <netipsec/ipsec_private.h>
233 #include <netipsec/key.h>
234 #ifdef INET6
235 #include <netipsec/ipsec6.h>
236 #endif
237 #endif /* FAST_IPSEC*/
239 int tcprexmtthresh = 3;
240 int tcp_log_refused;
242 int tcp_do_autorcvbuf = 0;
243 int tcp_autorcvbuf_inc = 16 * 1024;
244 int tcp_autorcvbuf_max = 256 * 1024;
245 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
252 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
259 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
265 struct rtentry *rt;
267 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 nd6_nud_hint(rt, NULL, 0);
271 #else
272 static inline void
273 nd6_hint(struct tcpcb *tp)
276 #endif
279 * Compute ACK transmission behavior. Delay the ACK unless
280 * we have already delayed an ACK (must send an ACK every two segments).
281 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
282 * option is enabled.
284 static void
285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
288 if (tp->t_flags & TF_DELACK ||
289 (tcp_ack_on_push && th->th_flags & TH_PUSH))
290 tp->t_flags |= TF_ACKNOW;
291 else
292 TCP_SET_DELACK(tp);
295 static void
296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
300 * If we had a pending ICMP message that refers to data that have
301 * just been acknowledged, disregard the recorded ICMP message.
303 if ((tp->t_flags & TF_PMTUD_PEND) &&
304 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
305 tp->t_flags &= ~TF_PMTUD_PEND;
308 * Keep track of the largest chunk of data
309 * acknowledged since last PMTU update
311 if (tp->t_pmtud_mss_acked < acked)
312 tp->t_pmtud_mss_acked = acked;
316 * Convert TCP protocol fields to host order for easier processing.
318 static void
319 tcp_fields_to_host(struct tcphdr *th)
322 NTOHL(th->th_seq);
323 NTOHL(th->th_ack);
324 NTOHS(th->th_win);
325 NTOHS(th->th_urp);
329 * ... and reverse the above.
331 static void
332 tcp_fields_to_net(struct tcphdr *th)
335 HTONL(th->th_seq);
336 HTONL(th->th_ack);
337 HTONS(th->th_win);
338 HTONS(th->th_urp);
341 #ifdef TCP_CSUM_COUNTERS
342 #include <sys/device.h>
344 #if defined(INET)
345 extern struct evcnt tcp_hwcsum_ok;
346 extern struct evcnt tcp_hwcsum_bad;
347 extern struct evcnt tcp_hwcsum_data;
348 extern struct evcnt tcp_swcsum;
349 #endif /* defined(INET) */
350 #if defined(INET6)
351 extern struct evcnt tcp6_hwcsum_ok;
352 extern struct evcnt tcp6_hwcsum_bad;
353 extern struct evcnt tcp6_hwcsum_data;
354 extern struct evcnt tcp6_swcsum;
355 #endif /* defined(INET6) */
357 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
359 #else
361 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
363 #endif /* TCP_CSUM_COUNTERS */
365 #ifdef TCP_REASS_COUNTERS
366 #include <sys/device.h>
368 extern struct evcnt tcp_reass_;
369 extern struct evcnt tcp_reass_empty;
370 extern struct evcnt tcp_reass_iteration[8];
371 extern struct evcnt tcp_reass_prependfirst;
372 extern struct evcnt tcp_reass_prepend;
373 extern struct evcnt tcp_reass_insert;
374 extern struct evcnt tcp_reass_inserttail;
375 extern struct evcnt tcp_reass_append;
376 extern struct evcnt tcp_reass_appendtail;
377 extern struct evcnt tcp_reass_overlaptail;
378 extern struct evcnt tcp_reass_overlapfront;
379 extern struct evcnt tcp_reass_segdup;
380 extern struct evcnt tcp_reass_fragdup;
382 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
384 #else
386 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
388 #endif /* TCP_REASS_COUNTERS */
390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
391 int *);
392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
393 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
395 #ifdef INET
396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
397 #endif
398 #ifdef INET6
399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
400 #endif
402 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
404 #if defined(MBUFTRACE)
405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
406 #endif /* defined(MBUFTRACE) */
408 static struct pool tcpipqent_pool;
410 void
411 tcpipqent_init(void)
414 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
415 NULL, IPL_VM);
418 struct ipqent *
419 tcpipqent_alloc(void)
421 struct ipqent *ipqe;
422 int s;
424 s = splvm();
425 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
426 splx(s);
428 return ipqe;
431 void
432 tcpipqent_free(struct ipqent *ipqe)
434 int s;
436 s = splvm();
437 pool_put(&tcpipqent_pool, ipqe);
438 splx(s);
441 static int
442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
444 struct ipqent *p, *q, *nq, *tiqe = NULL;
445 struct socket *so = NULL;
446 int pkt_flags;
447 tcp_seq pkt_seq;
448 unsigned pkt_len;
449 u_long rcvpartdupbyte = 0;
450 u_long rcvoobyte;
451 #ifdef TCP_REASS_COUNTERS
452 u_int count = 0;
453 #endif
454 uint64_t *tcps;
456 if (tp->t_inpcb)
457 so = tp->t_inpcb->inp_socket;
458 #ifdef INET6
459 else if (tp->t_in6pcb)
460 so = tp->t_in6pcb->in6p_socket;
461 #endif
463 TCP_REASS_LOCK_CHECK(tp);
466 * Call with th==0 after become established to
467 * force pre-ESTABLISHED data up to user socket.
469 if (th == 0)
470 goto present;
472 m_claimm(m, &tcp_reass_mowner);
474 rcvoobyte = *tlen;
476 * Copy these to local variables because the tcpiphdr
477 * gets munged while we are collapsing mbufs.
479 pkt_seq = th->th_seq;
480 pkt_len = *tlen;
481 pkt_flags = th->th_flags;
483 TCP_REASS_COUNTER_INCR(&tcp_reass_);
485 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
487 * When we miss a packet, the vast majority of time we get
488 * packets that follow it in order. So optimize for that.
490 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
491 p->ipqe_len += pkt_len;
492 p->ipqe_flags |= pkt_flags;
493 m_cat(p->ipre_mlast, m);
494 TRAVERSE(p->ipre_mlast);
495 m = NULL;
496 tiqe = p;
497 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
498 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
499 goto skip_replacement;
502 * While we're here, if the pkt is completely beyond
503 * anything we have, just insert it at the tail.
505 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
506 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
507 goto insert_it;
511 q = TAILQ_FIRST(&tp->segq);
513 if (q != NULL) {
515 * If this segment immediately precedes the first out-of-order
516 * block, simply slap the segment in front of it and (mostly)
517 * skip the complicated logic.
519 if (pkt_seq + pkt_len == q->ipqe_seq) {
520 q->ipqe_seq = pkt_seq;
521 q->ipqe_len += pkt_len;
522 q->ipqe_flags |= pkt_flags;
523 m_cat(m, q->ipqe_m);
524 q->ipqe_m = m;
525 q->ipre_mlast = m; /* last mbuf may have changed */
526 TRAVERSE(q->ipre_mlast);
527 tiqe = q;
528 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
529 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
530 goto skip_replacement;
532 } else {
533 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
537 * Find a segment which begins after this one does.
539 for (p = NULL; q != NULL; q = nq) {
540 nq = TAILQ_NEXT(q, ipqe_q);
541 #ifdef TCP_REASS_COUNTERS
542 count++;
543 #endif
545 * If the received segment is just right after this
546 * fragment, merge the two together and then check
547 * for further overlaps.
549 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
550 #ifdef TCPREASS_DEBUG
551 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
552 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
553 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
554 #endif
555 pkt_len += q->ipqe_len;
556 pkt_flags |= q->ipqe_flags;
557 pkt_seq = q->ipqe_seq;
558 m_cat(q->ipre_mlast, m);
559 TRAVERSE(q->ipre_mlast);
560 m = q->ipqe_m;
561 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
562 goto free_ipqe;
565 * If the received segment is completely past this
566 * fragment, we need to go the next fragment.
568 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
569 p = q;
570 continue;
573 * If the fragment is past the received segment,
574 * it (or any following) can't be concatenated.
576 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 break;
582 * We've received all the data in this segment before.
583 * mark it as a duplicate and return.
585 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 tcps = TCP_STAT_GETREF();
588 tcps[TCP_STAT_RCVDUPPACK]++;
589 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 TCP_STAT_PUTREF();
591 tcp_new_dsack(tp, pkt_seq, pkt_len);
592 m_freem(m);
593 if (tiqe != NULL) {
594 tcpipqent_free(tiqe);
596 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 return (0);
600 * Received segment completely overlaps this fragment
601 * so we drop the fragment (this keeps the temporal
602 * ordering of segments correct).
604 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
605 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
606 rcvpartdupbyte += q->ipqe_len;
607 m_freem(q->ipqe_m);
608 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
609 goto free_ipqe;
612 * RX'ed segment extends past the end of the
613 * fragment. Drop the overlapping bytes. Then
614 * merge the fragment and segment then treat as
615 * a longer received packet.
617 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
618 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
619 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
620 #ifdef TCPREASS_DEBUG
621 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
622 tp, overlap,
623 pkt_seq, pkt_seq + pkt_len, pkt_len);
624 #endif
625 m_adj(m, overlap);
626 rcvpartdupbyte += overlap;
627 m_cat(q->ipre_mlast, m);
628 TRAVERSE(q->ipre_mlast);
629 m = q->ipqe_m;
630 pkt_seq = q->ipqe_seq;
631 pkt_len += q->ipqe_len - overlap;
632 rcvoobyte -= overlap;
633 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
634 goto free_ipqe;
637 * RX'ed segment extends past the front of the
638 * fragment. Drop the overlapping bytes on the
639 * received packet. The packet will then be
640 * contatentated with this fragment a bit later.
642 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
643 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
644 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
645 #ifdef TCPREASS_DEBUG
646 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
647 tp, overlap,
648 pkt_seq, pkt_seq + pkt_len, pkt_len);
649 #endif
650 m_adj(m, -overlap);
651 pkt_len -= overlap;
652 rcvpartdupbyte += overlap;
653 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
654 rcvoobyte -= overlap;
657 * If the received segment immediates precedes this
658 * fragment then tack the fragment onto this segment
659 * and reinsert the data.
661 if (q->ipqe_seq == pkt_seq + pkt_len) {
662 #ifdef TCPREASS_DEBUG
663 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
664 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
665 pkt_seq, pkt_seq + pkt_len, pkt_len);
666 #endif
667 pkt_len += q->ipqe_len;
668 pkt_flags |= q->ipqe_flags;
669 m_cat(m, q->ipqe_m);
670 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
671 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
672 tp->t_segqlen--;
673 KASSERT(tp->t_segqlen >= 0);
674 KASSERT(tp->t_segqlen != 0 ||
675 (TAILQ_EMPTY(&tp->segq) &&
676 TAILQ_EMPTY(&tp->timeq)));
677 if (tiqe == NULL) {
678 tiqe = q;
679 } else {
680 tcpipqent_free(q);
682 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
683 break;
686 * If the fragment is before the segment, remember it.
687 * When this loop is terminated, p will contain the
688 * pointer to fragment that is right before the received
689 * segment.
691 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
692 p = q;
694 continue;
697 * This is a common operation. It also will allow
698 * to save doing a malloc/free in most instances.
700 free_ipqe:
701 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
702 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
703 tp->t_segqlen--;
704 KASSERT(tp->t_segqlen >= 0);
705 KASSERT(tp->t_segqlen != 0 ||
706 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
707 if (tiqe == NULL) {
708 tiqe = q;
709 } else {
710 tcpipqent_free(q);
714 #ifdef TCP_REASS_COUNTERS
715 if (count > 7)
716 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
717 else if (count > 0)
718 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
719 #endif
721 insert_it:
724 * Allocate a new queue entry since the received segment did not
725 * collapse onto any other out-of-order block; thus we are allocating
726 * a new block. If it had collapsed, tiqe would not be NULL and
727 * we would be reusing it.
728 * XXX If we can't, just drop the packet. XXX
730 if (tiqe == NULL) {
731 tiqe = tcpipqent_alloc();
732 if (tiqe == NULL) {
733 TCP_STATINC(TCP_STAT_RCVMEMDROP);
734 m_freem(m);
735 return (0);
740 * Update the counters.
742 tcps = TCP_STAT_GETREF();
743 tcps[TCP_STAT_RCVOOPACK]++;
744 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
745 if (rcvpartdupbyte) {
746 tcps[TCP_STAT_RCVPARTDUPPACK]++;
747 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
749 TCP_STAT_PUTREF();
752 * Insert the new fragment queue entry into both queues.
754 tiqe->ipqe_m = m;
755 tiqe->ipre_mlast = m;
756 tiqe->ipqe_seq = pkt_seq;
757 tiqe->ipqe_len = pkt_len;
758 tiqe->ipqe_flags = pkt_flags;
759 if (p == NULL) {
760 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
761 #ifdef TCPREASS_DEBUG
762 if (tiqe->ipqe_seq != tp->rcv_nxt)
763 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
764 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
765 #endif
766 } else {
767 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
768 #ifdef TCPREASS_DEBUG
769 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
770 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
771 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
772 #endif
774 tp->t_segqlen++;
776 skip_replacement:
778 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
780 present:
782 * Present data to user, advancing rcv_nxt through
783 * completed sequence space.
785 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
786 return (0);
787 q = TAILQ_FIRST(&tp->segq);
788 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
789 return (0);
790 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
791 return (0);
793 tp->rcv_nxt += q->ipqe_len;
794 pkt_flags = q->ipqe_flags & TH_FIN;
795 nd6_hint(tp);
797 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
798 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
799 tp->t_segqlen--;
800 KASSERT(tp->t_segqlen >= 0);
801 KASSERT(tp->t_segqlen != 0 ||
802 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
803 if (so->so_state & SS_CANTRCVMORE)
804 m_freem(q->ipqe_m);
805 else
806 sbappendstream(&so->so_rcv, q->ipqe_m);
807 tcpipqent_free(q);
808 sorwakeup(so);
809 return (pkt_flags);
812 #ifdef INET6
814 tcp6_input(struct mbuf **mp, int *offp, int proto)
816 struct mbuf *m = *mp;
819 * draft-itojun-ipv6-tcp-to-anycast
820 * better place to put this in?
822 if (m->m_flags & M_ANYCAST6) {
823 struct ip6_hdr *ip6;
824 if (m->m_len < sizeof(struct ip6_hdr)) {
825 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
826 TCP_STATINC(TCP_STAT_RCVSHORT);
827 return IPPROTO_DONE;
830 ip6 = mtod(m, struct ip6_hdr *);
831 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
832 (char *)&ip6->ip6_dst - (char *)ip6);
833 return IPPROTO_DONE;
836 tcp_input(m, *offp, proto);
837 return IPPROTO_DONE;
839 #endif
841 #ifdef INET
842 static void
843 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
845 char src[4*sizeof "123"];
846 char dst[4*sizeof "123"];
848 if (ip) {
849 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
850 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
852 else {
853 strlcpy(src, "(unknown)", sizeof(src));
854 strlcpy(dst, "(unknown)", sizeof(dst));
856 log(LOG_INFO,
857 "Connection attempt to TCP %s:%d from %s:%d\n",
858 dst, ntohs(th->th_dport),
859 src, ntohs(th->th_sport));
861 #endif
863 #ifdef INET6
864 static void
865 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
867 char src[INET6_ADDRSTRLEN];
868 char dst[INET6_ADDRSTRLEN];
870 if (ip6) {
871 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
872 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
874 else {
875 strlcpy(src, "(unknown v6)", sizeof(src));
876 strlcpy(dst, "(unknown v6)", sizeof(dst));
878 log(LOG_INFO,
879 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
880 dst, ntohs(th->th_dport),
881 src, ntohs(th->th_sport));
883 #endif
886 * Checksum extended TCP header and data.
889 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
890 int toff, int off, int tlen)
894 * XXX it's better to record and check if this mbuf is
895 * already checked.
898 switch (af) {
899 #ifdef INET
900 case AF_INET:
901 switch (m->m_pkthdr.csum_flags &
902 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
903 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
904 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
905 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
906 goto badcsum;
908 case M_CSUM_TCPv4|M_CSUM_DATA: {
909 u_int32_t hw_csum = m->m_pkthdr.csum_data;
911 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
912 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
913 const struct ip *ip =
914 mtod(m, const struct ip *);
916 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
917 ip->ip_dst.s_addr,
918 htons(hw_csum + tlen + off + IPPROTO_TCP));
920 if ((hw_csum ^ 0xffff) != 0)
921 goto badcsum;
922 break;
925 case M_CSUM_TCPv4:
926 /* Checksum was okay. */
927 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
928 break;
930 default:
932 * Must compute it ourselves. Maybe skip checksum
933 * on loopback interfaces.
935 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
936 IFF_LOOPBACK) ||
937 tcp_do_loopback_cksum)) {
938 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
939 if (in4_cksum(m, IPPROTO_TCP, toff,
940 tlen + off) != 0)
941 goto badcsum;
943 break;
945 break;
946 #endif /* INET4 */
948 #ifdef INET6
949 case AF_INET6:
950 switch (m->m_pkthdr.csum_flags &
951 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
952 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
953 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
954 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
955 goto badcsum;
957 #if 0 /* notyet */
958 case M_CSUM_TCPv6|M_CSUM_DATA:
959 #endif
961 case M_CSUM_TCPv6:
962 /* Checksum was okay. */
963 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
964 break;
966 default:
968 * Must compute it ourselves. Maybe skip checksum
969 * on loopback interfaces.
971 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
972 tcp_do_loopback_cksum)) {
973 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
974 if (in6_cksum(m, IPPROTO_TCP, toff,
975 tlen + off) != 0)
976 goto badcsum;
979 break;
980 #endif /* INET6 */
983 return 0;
985 badcsum:
986 TCP_STATINC(TCP_STAT_RCVBADSUM);
987 return -1;
991 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
993 void
994 tcp_input(struct mbuf *m, ...)
996 struct tcphdr *th;
997 struct ip *ip;
998 struct inpcb *inp;
999 #ifdef INET6
1000 struct ip6_hdr *ip6;
1001 struct in6pcb *in6p;
1002 #endif
1003 u_int8_t *optp = NULL;
1004 int optlen = 0;
1005 int len, tlen, toff, hdroptlen = 0;
1006 struct tcpcb *tp = 0;
1007 int tiflags;
1008 struct socket *so = NULL;
1009 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1010 #ifdef TCP_DEBUG
1011 short ostate = 0;
1012 #endif
1013 u_long tiwin;
1014 struct tcp_opt_info opti;
1015 int off, iphlen;
1016 va_list ap;
1017 int af; /* af on the wire */
1018 struct mbuf *tcp_saveti = NULL;
1019 uint32_t ts_rtt;
1020 uint8_t iptos;
1021 uint64_t *tcps;
1023 MCLAIM(m, &tcp_rx_mowner);
1024 va_start(ap, m);
1025 toff = va_arg(ap, int);
1026 (void)va_arg(ap, int); /* ignore value, advance ap */
1027 va_end(ap);
1029 TCP_STATINC(TCP_STAT_RCVTOTAL);
1031 memset(&opti, 0, sizeof(opti));
1032 opti.ts_present = 0;
1033 opti.maxseg = 0;
1036 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1038 * TCP is, by definition, unicast, so we reject all
1039 * multicast outright.
1041 * Note, there are additional src/dst address checks in
1042 * the AF-specific code below.
1044 if (m->m_flags & (M_BCAST|M_MCAST)) {
1045 /* XXX stat */
1046 goto drop;
1048 #ifdef INET6
1049 if (m->m_flags & M_ANYCAST6) {
1050 /* XXX stat */
1051 goto drop;
1053 #endif
1056 * Get IP and TCP header.
1057 * Note: IP leaves IP header in first mbuf.
1059 ip = mtod(m, struct ip *);
1060 #ifdef INET6
1061 ip6 = NULL;
1062 #endif
1063 switch (ip->ip_v) {
1064 #ifdef INET
1065 case 4:
1066 af = AF_INET;
1067 iphlen = sizeof(struct ip);
1068 ip = mtod(m, struct ip *);
1069 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1070 sizeof(struct tcphdr));
1071 if (th == NULL) {
1072 TCP_STATINC(TCP_STAT_RCVSHORT);
1073 return;
1075 /* We do the checksum after PCB lookup... */
1076 len = ntohs(ip->ip_len);
1077 tlen = len - toff;
1078 iptos = ip->ip_tos;
1079 break;
1080 #endif
1081 #ifdef INET6
1082 case 6:
1083 ip = NULL;
1084 iphlen = sizeof(struct ip6_hdr);
1085 af = AF_INET6;
1086 ip6 = mtod(m, struct ip6_hdr *);
1087 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1088 sizeof(struct tcphdr));
1089 if (th == NULL) {
1090 TCP_STATINC(TCP_STAT_RCVSHORT);
1091 return;
1094 /* Be proactive about malicious use of IPv4 mapped address */
1095 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1096 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1097 /* XXX stat */
1098 goto drop;
1102 * Be proactive about unspecified IPv6 address in source.
1103 * As we use all-zero to indicate unbounded/unconnected pcb,
1104 * unspecified IPv6 address can be used to confuse us.
1106 * Note that packets with unspecified IPv6 destination is
1107 * already dropped in ip6_input.
1109 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1110 /* XXX stat */
1111 goto drop;
1115 * Make sure destination address is not multicast.
1116 * Source address checked in ip6_input().
1118 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1119 /* XXX stat */
1120 goto drop;
1123 /* We do the checksum after PCB lookup... */
1124 len = m->m_pkthdr.len;
1125 tlen = len - toff;
1126 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1127 break;
1128 #endif
1129 default:
1130 m_freem(m);
1131 return;
1134 KASSERT(TCP_HDR_ALIGNED_P(th));
1137 * Check that TCP offset makes sense,
1138 * pull out TCP options and adjust length. XXX
1140 off = th->th_off << 2;
1141 if (off < sizeof (struct tcphdr) || off > tlen) {
1142 TCP_STATINC(TCP_STAT_RCVBADOFF);
1143 goto drop;
1145 tlen -= off;
1148 * tcp_input() has been modified to use tlen to mean the TCP data
1149 * length throughout the function. Other functions can use
1150 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1151 * rja
1154 if (off > sizeof (struct tcphdr)) {
1155 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1156 if (th == NULL) {
1157 TCP_STATINC(TCP_STAT_RCVSHORT);
1158 return;
1161 * NOTE: ip/ip6 will not be affected by m_pulldown()
1162 * (as they're before toff) and we don't need to update those.
1164 KASSERT(TCP_HDR_ALIGNED_P(th));
1165 optlen = off - sizeof (struct tcphdr);
1166 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1168 * Do quick retrieval of timestamp options ("options
1169 * prediction?"). If timestamp is the only option and it's
1170 * formatted as recommended in RFC 1323 appendix A, we
1171 * quickly get the values now and not bother calling
1172 * tcp_dooptions(), etc.
1174 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1175 (optlen > TCPOLEN_TSTAMP_APPA &&
1176 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1177 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1178 (th->th_flags & TH_SYN) == 0) {
1179 opti.ts_present = 1;
1180 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1181 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1182 optp = NULL; /* we've parsed the options */
1185 tiflags = th->th_flags;
1188 * Locate pcb for segment.
1190 findpcb:
1191 inp = NULL;
1192 #ifdef INET6
1193 in6p = NULL;
1194 #endif
1195 switch (af) {
1196 #ifdef INET
1197 case AF_INET:
1198 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1199 ip->ip_dst, th->th_dport);
1200 if (inp == 0) {
1201 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1202 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1204 #ifdef INET6
1205 if (inp == 0) {
1206 struct in6_addr s, d;
1208 /* mapped addr case */
1209 memset(&s, 0, sizeof(s));
1210 s.s6_addr16[5] = htons(0xffff);
1211 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1212 memset(&d, 0, sizeof(d));
1213 d.s6_addr16[5] = htons(0xffff);
1214 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1215 in6p = in6_pcblookup_connect(&tcbtable, &s,
1216 th->th_sport, &d, th->th_dport, 0);
1217 if (in6p == 0) {
1218 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1219 in6p = in6_pcblookup_bind(&tcbtable, &d,
1220 th->th_dport, 0);
1223 #endif
1224 #ifndef INET6
1225 if (inp == 0)
1226 #else
1227 if (inp == 0 && in6p == 0)
1228 #endif
1230 TCP_STATINC(TCP_STAT_NOPORT);
1231 if (tcp_log_refused &&
1232 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1233 tcp4_log_refused(ip, th);
1235 tcp_fields_to_host(th);
1236 goto dropwithreset_ratelim;
1238 #if defined(IPSEC) || defined(FAST_IPSEC)
1239 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1240 ipsec4_in_reject(m, inp)) {
1241 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1242 goto drop;
1244 #ifdef INET6
1245 else if (in6p &&
1246 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1247 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1248 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1249 goto drop;
1251 #endif
1252 #endif /*IPSEC*/
1253 break;
1254 #endif /*INET*/
1255 #ifdef INET6
1256 case AF_INET6:
1258 int faith;
1260 #if defined(NFAITH) && NFAITH > 0
1261 faith = faithprefix(&ip6->ip6_dst);
1262 #else
1263 faith = 0;
1264 #endif
1265 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1266 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1267 if (in6p == NULL) {
1268 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1269 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1270 th->th_dport, faith);
1272 if (in6p == NULL) {
1273 TCP_STATINC(TCP_STAT_NOPORT);
1274 if (tcp_log_refused &&
1275 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1276 tcp6_log_refused(ip6, th);
1278 tcp_fields_to_host(th);
1279 goto dropwithreset_ratelim;
1281 #if defined(IPSEC) || defined(FAST_IPSEC)
1282 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1283 ipsec6_in_reject(m, in6p)) {
1284 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1285 goto drop;
1287 #endif /*IPSEC*/
1288 break;
1290 #endif
1294 * If the state is CLOSED (i.e., TCB does not exist) then
1295 * all data in the incoming segment is discarded.
1296 * If the TCB exists but is in CLOSED state, it is embryonic,
1297 * but should either do a listen or a connect soon.
1299 tp = NULL;
1300 so = NULL;
1301 if (inp) {
1302 /* Check the minimum TTL for socket. */
1303 if (ip->ip_ttl < inp->inp_ip_minttl)
1304 goto drop;
1306 tp = intotcpcb(inp);
1307 so = inp->inp_socket;
1309 #ifdef INET6
1310 else if (in6p) {
1311 tp = in6totcpcb(in6p);
1312 so = in6p->in6p_socket;
1314 #endif
1315 if (tp == 0) {
1316 tcp_fields_to_host(th);
1317 goto dropwithreset_ratelim;
1319 if (tp->t_state == TCPS_CLOSED)
1320 goto drop;
1322 KASSERT(so->so_lock == softnet_lock);
1323 KASSERT(solocked(so));
1326 * Checksum extended TCP header and data.
1328 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1329 goto badcsum;
1331 tcp_fields_to_host(th);
1333 /* Unscale the window into a 32-bit value. */
1334 if ((tiflags & TH_SYN) == 0)
1335 tiwin = th->th_win << tp->snd_scale;
1336 else
1337 tiwin = th->th_win;
1339 #ifdef INET6
1340 /* save packet options if user wanted */
1341 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1342 if (in6p->in6p_options) {
1343 m_freem(in6p->in6p_options);
1344 in6p->in6p_options = 0;
1346 KASSERT(ip6 != NULL);
1347 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1349 #endif
1351 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1352 union syn_cache_sa src;
1353 union syn_cache_sa dst;
1355 memset(&src, 0, sizeof(src));
1356 memset(&dst, 0, sizeof(dst));
1357 switch (af) {
1358 #ifdef INET
1359 case AF_INET:
1360 src.sin.sin_len = sizeof(struct sockaddr_in);
1361 src.sin.sin_family = AF_INET;
1362 src.sin.sin_addr = ip->ip_src;
1363 src.sin.sin_port = th->th_sport;
1365 dst.sin.sin_len = sizeof(struct sockaddr_in);
1366 dst.sin.sin_family = AF_INET;
1367 dst.sin.sin_addr = ip->ip_dst;
1368 dst.sin.sin_port = th->th_dport;
1369 break;
1370 #endif
1371 #ifdef INET6
1372 case AF_INET6:
1373 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1374 src.sin6.sin6_family = AF_INET6;
1375 src.sin6.sin6_addr = ip6->ip6_src;
1376 src.sin6.sin6_port = th->th_sport;
1378 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1379 dst.sin6.sin6_family = AF_INET6;
1380 dst.sin6.sin6_addr = ip6->ip6_dst;
1381 dst.sin6.sin6_port = th->th_dport;
1382 break;
1383 #endif /* INET6 */
1384 default:
1385 goto badsyn; /*sanity*/
1388 if (so->so_options & SO_DEBUG) {
1389 #ifdef TCP_DEBUG
1390 ostate = tp->t_state;
1391 #endif
1393 tcp_saveti = NULL;
1394 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1395 goto nosave;
1397 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1398 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1399 if (!tcp_saveti)
1400 goto nosave;
1401 } else {
1402 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1403 if (!tcp_saveti)
1404 goto nosave;
1405 MCLAIM(m, &tcp_mowner);
1406 tcp_saveti->m_len = iphlen;
1407 m_copydata(m, 0, iphlen,
1408 mtod(tcp_saveti, void *));
1411 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1412 m_freem(tcp_saveti);
1413 tcp_saveti = NULL;
1414 } else {
1415 tcp_saveti->m_len += sizeof(struct tcphdr);
1416 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1417 sizeof(struct tcphdr));
1419 nosave:;
1421 if (so->so_options & SO_ACCEPTCONN) {
1422 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1423 if (tiflags & TH_RST) {
1424 syn_cache_reset(&src.sa, &dst.sa, th);
1425 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1426 (TH_ACK|TH_SYN)) {
1428 * Received a SYN,ACK. This should
1429 * never happen while we are in
1430 * LISTEN. Send an RST.
1432 goto badsyn;
1433 } else if (tiflags & TH_ACK) {
1434 so = syn_cache_get(&src.sa, &dst.sa,
1435 th, toff, tlen, so, m);
1436 if (so == NULL) {
1438 * We don't have a SYN for
1439 * this ACK; send an RST.
1441 goto badsyn;
1442 } else if (so ==
1443 (struct socket *)(-1)) {
1445 * We were unable to create
1446 * the connection. If the
1447 * 3-way handshake was
1448 * completed, and RST has
1449 * been sent to the peer.
1450 * Since the mbuf might be
1451 * in use for the reply,
1452 * do not free it.
1454 m = NULL;
1455 } else {
1457 * We have created a
1458 * full-blown connection.
1460 tp = NULL;
1461 inp = NULL;
1462 #ifdef INET6
1463 in6p = NULL;
1464 #endif
1465 switch (so->so_proto->pr_domain->dom_family) {
1466 #ifdef INET
1467 case AF_INET:
1468 inp = sotoinpcb(so);
1469 tp = intotcpcb(inp);
1470 break;
1471 #endif
1472 #ifdef INET6
1473 case AF_INET6:
1474 in6p = sotoin6pcb(so);
1475 tp = in6totcpcb(in6p);
1476 break;
1477 #endif
1479 if (tp == NULL)
1480 goto badsyn; /*XXX*/
1481 tiwin <<= tp->snd_scale;
1482 goto after_listen;
1484 } else {
1486 * None of RST, SYN or ACK was set.
1487 * This is an invalid packet for a
1488 * TCB in LISTEN state. Send a RST.
1490 goto badsyn;
1492 } else {
1494 * Received a SYN.
1496 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1498 if (m->m_flags & (M_BCAST|M_MCAST))
1499 goto drop;
1501 switch (af) {
1502 #ifdef INET6
1503 case AF_INET6:
1504 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1505 goto drop;
1506 break;
1507 #endif /* INET6 */
1508 case AF_INET:
1509 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1510 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1511 goto drop;
1512 break;
1515 #ifdef INET6
1517 * If deprecated address is forbidden, we do
1518 * not accept SYN to deprecated interface
1519 * address to prevent any new inbound
1520 * connection from getting established.
1521 * When we do not accept SYN, we send a TCP
1522 * RST, with deprecated source address (instead
1523 * of dropping it). We compromise it as it is
1524 * much better for peer to send a RST, and
1525 * RST will be the final packet for the
1526 * exchange.
1528 * If we do not forbid deprecated addresses, we
1529 * accept the SYN packet. RFC2462 does not
1530 * suggest dropping SYN in this case.
1531 * If we decipher RFC2462 5.5.4, it says like
1532 * this:
1533 * 1. use of deprecated addr with existing
1534 * communication is okay - "SHOULD continue
1535 * to be used"
1536 * 2. use of it with new communication:
1537 * (2a) "SHOULD NOT be used if alternate
1538 * address with sufficient scope is
1539 * available"
1540 * (2b) nothing mentioned otherwise.
1541 * Here we fall into (2b) case as we have no
1542 * choice in our source address selection - we
1543 * must obey the peer.
1545 * The wording in RFC2462 is confusing, and
1546 * there are multiple description text for
1547 * deprecated address handling - worse, they
1548 * are not exactly the same. I believe 5.5.4
1549 * is the best one, so we follow 5.5.4.
1551 if (af == AF_INET6 && !ip6_use_deprecated) {
1552 struct in6_ifaddr *ia6;
1553 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1554 &ip6->ip6_dst)) &&
1555 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1556 tp = NULL;
1557 goto dropwithreset;
1560 #endif
1562 #if defined(IPSEC) || defined(FAST_IPSEC)
1563 switch (af) {
1564 #ifdef INET
1565 case AF_INET:
1566 if (ipsec4_in_reject_so(m, so)) {
1567 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1568 tp = NULL;
1569 goto dropwithreset;
1571 break;
1572 #endif
1573 #ifdef INET6
1574 case AF_INET6:
1575 if (ipsec6_in_reject_so(m, so)) {
1576 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1577 tp = NULL;
1578 goto dropwithreset;
1580 break;
1581 #endif /*INET6*/
1583 #endif /*IPSEC*/
1586 * LISTEN socket received a SYN
1587 * from itself? This can't possibly
1588 * be valid; drop the packet.
1590 if (th->th_sport == th->th_dport) {
1591 int i;
1593 switch (af) {
1594 #ifdef INET
1595 case AF_INET:
1596 i = in_hosteq(ip->ip_src, ip->ip_dst);
1597 break;
1598 #endif
1599 #ifdef INET6
1600 case AF_INET6:
1601 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1602 break;
1603 #endif
1604 default:
1605 i = 1;
1607 if (i) {
1608 TCP_STATINC(TCP_STAT_BADSYN);
1609 goto drop;
1614 * SYN looks ok; create compressed TCP
1615 * state for it.
1617 if (so->so_qlen <= so->so_qlimit &&
1618 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1619 so, m, optp, optlen, &opti))
1620 m = NULL;
1622 goto drop;
1626 after_listen:
1627 #ifdef DIAGNOSTIC
1629 * Should not happen now that all embryonic connections
1630 * are handled with compressed state.
1632 if (tp->t_state == TCPS_LISTEN)
1633 panic("tcp_input: TCPS_LISTEN");
1634 #endif
1637 * Segment received on connection.
1638 * Reset idle time and keep-alive timer.
1640 tp->t_rcvtime = tcp_now;
1641 if (TCPS_HAVEESTABLISHED(tp->t_state))
1642 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1645 * Process options.
1647 #ifdef TCP_SIGNATURE
1648 if (optp || (tp->t_flags & TF_SIGNATURE))
1649 #else
1650 if (optp)
1651 #endif
1652 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1653 goto drop;
1655 if (TCP_SACK_ENABLED(tp)) {
1656 tcp_del_sackholes(tp, th);
1659 if (TCP_ECN_ALLOWED(tp)) {
1660 switch (iptos & IPTOS_ECN_MASK) {
1661 case IPTOS_ECN_CE:
1662 tp->t_flags |= TF_ECN_SND_ECE;
1663 TCP_STATINC(TCP_STAT_ECN_CE);
1664 break;
1665 case IPTOS_ECN_ECT0:
1666 TCP_STATINC(TCP_STAT_ECN_ECT);
1667 break;
1668 case IPTOS_ECN_ECT1:
1669 /* XXX: ignore for now -- rpaulo */
1670 break;
1673 if (tiflags & TH_CWR)
1674 tp->t_flags &= ~TF_ECN_SND_ECE;
1677 * Congestion experienced.
1678 * Ignore if we are already trying to recover.
1680 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1681 tp->t_congctl->cong_exp(tp);
1684 if (opti.ts_present && opti.ts_ecr) {
1686 * Calculate the RTT from the returned time stamp and the
1687 * connection's time base. If the time stamp is later than
1688 * the current time, or is extremely old, fall back to non-1323
1689 * RTT calculation. Since ts_ecr is unsigned, we can test both
1690 * at the same time.
1692 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1693 if (ts_rtt > TCP_PAWS_IDLE)
1694 ts_rtt = 0;
1695 } else {
1696 ts_rtt = 0;
1700 * Header prediction: check for the two common cases
1701 * of a uni-directional data xfer. If the packet has
1702 * no control flags, is in-sequence, the window didn't
1703 * change and we're not retransmitting, it's a
1704 * candidate. If the length is zero and the ack moved
1705 * forward, we're the sender side of the xfer. Just
1706 * free the data acked & wake any higher level process
1707 * that was blocked waiting for space. If the length
1708 * is non-zero and the ack didn't move, we're the
1709 * receiver side. If we're getting packets in-order
1710 * (the reassembly queue is empty), add the data to
1711 * the socket buffer and note that we need a delayed ack.
1713 if (tp->t_state == TCPS_ESTABLISHED &&
1714 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1715 == TH_ACK &&
1716 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1717 th->th_seq == tp->rcv_nxt &&
1718 tiwin && tiwin == tp->snd_wnd &&
1719 tp->snd_nxt == tp->snd_max) {
1722 * If last ACK falls within this segment's sequence numbers,
1723 * record the timestamp.
1724 * NOTE that the test is modified according to the latest
1725 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1727 * note that we already know
1728 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1730 if (opti.ts_present &&
1731 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1732 tp->ts_recent_age = tcp_now;
1733 tp->ts_recent = opti.ts_val;
1736 if (tlen == 0) {
1737 /* Ack prediction. */
1738 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1739 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1740 tp->snd_cwnd >= tp->snd_wnd &&
1741 tp->t_partialacks < 0) {
1743 * this is a pure ack for outstanding data.
1745 if (ts_rtt)
1746 tcp_xmit_timer(tp, ts_rtt);
1747 else if (tp->t_rtttime &&
1748 SEQ_GT(th->th_ack, tp->t_rtseq))
1749 tcp_xmit_timer(tp,
1750 tcp_now - tp->t_rtttime);
1751 acked = th->th_ack - tp->snd_una;
1752 tcps = TCP_STAT_GETREF();
1753 tcps[TCP_STAT_PREDACK]++;
1754 tcps[TCP_STAT_RCVACKPACK]++;
1755 tcps[TCP_STAT_RCVACKBYTE] += acked;
1756 TCP_STAT_PUTREF();
1757 nd6_hint(tp);
1759 if (acked > (tp->t_lastoff - tp->t_inoff))
1760 tp->t_lastm = NULL;
1761 sbdrop(&so->so_snd, acked);
1762 tp->t_lastoff -= acked;
1764 icmp_check(tp, th, acked);
1766 tp->snd_una = th->th_ack;
1767 tp->snd_fack = tp->snd_una;
1768 if (SEQ_LT(tp->snd_high, tp->snd_una))
1769 tp->snd_high = tp->snd_una;
1770 m_freem(m);
1773 * If all outstanding data are acked, stop
1774 * retransmit timer, otherwise restart timer
1775 * using current (possibly backed-off) value.
1776 * If process is waiting for space,
1777 * wakeup/selnotify/signal. If data
1778 * are ready to send, let tcp_output
1779 * decide between more output or persist.
1781 if (tp->snd_una == tp->snd_max)
1782 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1783 else if (TCP_TIMER_ISARMED(tp,
1784 TCPT_PERSIST) == 0)
1785 TCP_TIMER_ARM(tp, TCPT_REXMT,
1786 tp->t_rxtcur);
1788 sowwakeup(so);
1789 if (so->so_snd.sb_cc)
1790 (void) tcp_output(tp);
1791 if (tcp_saveti)
1792 m_freem(tcp_saveti);
1793 return;
1795 } else if (th->th_ack == tp->snd_una &&
1796 TAILQ_FIRST(&tp->segq) == NULL &&
1797 tlen <= sbspace(&so->so_rcv)) {
1798 int newsize = 0; /* automatic sockbuf scaling */
1801 * this is a pure, in-sequence data packet
1802 * with nothing on the reassembly queue and
1803 * we have enough buffer space to take it.
1805 tp->rcv_nxt += tlen;
1806 tcps = TCP_STAT_GETREF();
1807 tcps[TCP_STAT_PREDDAT]++;
1808 tcps[TCP_STAT_RCVPACK]++;
1809 tcps[TCP_STAT_RCVBYTE] += tlen;
1810 TCP_STAT_PUTREF();
1811 nd6_hint(tp);
1814 * Automatic sizing enables the performance of large buffers
1815 * and most of the efficiency of small ones by only allocating
1816 * space when it is needed.
1818 * On the receive side the socket buffer memory is only rarely
1819 * used to any significant extent. This allows us to be much
1820 * more aggressive in scaling the receive socket buffer. For
1821 * the case that the buffer space is actually used to a large
1822 * extent and we run out of kernel memory we can simply drop
1823 * the new segments; TCP on the sender will just retransmit it
1824 * later. Setting the buffer size too big may only consume too
1825 * much kernel memory if the application doesn't read() from
1826 * the socket or packet loss or reordering makes use of the
1827 * reassembly queue.
1829 * The criteria to step up the receive buffer one notch are:
1830 * 1. the number of bytes received during the time it takes
1831 * one timestamp to be reflected back to us (the RTT);
1832 * 2. received bytes per RTT is within seven eighth of the
1833 * current socket buffer size;
1834 * 3. receive buffer size has not hit maximal automatic size;
1836 * This algorithm does one step per RTT at most and only if
1837 * we receive a bulk stream w/o packet losses or reorderings.
1838 * Shrinking the buffer during idle times is not necessary as
1839 * it doesn't consume any memory when idle.
1841 * TODO: Only step up if the application is actually serving
1842 * the buffer to better manage the socket buffer resources.
1844 if (tcp_do_autorcvbuf &&
1845 opti.ts_ecr &&
1846 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1847 if (opti.ts_ecr > tp->rfbuf_ts &&
1848 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1849 if (tp->rfbuf_cnt >
1850 (so->so_rcv.sb_hiwat / 8 * 7) &&
1851 so->so_rcv.sb_hiwat <
1852 tcp_autorcvbuf_max) {
1853 newsize =
1854 min(so->so_rcv.sb_hiwat +
1855 tcp_autorcvbuf_inc,
1856 tcp_autorcvbuf_max);
1858 /* Start over with next RTT. */
1859 tp->rfbuf_ts = 0;
1860 tp->rfbuf_cnt = 0;
1861 } else
1862 tp->rfbuf_cnt += tlen; /* add up */
1866 * Drop TCP, IP headers and TCP options then add data
1867 * to socket buffer.
1869 if (so->so_state & SS_CANTRCVMORE)
1870 m_freem(m);
1871 else {
1873 * Set new socket buffer size.
1874 * Give up when limit is reached.
1876 if (newsize)
1877 if (!sbreserve(&so->so_rcv,
1878 newsize, so))
1879 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1880 m_adj(m, toff + off);
1881 sbappendstream(&so->so_rcv, m);
1883 sorwakeup(so);
1884 tcp_setup_ack(tp, th);
1885 if (tp->t_flags & TF_ACKNOW)
1886 (void) tcp_output(tp);
1887 if (tcp_saveti)
1888 m_freem(tcp_saveti);
1889 return;
1894 * Compute mbuf offset to TCP data segment.
1896 hdroptlen = toff + off;
1899 * Calculate amount of space in receive window,
1900 * and then do TCP input processing.
1901 * Receive window is amount of space in rcv queue,
1902 * but not less than advertised window.
1904 { int win;
1906 win = sbspace(&so->so_rcv);
1907 if (win < 0)
1908 win = 0;
1909 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1912 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1913 tp->rfbuf_ts = 0;
1914 tp->rfbuf_cnt = 0;
1916 switch (tp->t_state) {
1918 * If the state is SYN_SENT:
1919 * if seg contains an ACK, but not for our SYN, drop the input.
1920 * if seg contains a RST, then drop the connection.
1921 * if seg does not contain SYN, then drop it.
1922 * Otherwise this is an acceptable SYN segment
1923 * initialize tp->rcv_nxt and tp->irs
1924 * if seg contains ack then advance tp->snd_una
1925 * if seg contains a ECE and ECN support is enabled, the stream
1926 * is ECN capable.
1927 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1928 * arrange for segment to be acked (eventually)
1929 * continue processing rest of data/controls, beginning with URG
1931 case TCPS_SYN_SENT:
1932 if ((tiflags & TH_ACK) &&
1933 (SEQ_LEQ(th->th_ack, tp->iss) ||
1934 SEQ_GT(th->th_ack, tp->snd_max)))
1935 goto dropwithreset;
1936 if (tiflags & TH_RST) {
1937 if (tiflags & TH_ACK)
1938 tp = tcp_drop(tp, ECONNREFUSED);
1939 goto drop;
1941 if ((tiflags & TH_SYN) == 0)
1942 goto drop;
1943 if (tiflags & TH_ACK) {
1944 tp->snd_una = th->th_ack;
1945 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1946 tp->snd_nxt = tp->snd_una;
1947 if (SEQ_LT(tp->snd_high, tp->snd_una))
1948 tp->snd_high = tp->snd_una;
1949 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1951 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1952 tp->t_flags |= TF_ECN_PERMIT;
1953 TCP_STATINC(TCP_STAT_ECN_SHS);
1957 tp->irs = th->th_seq;
1958 tcp_rcvseqinit(tp);
1959 tp->t_flags |= TF_ACKNOW;
1960 tcp_mss_from_peer(tp, opti.maxseg);
1963 * Initialize the initial congestion window. If we
1964 * had to retransmit the SYN, we must initialize cwnd
1965 * to 1 segment (i.e. the Loss Window).
1967 if (tp->t_flags & TF_SYN_REXMT)
1968 tp->snd_cwnd = tp->t_peermss;
1969 else {
1970 int ss = tcp_init_win;
1971 #ifdef INET
1972 if (inp != NULL && in_localaddr(inp->inp_faddr))
1973 ss = tcp_init_win_local;
1974 #endif
1975 #ifdef INET6
1976 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1977 ss = tcp_init_win_local;
1978 #endif
1979 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1982 tcp_rmx_rtt(tp);
1983 if (tiflags & TH_ACK) {
1984 TCP_STATINC(TCP_STAT_CONNECTS);
1985 soisconnected(so);
1986 tcp_established(tp);
1987 /* Do window scaling on this connection? */
1988 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1989 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1990 tp->snd_scale = tp->requested_s_scale;
1991 tp->rcv_scale = tp->request_r_scale;
1993 TCP_REASS_LOCK(tp);
1994 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1995 TCP_REASS_UNLOCK(tp);
1997 * if we didn't have to retransmit the SYN,
1998 * use its rtt as our initial srtt & rtt var.
2000 if (tp->t_rtttime)
2001 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2002 } else
2003 tp->t_state = TCPS_SYN_RECEIVED;
2006 * Advance th->th_seq to correspond to first data byte.
2007 * If data, trim to stay within window,
2008 * dropping FIN if necessary.
2010 th->th_seq++;
2011 if (tlen > tp->rcv_wnd) {
2012 todrop = tlen - tp->rcv_wnd;
2013 m_adj(m, -todrop);
2014 tlen = tp->rcv_wnd;
2015 tiflags &= ~TH_FIN;
2016 tcps = TCP_STAT_GETREF();
2017 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2018 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2019 TCP_STAT_PUTREF();
2021 tp->snd_wl1 = th->th_seq - 1;
2022 tp->rcv_up = th->th_seq;
2023 goto step6;
2026 * If the state is SYN_RECEIVED:
2027 * If seg contains an ACK, but not for our SYN, drop the input
2028 * and generate an RST. See page 36, rfc793
2030 case TCPS_SYN_RECEIVED:
2031 if ((tiflags & TH_ACK) &&
2032 (SEQ_LEQ(th->th_ack, tp->iss) ||
2033 SEQ_GT(th->th_ack, tp->snd_max)))
2034 goto dropwithreset;
2035 break;
2039 * States other than LISTEN or SYN_SENT.
2040 * First check timestamp, if present.
2041 * Then check that at least some bytes of segment are within
2042 * receive window. If segment begins before rcv_nxt,
2043 * drop leading data (and SYN); if nothing left, just ack.
2045 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2046 * and it's less than ts_recent, drop it.
2048 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2049 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2051 /* Check to see if ts_recent is over 24 days old. */
2052 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2054 * Invalidate ts_recent. If this segment updates
2055 * ts_recent, the age will be reset later and ts_recent
2056 * will get a valid value. If it does not, setting
2057 * ts_recent to zero will at least satisfy the
2058 * requirement that zero be placed in the timestamp
2059 * echo reply when ts_recent isn't valid. The
2060 * age isn't reset until we get a valid ts_recent
2061 * because we don't want out-of-order segments to be
2062 * dropped when ts_recent is old.
2064 tp->ts_recent = 0;
2065 } else {
2066 tcps = TCP_STAT_GETREF();
2067 tcps[TCP_STAT_RCVDUPPACK]++;
2068 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2069 tcps[TCP_STAT_PAWSDROP]++;
2070 TCP_STAT_PUTREF();
2071 tcp_new_dsack(tp, th->th_seq, tlen);
2072 goto dropafterack;
2076 todrop = tp->rcv_nxt - th->th_seq;
2077 dupseg = false;
2078 if (todrop > 0) {
2079 if (tiflags & TH_SYN) {
2080 tiflags &= ~TH_SYN;
2081 th->th_seq++;
2082 if (th->th_urp > 1)
2083 th->th_urp--;
2084 else {
2085 tiflags &= ~TH_URG;
2086 th->th_urp = 0;
2088 todrop--;
2090 if (todrop > tlen ||
2091 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2093 * Any valid FIN or RST must be to the left of the
2094 * window. At this point the FIN or RST must be a
2095 * duplicate or out of sequence; drop it.
2097 if (tiflags & TH_RST)
2098 goto drop;
2099 tiflags &= ~(TH_FIN|TH_RST);
2101 * Send an ACK to resynchronize and drop any data.
2102 * But keep on processing for RST or ACK.
2104 tp->t_flags |= TF_ACKNOW;
2105 todrop = tlen;
2106 dupseg = true;
2107 tcps = TCP_STAT_GETREF();
2108 tcps[TCP_STAT_RCVDUPPACK]++;
2109 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2110 TCP_STAT_PUTREF();
2111 } else if ((tiflags & TH_RST) &&
2112 th->th_seq != tp->rcv_nxt) {
2114 * Test for reset before adjusting the sequence
2115 * number for overlapping data.
2117 goto dropafterack_ratelim;
2118 } else {
2119 tcps = TCP_STAT_GETREF();
2120 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2121 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2122 TCP_STAT_PUTREF();
2124 tcp_new_dsack(tp, th->th_seq, todrop);
2125 hdroptlen += todrop; /*drop from head afterwards*/
2126 th->th_seq += todrop;
2127 tlen -= todrop;
2128 if (th->th_urp > todrop)
2129 th->th_urp -= todrop;
2130 else {
2131 tiflags &= ~TH_URG;
2132 th->th_urp = 0;
2137 * If new data are received on a connection after the
2138 * user processes are gone, then RST the other end.
2140 if ((so->so_state & SS_NOFDREF) &&
2141 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2142 tp = tcp_close(tp);
2143 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2144 goto dropwithreset;
2148 * If segment ends after window, drop trailing data
2149 * (and PUSH and FIN); if nothing left, just ACK.
2151 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2152 if (todrop > 0) {
2153 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2154 if (todrop >= tlen) {
2156 * The segment actually starts after the window.
2157 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2158 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2159 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2161 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2163 * If a new connection request is received
2164 * while in TIME_WAIT, drop the old connection
2165 * and start over if the sequence numbers
2166 * are above the previous ones.
2168 * NOTE: We will checksum the packet again, and
2169 * so we need to put the header fields back into
2170 * network order!
2171 * XXX This kind of sucks, but we don't expect
2172 * XXX this to happen very often, so maybe it
2173 * XXX doesn't matter so much.
2175 if (tiflags & TH_SYN &&
2176 tp->t_state == TCPS_TIME_WAIT &&
2177 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2178 tp = tcp_close(tp);
2179 tcp_fields_to_net(th);
2180 goto findpcb;
2183 * If window is closed can only take segments at
2184 * window edge, and have to drop data and PUSH from
2185 * incoming segments. Continue processing, but
2186 * remember to ack. Otherwise, drop segment
2187 * and (if not RST) ack.
2189 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2190 tp->t_flags |= TF_ACKNOW;
2191 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2192 } else
2193 goto dropafterack;
2194 } else
2195 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2196 m_adj(m, -todrop);
2197 tlen -= todrop;
2198 tiflags &= ~(TH_PUSH|TH_FIN);
2202 * If last ACK falls within this segment's sequence numbers,
2203 * record the timestamp.
2204 * NOTE:
2205 * 1) That the test incorporates suggestions from the latest
2206 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2207 * 2) That updating only on newer timestamps interferes with
2208 * our earlier PAWS tests, so this check should be solely
2209 * predicated on the sequence space of this segment.
2210 * 3) That we modify the segment boundary check to be
2211 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2212 * instead of RFC1323's
2213 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2214 * This modified check allows us to overcome RFC1323's
2215 * limitations as described in Stevens TCP/IP Illustrated
2216 * Vol. 2 p.869. In such cases, we can still calculate the
2217 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2219 if (opti.ts_present &&
2220 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2221 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2222 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2223 tp->ts_recent_age = tcp_now;
2224 tp->ts_recent = opti.ts_val;
2228 * If the RST bit is set examine the state:
2229 * SYN_RECEIVED STATE:
2230 * If passive open, return to LISTEN state.
2231 * If active open, inform user that connection was refused.
2232 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2233 * Inform user that connection was reset, and close tcb.
2234 * CLOSING, LAST_ACK, TIME_WAIT STATES
2235 * Close the tcb.
2237 if (tiflags & TH_RST) {
2238 if (th->th_seq != tp->rcv_nxt)
2239 goto dropafterack_ratelim;
2241 switch (tp->t_state) {
2242 case TCPS_SYN_RECEIVED:
2243 so->so_error = ECONNREFUSED;
2244 goto close;
2246 case TCPS_ESTABLISHED:
2247 case TCPS_FIN_WAIT_1:
2248 case TCPS_FIN_WAIT_2:
2249 case TCPS_CLOSE_WAIT:
2250 so->so_error = ECONNRESET;
2251 close:
2252 tp->t_state = TCPS_CLOSED;
2253 TCP_STATINC(TCP_STAT_DROPS);
2254 tp = tcp_close(tp);
2255 goto drop;
2257 case TCPS_CLOSING:
2258 case TCPS_LAST_ACK:
2259 case TCPS_TIME_WAIT:
2260 tp = tcp_close(tp);
2261 goto drop;
2266 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2267 * we must be in a synchronized state. RFC791 states (under RST
2268 * generation) that any unacceptable segment (an out-of-order SYN
2269 * qualifies) received in a synchronized state must elicit only an
2270 * empty acknowledgment segment ... and the connection remains in
2271 * the same state.
2273 if (tiflags & TH_SYN) {
2274 if (tp->rcv_nxt == th->th_seq) {
2275 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2276 TH_ACK);
2277 if (tcp_saveti)
2278 m_freem(tcp_saveti);
2279 return;
2282 goto dropafterack_ratelim;
2286 * If the ACK bit is off we drop the segment and return.
2288 if ((tiflags & TH_ACK) == 0) {
2289 if (tp->t_flags & TF_ACKNOW)
2290 goto dropafterack;
2291 else
2292 goto drop;
2296 * Ack processing.
2298 switch (tp->t_state) {
2301 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2302 * ESTABLISHED state and continue processing, otherwise
2303 * send an RST.
2305 case TCPS_SYN_RECEIVED:
2306 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2307 SEQ_GT(th->th_ack, tp->snd_max))
2308 goto dropwithreset;
2309 TCP_STATINC(TCP_STAT_CONNECTS);
2310 soisconnected(so);
2311 tcp_established(tp);
2312 /* Do window scaling? */
2313 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2314 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2315 tp->snd_scale = tp->requested_s_scale;
2316 tp->rcv_scale = tp->request_r_scale;
2318 TCP_REASS_LOCK(tp);
2319 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2320 TCP_REASS_UNLOCK(tp);
2321 tp->snd_wl1 = th->th_seq - 1;
2322 /* fall into ... */
2325 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2326 * ACKs. If the ack is in the range
2327 * tp->snd_una < th->th_ack <= tp->snd_max
2328 * then advance tp->snd_una to th->th_ack and drop
2329 * data from the retransmission queue. If this ACK reflects
2330 * more up to date window information we update our window information.
2332 case TCPS_ESTABLISHED:
2333 case TCPS_FIN_WAIT_1:
2334 case TCPS_FIN_WAIT_2:
2335 case TCPS_CLOSE_WAIT:
2336 case TCPS_CLOSING:
2337 case TCPS_LAST_ACK:
2338 case TCPS_TIME_WAIT:
2340 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2341 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2342 TCP_STATINC(TCP_STAT_RCVDUPPACK);
2344 * If we have outstanding data (other than
2345 * a window probe), this is a completely
2346 * duplicate ack (ie, window info didn't
2347 * change), the ack is the biggest we've
2348 * seen and we've seen exactly our rexmt
2349 * threshhold of them, assume a packet
2350 * has been dropped and retransmit it.
2351 * Kludge snd_nxt & the congestion
2352 * window so we send only this one
2353 * packet.
2355 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2356 th->th_ack != tp->snd_una)
2357 tp->t_dupacks = 0;
2358 else if (tp->t_partialacks < 0 &&
2359 (++tp->t_dupacks == tcprexmtthresh ||
2360 TCP_FACK_FASTRECOV(tp))) {
2362 * Do the fast retransmit, and adjust
2363 * congestion control paramenters.
2365 if (tp->t_congctl->fast_retransmit(tp, th)) {
2366 /* False fast retransmit */
2367 break;
2368 } else
2369 goto drop;
2370 } else if (tp->t_dupacks > tcprexmtthresh) {
2371 tp->snd_cwnd += tp->t_segsz;
2372 (void) tcp_output(tp);
2373 goto drop;
2375 } else {
2377 * If the ack appears to be very old, only
2378 * allow data that is in-sequence. This
2379 * makes it somewhat more difficult to insert
2380 * forged data by guessing sequence numbers.
2381 * Sent an ack to try to update the send
2382 * sequence number on the other side.
2384 if (tlen && th->th_seq != tp->rcv_nxt &&
2385 SEQ_LT(th->th_ack,
2386 tp->snd_una - tp->max_sndwnd))
2387 goto dropafterack;
2389 break;
2392 * If the congestion window was inflated to account
2393 * for the other side's cached packets, retract it.
2395 /* XXX: make SACK have his own congestion control
2396 * struct -- rpaulo */
2397 if (TCP_SACK_ENABLED(tp))
2398 tcp_sack_newack(tp, th);
2399 else
2400 tp->t_congctl->fast_retransmit_newack(tp, th);
2401 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2402 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2403 goto dropafterack;
2405 acked = th->th_ack - tp->snd_una;
2406 tcps = TCP_STAT_GETREF();
2407 tcps[TCP_STAT_RCVACKPACK]++;
2408 tcps[TCP_STAT_RCVACKBYTE] += acked;
2409 TCP_STAT_PUTREF();
2412 * If we have a timestamp reply, update smoothed
2413 * round trip time. If no timestamp is present but
2414 * transmit timer is running and timed sequence
2415 * number was acked, update smoothed round trip time.
2416 * Since we now have an rtt measurement, cancel the
2417 * timer backoff (cf., Phil Karn's retransmit alg.).
2418 * Recompute the initial retransmit timer.
2420 if (ts_rtt)
2421 tcp_xmit_timer(tp, ts_rtt);
2422 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2423 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2426 * If all outstanding data is acked, stop retransmit
2427 * timer and remember to restart (more output or persist).
2428 * If there is more data to be acked, restart retransmit
2429 * timer, using current (possibly backed-off) value.
2431 if (th->th_ack == tp->snd_max) {
2432 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2433 needoutput = 1;
2434 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2435 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2438 * New data has been acked, adjust the congestion window.
2440 tp->t_congctl->newack(tp, th);
2442 nd6_hint(tp);
2443 if (acked > so->so_snd.sb_cc) {
2444 tp->snd_wnd -= so->so_snd.sb_cc;
2445 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2446 ourfinisacked = 1;
2447 } else {
2448 if (acked > (tp->t_lastoff - tp->t_inoff))
2449 tp->t_lastm = NULL;
2450 sbdrop(&so->so_snd, acked);
2451 tp->t_lastoff -= acked;
2452 tp->snd_wnd -= acked;
2453 ourfinisacked = 0;
2455 sowwakeup(so);
2457 icmp_check(tp, th, acked);
2459 tp->snd_una = th->th_ack;
2460 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2461 tp->snd_fack = tp->snd_una;
2462 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2463 tp->snd_nxt = tp->snd_una;
2464 if (SEQ_LT(tp->snd_high, tp->snd_una))
2465 tp->snd_high = tp->snd_una;
2467 switch (tp->t_state) {
2470 * In FIN_WAIT_1 STATE in addition to the processing
2471 * for the ESTABLISHED state if our FIN is now acknowledged
2472 * then enter FIN_WAIT_2.
2474 case TCPS_FIN_WAIT_1:
2475 if (ourfinisacked) {
2477 * If we can't receive any more
2478 * data, then closing user can proceed.
2479 * Starting the timer is contrary to the
2480 * specification, but if we don't get a FIN
2481 * we'll hang forever.
2483 if (so->so_state & SS_CANTRCVMORE) {
2484 soisdisconnected(so);
2485 if (tp->t_maxidle > 0)
2486 TCP_TIMER_ARM(tp, TCPT_2MSL,
2487 tp->t_maxidle);
2489 tp->t_state = TCPS_FIN_WAIT_2;
2491 break;
2494 * In CLOSING STATE in addition to the processing for
2495 * the ESTABLISHED state if the ACK acknowledges our FIN
2496 * then enter the TIME-WAIT state, otherwise ignore
2497 * the segment.
2499 case TCPS_CLOSING:
2500 if (ourfinisacked) {
2501 tp->t_state = TCPS_TIME_WAIT;
2502 tcp_canceltimers(tp);
2503 TCP_TIMER_ARM(tp, TCPT_2MSL,
2504 2 * PR_SLOWHZ * tcp_msl);
2505 soisdisconnected(so);
2507 break;
2510 * In LAST_ACK, we may still be waiting for data to drain
2511 * and/or to be acked, as well as for the ack of our FIN.
2512 * If our FIN is now acknowledged, delete the TCB,
2513 * enter the closed state and return.
2515 case TCPS_LAST_ACK:
2516 if (ourfinisacked) {
2517 tp = tcp_close(tp);
2518 goto drop;
2520 break;
2523 * In TIME_WAIT state the only thing that should arrive
2524 * is a retransmission of the remote FIN. Acknowledge
2525 * it and restart the finack timer.
2527 case TCPS_TIME_WAIT:
2528 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2529 goto dropafterack;
2533 step6:
2535 * Update window information.
2536 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2538 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2539 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2540 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2541 /* keep track of pure window updates */
2542 if (tlen == 0 &&
2543 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2544 TCP_STATINC(TCP_STAT_RCVWINUPD);
2545 tp->snd_wnd = tiwin;
2546 tp->snd_wl1 = th->th_seq;
2547 tp->snd_wl2 = th->th_ack;
2548 if (tp->snd_wnd > tp->max_sndwnd)
2549 tp->max_sndwnd = tp->snd_wnd;
2550 needoutput = 1;
2554 * Process segments with URG.
2556 if ((tiflags & TH_URG) && th->th_urp &&
2557 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2559 * This is a kludge, but if we receive and accept
2560 * random urgent pointers, we'll crash in
2561 * soreceive. It's hard to imagine someone
2562 * actually wanting to send this much urgent data.
2564 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2565 th->th_urp = 0; /* XXX */
2566 tiflags &= ~TH_URG; /* XXX */
2567 goto dodata; /* XXX */
2570 * If this segment advances the known urgent pointer,
2571 * then mark the data stream. This should not happen
2572 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2573 * a FIN has been received from the remote side.
2574 * In these states we ignore the URG.
2576 * According to RFC961 (Assigned Protocols),
2577 * the urgent pointer points to the last octet
2578 * of urgent data. We continue, however,
2579 * to consider it to indicate the first octet
2580 * of data past the urgent section as the original
2581 * spec states (in one of two places).
2583 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2584 tp->rcv_up = th->th_seq + th->th_urp;
2585 so->so_oobmark = so->so_rcv.sb_cc +
2586 (tp->rcv_up - tp->rcv_nxt) - 1;
2587 if (so->so_oobmark == 0)
2588 so->so_state |= SS_RCVATMARK;
2589 sohasoutofband(so);
2590 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2593 * Remove out of band data so doesn't get presented to user.
2594 * This can happen independent of advancing the URG pointer,
2595 * but if two URG's are pending at once, some out-of-band
2596 * data may creep in... ick.
2598 if (th->th_urp <= (u_int16_t) tlen
2599 #ifdef SO_OOBINLINE
2600 && (so->so_options & SO_OOBINLINE) == 0
2601 #endif
2603 tcp_pulloutofband(so, th, m, hdroptlen);
2604 } else
2606 * If no out of band data is expected,
2607 * pull receive urgent pointer along
2608 * with the receive window.
2610 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2611 tp->rcv_up = tp->rcv_nxt;
2612 dodata: /* XXX */
2615 * Process the segment text, merging it into the TCP sequencing queue,
2616 * and arranging for acknowledgement of receipt if necessary.
2617 * This process logically involves adjusting tp->rcv_wnd as data
2618 * is presented to the user (this happens in tcp_usrreq.c,
2619 * case PRU_RCVD). If a FIN has already been received on this
2620 * connection then we just ignore the text.
2622 if ((tlen || (tiflags & TH_FIN)) &&
2623 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2625 * Insert segment ti into reassembly queue of tcp with
2626 * control block tp. Return TH_FIN if reassembly now includes
2627 * a segment with FIN. The macro form does the common case
2628 * inline (segment is the next to be received on an
2629 * established connection, and the queue is empty),
2630 * avoiding linkage into and removal from the queue and
2631 * repetition of various conversions.
2632 * Set DELACK for segments received in order, but ack
2633 * immediately when segments are out of order
2634 * (so fast retransmit can work).
2636 /* NOTE: this was TCP_REASS() macro, but used only once */
2637 TCP_REASS_LOCK(tp);
2638 if (th->th_seq == tp->rcv_nxt &&
2639 TAILQ_FIRST(&tp->segq) == NULL &&
2640 tp->t_state == TCPS_ESTABLISHED) {
2641 tcp_setup_ack(tp, th);
2642 tp->rcv_nxt += tlen;
2643 tiflags = th->th_flags & TH_FIN;
2644 tcps = TCP_STAT_GETREF();
2645 tcps[TCP_STAT_RCVPACK]++;
2646 tcps[TCP_STAT_RCVBYTE] += tlen;
2647 TCP_STAT_PUTREF();
2648 nd6_hint(tp);
2649 if (so->so_state & SS_CANTRCVMORE)
2650 m_freem(m);
2651 else {
2652 m_adj(m, hdroptlen);
2653 sbappendstream(&(so)->so_rcv, m);
2655 TCP_REASS_UNLOCK(tp);
2656 sorwakeup(so);
2657 } else {
2658 m_adj(m, hdroptlen);
2659 tiflags = tcp_reass(tp, th, m, &tlen);
2660 tp->t_flags |= TF_ACKNOW;
2661 TCP_REASS_UNLOCK(tp);
2665 * Note the amount of data that peer has sent into
2666 * our window, in order to estimate the sender's
2667 * buffer size.
2669 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2670 } else {
2671 m_freem(m);
2672 m = NULL;
2673 tiflags &= ~TH_FIN;
2677 * If FIN is received ACK the FIN and let the user know
2678 * that the connection is closing. Ignore a FIN received before
2679 * the connection is fully established.
2681 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2682 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2683 socantrcvmore(so);
2684 tp->t_flags |= TF_ACKNOW;
2685 tp->rcv_nxt++;
2687 switch (tp->t_state) {
2690 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2692 case TCPS_ESTABLISHED:
2693 tp->t_state = TCPS_CLOSE_WAIT;
2694 break;
2697 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2698 * enter the CLOSING state.
2700 case TCPS_FIN_WAIT_1:
2701 tp->t_state = TCPS_CLOSING;
2702 break;
2705 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2706 * starting the time-wait timer, turning off the other
2707 * standard timers.
2709 case TCPS_FIN_WAIT_2:
2710 tp->t_state = TCPS_TIME_WAIT;
2711 tcp_canceltimers(tp);
2712 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2713 soisdisconnected(so);
2714 break;
2717 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2719 case TCPS_TIME_WAIT:
2720 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2721 break;
2724 #ifdef TCP_DEBUG
2725 if (so->so_options & SO_DEBUG)
2726 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2727 #endif
2730 * Return any desired output.
2732 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2733 (void) tcp_output(tp);
2735 if (tcp_saveti)
2736 m_freem(tcp_saveti);
2737 return;
2739 badsyn:
2741 * Received a bad SYN. Increment counters and dropwithreset.
2743 TCP_STATINC(TCP_STAT_BADSYN);
2744 tp = NULL;
2745 goto dropwithreset;
2747 dropafterack:
2749 * Generate an ACK dropping incoming segment if it occupies
2750 * sequence space, where the ACK reflects our state.
2752 if (tiflags & TH_RST)
2753 goto drop;
2754 goto dropafterack2;
2756 dropafterack_ratelim:
2758 * We may want to rate-limit ACKs against SYN/RST attack.
2760 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2761 tcp_ackdrop_ppslim) == 0) {
2762 /* XXX stat */
2763 goto drop;
2765 /* ...fall into dropafterack2... */
2767 dropafterack2:
2768 m_freem(m);
2769 tp->t_flags |= TF_ACKNOW;
2770 (void) tcp_output(tp);
2771 if (tcp_saveti)
2772 m_freem(tcp_saveti);
2773 return;
2775 dropwithreset_ratelim:
2777 * We may want to rate-limit RSTs in certain situations,
2778 * particularly if we are sending an RST in response to
2779 * an attempt to connect to or otherwise communicate with
2780 * a port for which we have no socket.
2782 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2783 tcp_rst_ppslim) == 0) {
2784 /* XXX stat */
2785 goto drop;
2787 /* ...fall into dropwithreset... */
2789 dropwithreset:
2791 * Generate a RST, dropping incoming segment.
2792 * Make ACK acceptable to originator of segment.
2794 if (tiflags & TH_RST)
2795 goto drop;
2797 switch (af) {
2798 #ifdef INET6
2799 case AF_INET6:
2800 /* For following calls to tcp_respond */
2801 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2802 goto drop;
2803 break;
2804 #endif /* INET6 */
2805 case AF_INET:
2806 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2807 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2808 goto drop;
2811 if (tiflags & TH_ACK)
2812 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2813 else {
2814 if (tiflags & TH_SYN)
2815 tlen++;
2816 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2817 TH_RST|TH_ACK);
2819 if (tcp_saveti)
2820 m_freem(tcp_saveti);
2821 return;
2823 badcsum:
2824 drop:
2826 * Drop space held by incoming segment and return.
2828 if (tp) {
2829 if (tp->t_inpcb)
2830 so = tp->t_inpcb->inp_socket;
2831 #ifdef INET6
2832 else if (tp->t_in6pcb)
2833 so = tp->t_in6pcb->in6p_socket;
2834 #endif
2835 else
2836 so = NULL;
2837 #ifdef TCP_DEBUG
2838 if (so && (so->so_options & SO_DEBUG) != 0)
2839 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2840 #endif
2842 if (tcp_saveti)
2843 m_freem(tcp_saveti);
2844 m_freem(m);
2845 return;
2848 #ifdef TCP_SIGNATURE
2850 tcp_signature_apply(void *fstate, void *data, u_int len)
2853 MD5Update(fstate, (u_char *)data, len);
2854 return (0);
2857 struct secasvar *
2858 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2860 struct secasvar *sav;
2861 #ifdef FAST_IPSEC
2862 union sockaddr_union dst;
2863 #endif
2864 struct ip *ip;
2865 struct ip6_hdr *ip6;
2867 ip = mtod(m, struct ip *);
2868 switch (ip->ip_v) {
2869 case 4:
2870 ip = mtod(m, struct ip *);
2871 ip6 = NULL;
2872 break;
2873 case 6:
2874 ip = NULL;
2875 ip6 = mtod(m, struct ip6_hdr *);
2876 break;
2877 default:
2878 return (NULL);
2881 #ifdef FAST_IPSEC
2882 /* Extract the destination from the IP header in the mbuf. */
2883 memset(&dst, 0, sizeof(union sockaddr_union));
2884 if (ip !=NULL) {
2885 dst.sa.sa_len = sizeof(struct sockaddr_in);
2886 dst.sa.sa_family = AF_INET;
2887 dst.sin.sin_addr = ip->ip_dst;
2888 } else {
2889 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2890 dst.sa.sa_family = AF_INET6;
2891 dst.sin6.sin6_addr = ip6->ip6_dst;
2895 * Look up an SADB entry which matches the address of the peer.
2897 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2898 #else
2899 if (ip)
2900 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2901 (void *)&ip->ip_dst, IPPROTO_TCP,
2902 htonl(TCP_SIG_SPI), 0, 0);
2903 else
2904 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2905 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2906 htonl(TCP_SIG_SPI), 0, 0);
2907 #endif
2909 return (sav); /* freesav must be performed by caller */
2913 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2914 struct secasvar *sav, char *sig)
2916 MD5_CTX ctx;
2917 struct ip *ip;
2918 struct ipovly *ipovly;
2919 struct ip6_hdr *ip6;
2920 struct ippseudo ippseudo;
2921 struct ip6_hdr_pseudo ip6pseudo;
2922 struct tcphdr th0;
2923 int l, tcphdrlen;
2925 if (sav == NULL)
2926 return (-1);
2928 tcphdrlen = th->th_off * 4;
2930 switch (mtod(m, struct ip *)->ip_v) {
2931 case 4:
2932 ip = mtod(m, struct ip *);
2933 ip6 = NULL;
2934 break;
2935 case 6:
2936 ip = NULL;
2937 ip6 = mtod(m, struct ip6_hdr *);
2938 break;
2939 default:
2940 return (-1);
2943 MD5Init(&ctx);
2945 if (ip) {
2946 memset(&ippseudo, 0, sizeof(ippseudo));
2947 ipovly = (struct ipovly *)ip;
2948 ippseudo.ippseudo_src = ipovly->ih_src;
2949 ippseudo.ippseudo_dst = ipovly->ih_dst;
2950 ippseudo.ippseudo_pad = 0;
2951 ippseudo.ippseudo_p = IPPROTO_TCP;
2952 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2953 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2954 } else {
2955 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2956 ip6pseudo.ip6ph_src = ip6->ip6_src;
2957 in6_clearscope(&ip6pseudo.ip6ph_src);
2958 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2959 in6_clearscope(&ip6pseudo.ip6ph_dst);
2960 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2961 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2962 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2965 th0 = *th;
2966 th0.th_sum = 0;
2967 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2969 l = m->m_pkthdr.len - thoff - tcphdrlen;
2970 if (l > 0)
2971 m_apply(m, thoff + tcphdrlen,
2972 m->m_pkthdr.len - thoff - tcphdrlen,
2973 tcp_signature_apply, &ctx);
2975 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2976 MD5Final(sig, &ctx);
2978 return (0);
2980 #endif
2982 static int
2983 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2984 struct tcphdr *th,
2985 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2987 u_int16_t mss;
2988 int opt, optlen = 0;
2989 #ifdef TCP_SIGNATURE
2990 void *sigp = NULL;
2991 char sigbuf[TCP_SIGLEN];
2992 struct secasvar *sav = NULL;
2993 #endif
2995 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2996 opt = cp[0];
2997 if (opt == TCPOPT_EOL)
2998 break;
2999 if (opt == TCPOPT_NOP)
3000 optlen = 1;
3001 else {
3002 if (cnt < 2)
3003 break;
3004 optlen = cp[1];
3005 if (optlen < 2 || optlen > cnt)
3006 break;
3008 switch (opt) {
3010 default:
3011 continue;
3013 case TCPOPT_MAXSEG:
3014 if (optlen != TCPOLEN_MAXSEG)
3015 continue;
3016 if (!(th->th_flags & TH_SYN))
3017 continue;
3018 if (TCPS_HAVERCVDSYN(tp->t_state))
3019 continue;
3020 bcopy(cp + 2, &mss, sizeof(mss));
3021 oi->maxseg = ntohs(mss);
3022 break;
3024 case TCPOPT_WINDOW:
3025 if (optlen != TCPOLEN_WINDOW)
3026 continue;
3027 if (!(th->th_flags & TH_SYN))
3028 continue;
3029 if (TCPS_HAVERCVDSYN(tp->t_state))
3030 continue;
3031 tp->t_flags |= TF_RCVD_SCALE;
3032 tp->requested_s_scale = cp[2];
3033 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3034 #if 0 /*XXX*/
3035 char *p;
3037 if (ip)
3038 p = ntohl(ip->ip_src);
3039 #ifdef INET6
3040 else if (ip6)
3041 p = ip6_sprintf(&ip6->ip6_src);
3042 #endif
3043 else
3044 p = "(unknown)";
3045 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3046 "assuming %d\n",
3047 tp->requested_s_scale, p,
3048 TCP_MAX_WINSHIFT);
3049 #else
3050 log(LOG_ERR, "TCP: invalid wscale %d, "
3051 "assuming %d\n",
3052 tp->requested_s_scale,
3053 TCP_MAX_WINSHIFT);
3054 #endif
3055 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3057 break;
3059 case TCPOPT_TIMESTAMP:
3060 if (optlen != TCPOLEN_TIMESTAMP)
3061 continue;
3062 oi->ts_present = 1;
3063 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3064 NTOHL(oi->ts_val);
3065 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3066 NTOHL(oi->ts_ecr);
3068 if (!(th->th_flags & TH_SYN))
3069 continue;
3070 if (TCPS_HAVERCVDSYN(tp->t_state))
3071 continue;
3073 * A timestamp received in a SYN makes
3074 * it ok to send timestamp requests and replies.
3076 tp->t_flags |= TF_RCVD_TSTMP;
3077 tp->ts_recent = oi->ts_val;
3078 tp->ts_recent_age = tcp_now;
3079 break;
3081 case TCPOPT_SACK_PERMITTED:
3082 if (optlen != TCPOLEN_SACK_PERMITTED)
3083 continue;
3084 if (!(th->th_flags & TH_SYN))
3085 continue;
3086 if (TCPS_HAVERCVDSYN(tp->t_state))
3087 continue;
3088 if (tcp_do_sack) {
3089 tp->t_flags |= TF_SACK_PERMIT;
3090 tp->t_flags |= TF_WILL_SACK;
3092 break;
3094 case TCPOPT_SACK:
3095 tcp_sack_option(tp, th, cp, optlen);
3096 break;
3097 #ifdef TCP_SIGNATURE
3098 case TCPOPT_SIGNATURE:
3099 if (optlen != TCPOLEN_SIGNATURE)
3100 continue;
3101 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3102 return (-1);
3104 sigp = sigbuf;
3105 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3106 tp->t_flags |= TF_SIGNATURE;
3107 break;
3108 #endif
3112 #ifdef TCP_SIGNATURE
3113 if (tp->t_flags & TF_SIGNATURE) {
3115 sav = tcp_signature_getsav(m, th);
3117 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3118 return (-1);
3121 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3122 if (sav == NULL)
3123 return (-1);
3124 #ifdef FAST_IPSEC
3125 KEY_FREESAV(&sav);
3126 #else
3127 key_freesav(sav);
3128 #endif
3129 return (-1);
3132 if (sigp) {
3133 char sig[TCP_SIGLEN];
3135 tcp_fields_to_net(th);
3136 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3137 tcp_fields_to_host(th);
3138 if (sav == NULL)
3139 return (-1);
3140 #ifdef FAST_IPSEC
3141 KEY_FREESAV(&sav);
3142 #else
3143 key_freesav(sav);
3144 #endif
3145 return (-1);
3147 tcp_fields_to_host(th);
3149 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3150 TCP_STATINC(TCP_STAT_BADSIG);
3151 if (sav == NULL)
3152 return (-1);
3153 #ifdef FAST_IPSEC
3154 KEY_FREESAV(&sav);
3155 #else
3156 key_freesav(sav);
3157 #endif
3158 return (-1);
3159 } else
3160 TCP_STATINC(TCP_STAT_GOODSIG);
3162 key_sa_recordxfer(sav, m);
3163 #ifdef FAST_IPSEC
3164 KEY_FREESAV(&sav);
3165 #else
3166 key_freesav(sav);
3167 #endif
3169 #endif
3171 return (0);
3175 * Pull out of band byte out of a segment so
3176 * it doesn't appear in the user's data queue.
3177 * It is still reflected in the segment length for
3178 * sequencing purposes.
3180 void
3181 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3182 struct mbuf *m, int off)
3184 int cnt = off + th->th_urp - 1;
3186 while (cnt >= 0) {
3187 if (m->m_len > cnt) {
3188 char *cp = mtod(m, char *) + cnt;
3189 struct tcpcb *tp = sototcpcb(so);
3191 tp->t_iobc = *cp;
3192 tp->t_oobflags |= TCPOOB_HAVEDATA;
3193 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3194 m->m_len--;
3195 return;
3197 cnt -= m->m_len;
3198 m = m->m_next;
3199 if (m == 0)
3200 break;
3202 panic("tcp_pulloutofband");
3206 * Collect new round-trip time estimate
3207 * and update averages and current timeout.
3209 void
3210 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3212 int32_t delta;
3214 TCP_STATINC(TCP_STAT_RTTUPDATED);
3215 if (tp->t_srtt != 0) {
3217 * srtt is stored as fixed point with 3 bits after the
3218 * binary point (i.e., scaled by 8). The following magic
3219 * is equivalent to the smoothing algorithm in rfc793 with
3220 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3221 * point). Adjust rtt to origin 0.
3223 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3224 if ((tp->t_srtt += delta) <= 0)
3225 tp->t_srtt = 1 << 2;
3227 * We accumulate a smoothed rtt variance (actually, a
3228 * smoothed mean difference), then set the retransmit
3229 * timer to smoothed rtt + 4 times the smoothed variance.
3230 * rttvar is stored as fixed point with 2 bits after the
3231 * binary point (scaled by 4). The following is
3232 * equivalent to rfc793 smoothing with an alpha of .75
3233 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3234 * rfc793's wired-in beta.
3236 if (delta < 0)
3237 delta = -delta;
3238 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3239 if ((tp->t_rttvar += delta) <= 0)
3240 tp->t_rttvar = 1 << 2;
3241 } else {
3243 * No rtt measurement yet - use the unsmoothed rtt.
3244 * Set the variance to half the rtt (so our first
3245 * retransmit happens at 3*rtt).
3247 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3248 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3250 tp->t_rtttime = 0;
3251 tp->t_rxtshift = 0;
3254 * the retransmit should happen at rtt + 4 * rttvar.
3255 * Because of the way we do the smoothing, srtt and rttvar
3256 * will each average +1/2 tick of bias. When we compute
3257 * the retransmit timer, we want 1/2 tick of rounding and
3258 * 1 extra tick because of +-1/2 tick uncertainty in the
3259 * firing of the timer. The bias will give us exactly the
3260 * 1.5 tick we need. But, because the bias is
3261 * statistical, we have to test that we don't drop below
3262 * the minimum feasible timer (which is 2 ticks).
3264 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3265 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3268 * We received an ack for a packet that wasn't retransmitted;
3269 * it is probably safe to discard any error indications we've
3270 * received recently. This isn't quite right, but close enough
3271 * for now (a route might have failed after we sent a segment,
3272 * and the return path might not be symmetrical).
3274 tp->t_softerror = 0;
3279 * TCP compressed state engine. Currently used to hold compressed
3280 * state for SYN_RECEIVED.
3283 u_long syn_cache_count;
3284 u_int32_t syn_hash1, syn_hash2;
3286 #define SYN_HASH(sa, sp, dp) \
3287 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3288 ((u_int32_t)(sp)))^syn_hash2)))
3289 #ifndef INET6
3290 #define SYN_HASHALL(hash, src, dst) \
3291 do { \
3292 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3293 ((const struct sockaddr_in *)(src))->sin_port, \
3294 ((const struct sockaddr_in *)(dst))->sin_port); \
3295 } while (/*CONSTCOND*/ 0)
3296 #else
3297 #define SYN_HASH6(sa, sp, dp) \
3298 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3299 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3300 & 0x7fffffff)
3302 #define SYN_HASHALL(hash, src, dst) \
3303 do { \
3304 switch ((src)->sa_family) { \
3305 case AF_INET: \
3306 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3307 ((const struct sockaddr_in *)(src))->sin_port, \
3308 ((const struct sockaddr_in *)(dst))->sin_port); \
3309 break; \
3310 case AF_INET6: \
3311 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3312 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3313 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3314 break; \
3315 default: \
3316 hash = 0; \
3318 } while (/*CONSTCOND*/0)
3319 #endif /* INET6 */
3321 static struct pool syn_cache_pool;
3324 * We don't estimate RTT with SYNs, so each packet starts with the default
3325 * RTT and each timer step has a fixed timeout value.
3327 #define SYN_CACHE_TIMER_ARM(sc) \
3328 do { \
3329 TCPT_RANGESET((sc)->sc_rxtcur, \
3330 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3331 TCPTV_REXMTMAX); \
3332 callout_reset(&(sc)->sc_timer, \
3333 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3334 } while (/*CONSTCOND*/0)
3336 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3338 static inline void
3339 syn_cache_rm(struct syn_cache *sc)
3341 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3342 sc, sc_bucketq);
3343 sc->sc_tp = NULL;
3344 LIST_REMOVE(sc, sc_tpq);
3345 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3346 callout_stop(&sc->sc_timer);
3347 syn_cache_count--;
3350 static inline void
3351 syn_cache_put(struct syn_cache *sc)
3353 if (sc->sc_ipopts)
3354 (void) m_free(sc->sc_ipopts);
3355 rtcache_free(&sc->sc_route);
3356 if (callout_invoking(&sc->sc_timer))
3357 sc->sc_flags |= SCF_DEAD;
3358 else {
3359 callout_destroy(&sc->sc_timer);
3360 pool_put(&syn_cache_pool, sc);
3364 void
3365 syn_cache_init(void)
3367 int i;
3369 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3370 "synpl", NULL, IPL_SOFTNET);
3372 /* Initialize the hash buckets. */
3373 for (i = 0; i < tcp_syn_cache_size; i++)
3374 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3377 void
3378 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3380 struct syn_cache_head *scp;
3381 struct syn_cache *sc2;
3382 int s;
3385 * If there are no entries in the hash table, reinitialize
3386 * the hash secrets.
3388 if (syn_cache_count == 0) {
3389 syn_hash1 = arc4random();
3390 syn_hash2 = arc4random();
3393 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3394 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3395 scp = &tcp_syn_cache[sc->sc_bucketidx];
3398 * Make sure that we don't overflow the per-bucket
3399 * limit or the total cache size limit.
3401 s = splsoftnet();
3402 if (scp->sch_length >= tcp_syn_bucket_limit) {
3403 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3405 * The bucket is full. Toss the oldest element in the
3406 * bucket. This will be the first entry in the bucket.
3408 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3409 #ifdef DIAGNOSTIC
3411 * This should never happen; we should always find an
3412 * entry in our bucket.
3414 if (sc2 == NULL)
3415 panic("syn_cache_insert: bucketoverflow: impossible");
3416 #endif
3417 syn_cache_rm(sc2);
3418 syn_cache_put(sc2); /* calls pool_put but see spl above */
3419 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3420 struct syn_cache_head *scp2, *sce;
3422 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3424 * The cache is full. Toss the oldest entry in the
3425 * first non-empty bucket we can find.
3427 * XXX We would really like to toss the oldest
3428 * entry in the cache, but we hope that this
3429 * condition doesn't happen very often.
3431 scp2 = scp;
3432 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3433 sce = &tcp_syn_cache[tcp_syn_cache_size];
3434 for (++scp2; scp2 != scp; scp2++) {
3435 if (scp2 >= sce)
3436 scp2 = &tcp_syn_cache[0];
3437 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3438 break;
3440 #ifdef DIAGNOSTIC
3442 * This should never happen; we should always find a
3443 * non-empty bucket.
3445 if (scp2 == scp)
3446 panic("syn_cache_insert: cacheoverflow: "
3447 "impossible");
3448 #endif
3450 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3451 syn_cache_rm(sc2);
3452 syn_cache_put(sc2); /* calls pool_put but see spl above */
3456 * Initialize the entry's timer.
3458 sc->sc_rxttot = 0;
3459 sc->sc_rxtshift = 0;
3460 SYN_CACHE_TIMER_ARM(sc);
3462 /* Link it from tcpcb entry */
3463 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3465 /* Put it into the bucket. */
3466 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3467 scp->sch_length++;
3468 syn_cache_count++;
3470 TCP_STATINC(TCP_STAT_SC_ADDED);
3471 splx(s);
3475 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3476 * If we have retransmitted an entry the maximum number of times, expire
3477 * that entry.
3479 void
3480 syn_cache_timer(void *arg)
3482 struct syn_cache *sc = arg;
3484 mutex_enter(softnet_lock);
3485 KERNEL_LOCK(1, NULL);
3486 callout_ack(&sc->sc_timer);
3488 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3489 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3490 callout_destroy(&sc->sc_timer);
3491 pool_put(&syn_cache_pool, sc);
3492 KERNEL_UNLOCK_ONE(NULL);
3493 mutex_exit(softnet_lock);
3494 return;
3497 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3498 /* Drop it -- too many retransmissions. */
3499 goto dropit;
3503 * Compute the total amount of time this entry has
3504 * been on a queue. If this entry has been on longer
3505 * than the keep alive timer would allow, expire it.
3507 sc->sc_rxttot += sc->sc_rxtcur;
3508 if (sc->sc_rxttot >= tcp_keepinit)
3509 goto dropit;
3511 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3512 (void) syn_cache_respond(sc, NULL);
3514 /* Advance the timer back-off. */
3515 sc->sc_rxtshift++;
3516 SYN_CACHE_TIMER_ARM(sc);
3518 KERNEL_UNLOCK_ONE(NULL);
3519 mutex_exit(softnet_lock);
3520 return;
3522 dropit:
3523 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3524 syn_cache_rm(sc);
3525 syn_cache_put(sc); /* calls pool_put but see spl above */
3526 KERNEL_UNLOCK_ONE(NULL);
3527 mutex_exit(softnet_lock);
3531 * Remove syn cache created by the specified tcb entry,
3532 * because this does not make sense to keep them
3533 * (if there's no tcb entry, syn cache entry will never be used)
3535 void
3536 syn_cache_cleanup(struct tcpcb *tp)
3538 struct syn_cache *sc, *nsc;
3539 int s;
3541 s = splsoftnet();
3543 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3544 nsc = LIST_NEXT(sc, sc_tpq);
3546 #ifdef DIAGNOSTIC
3547 if (sc->sc_tp != tp)
3548 panic("invalid sc_tp in syn_cache_cleanup");
3549 #endif
3550 syn_cache_rm(sc);
3551 syn_cache_put(sc); /* calls pool_put but see spl above */
3553 /* just for safety */
3554 LIST_INIT(&tp->t_sc);
3556 splx(s);
3560 * Find an entry in the syn cache.
3562 struct syn_cache *
3563 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3564 struct syn_cache_head **headp)
3566 struct syn_cache *sc;
3567 struct syn_cache_head *scp;
3568 u_int32_t hash;
3569 int s;
3571 SYN_HASHALL(hash, src, dst);
3573 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3574 *headp = scp;
3575 s = splsoftnet();
3576 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3577 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3578 if (sc->sc_hash != hash)
3579 continue;
3580 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3581 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3582 splx(s);
3583 return (sc);
3586 splx(s);
3587 return (NULL);
3591 * This function gets called when we receive an ACK for a
3592 * socket in the LISTEN state. We look up the connection
3593 * in the syn cache, and if its there, we pull it out of
3594 * the cache and turn it into a full-blown connection in
3595 * the SYN-RECEIVED state.
3597 * The return values may not be immediately obvious, and their effects
3598 * can be subtle, so here they are:
3600 * NULL SYN was not found in cache; caller should drop the
3601 * packet and send an RST.
3603 * -1 We were unable to create the new connection, and are
3604 * aborting it. An ACK,RST is being sent to the peer
3605 * (unless we got screwey sequence numbners; see below),
3606 * because the 3-way handshake has been completed. Caller
3607 * should not free the mbuf, since we may be using it. If
3608 * we are not, we will free it.
3610 * Otherwise, the return value is a pointer to the new socket
3611 * associated with the connection.
3613 struct socket *
3614 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3615 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3616 struct socket *so, struct mbuf *m)
3618 struct syn_cache *sc;
3619 struct syn_cache_head *scp;
3620 struct inpcb *inp = NULL;
3621 #ifdef INET6
3622 struct in6pcb *in6p = NULL;
3623 #endif
3624 struct tcpcb *tp = 0;
3625 struct mbuf *am;
3626 int s;
3627 struct socket *oso;
3629 s = splsoftnet();
3630 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3631 splx(s);
3632 return (NULL);
3636 * Verify the sequence and ack numbers. Try getting the correct
3637 * response again.
3639 if ((th->th_ack != sc->sc_iss + 1) ||
3640 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3641 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3642 (void) syn_cache_respond(sc, m);
3643 splx(s);
3644 return ((struct socket *)(-1));
3647 /* Remove this cache entry */
3648 syn_cache_rm(sc);
3649 splx(s);
3652 * Ok, create the full blown connection, and set things up
3653 * as they would have been set up if we had created the
3654 * connection when the SYN arrived. If we can't create
3655 * the connection, abort it.
3658 * inp still has the OLD in_pcb stuff, set the
3659 * v6-related flags on the new guy, too. This is
3660 * done particularly for the case where an AF_INET6
3661 * socket is bound only to a port, and a v4 connection
3662 * comes in on that port.
3663 * we also copy the flowinfo from the original pcb
3664 * to the new one.
3666 oso = so;
3667 so = sonewconn(so, SS_ISCONNECTED);
3668 if (so == NULL)
3669 goto resetandabort;
3671 switch (so->so_proto->pr_domain->dom_family) {
3672 #ifdef INET
3673 case AF_INET:
3674 inp = sotoinpcb(so);
3675 break;
3676 #endif
3677 #ifdef INET6
3678 case AF_INET6:
3679 in6p = sotoin6pcb(so);
3680 break;
3681 #endif
3683 switch (src->sa_family) {
3684 #ifdef INET
3685 case AF_INET:
3686 if (inp) {
3687 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3688 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3689 inp->inp_options = ip_srcroute();
3690 in_pcbstate(inp, INP_BOUND);
3691 if (inp->inp_options == NULL) {
3692 inp->inp_options = sc->sc_ipopts;
3693 sc->sc_ipopts = NULL;
3696 #ifdef INET6
3697 else if (in6p) {
3698 /* IPv4 packet to AF_INET6 socket */
3699 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3700 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3701 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3702 &in6p->in6p_laddr.s6_addr32[3],
3703 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3704 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3705 in6totcpcb(in6p)->t_family = AF_INET;
3706 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3707 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3708 else
3709 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3710 in6_pcbstate(in6p, IN6P_BOUND);
3712 #endif
3713 break;
3714 #endif
3715 #ifdef INET6
3716 case AF_INET6:
3717 if (in6p) {
3718 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3719 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3720 in6_pcbstate(in6p, IN6P_BOUND);
3722 break;
3723 #endif
3725 #ifdef INET6
3726 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3727 struct in6pcb *oin6p = sotoin6pcb(oso);
3728 /* inherit socket options from the listening socket */
3729 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3730 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3731 m_freem(in6p->in6p_options);
3732 in6p->in6p_options = 0;
3734 ip6_savecontrol(in6p, &in6p->in6p_options,
3735 mtod(m, struct ip6_hdr *), m);
3737 #endif
3739 #if defined(IPSEC) || defined(FAST_IPSEC)
3741 * we make a copy of policy, instead of sharing the policy,
3742 * for better behavior in terms of SA lookup and dead SA removal.
3744 if (inp) {
3745 /* copy old policy into new socket's */
3746 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3747 printf("tcp_input: could not copy policy\n");
3749 #ifdef INET6
3750 else if (in6p) {
3751 /* copy old policy into new socket's */
3752 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3753 in6p->in6p_sp))
3754 printf("tcp_input: could not copy policy\n");
3756 #endif
3757 #endif
3760 * Give the new socket our cached route reference.
3762 if (inp) {
3763 rtcache_copy(&inp->inp_route, &sc->sc_route);
3764 rtcache_free(&sc->sc_route);
3766 #ifdef INET6
3767 else {
3768 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3769 rtcache_free(&sc->sc_route);
3771 #endif
3773 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3774 if (am == NULL)
3775 goto resetandabort;
3776 MCLAIM(am, &tcp_mowner);
3777 am->m_len = src->sa_len;
3778 bcopy(src, mtod(am, void *), src->sa_len);
3779 if (inp) {
3780 if (in_pcbconnect(inp, am, &lwp0)) {
3781 (void) m_free(am);
3782 goto resetandabort;
3785 #ifdef INET6
3786 else if (in6p) {
3787 if (src->sa_family == AF_INET) {
3788 /* IPv4 packet to AF_INET6 socket */
3789 struct sockaddr_in6 *sin6;
3790 sin6 = mtod(am, struct sockaddr_in6 *);
3791 am->m_len = sizeof(*sin6);
3792 memset(sin6, 0, sizeof(*sin6));
3793 sin6->sin6_family = AF_INET6;
3794 sin6->sin6_len = sizeof(*sin6);
3795 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3796 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3797 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3798 &sin6->sin6_addr.s6_addr32[3],
3799 sizeof(sin6->sin6_addr.s6_addr32[3]));
3801 if (in6_pcbconnect(in6p, am, NULL)) {
3802 (void) m_free(am);
3803 goto resetandabort;
3806 #endif
3807 else {
3808 (void) m_free(am);
3809 goto resetandabort;
3811 (void) m_free(am);
3813 if (inp)
3814 tp = intotcpcb(inp);
3815 #ifdef INET6
3816 else if (in6p)
3817 tp = in6totcpcb(in6p);
3818 #endif
3819 else
3820 tp = NULL;
3821 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3822 if (sc->sc_request_r_scale != 15) {
3823 tp->requested_s_scale = sc->sc_requested_s_scale;
3824 tp->request_r_scale = sc->sc_request_r_scale;
3825 tp->snd_scale = sc->sc_requested_s_scale;
3826 tp->rcv_scale = sc->sc_request_r_scale;
3827 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3829 if (sc->sc_flags & SCF_TIMESTAMP)
3830 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3831 tp->ts_timebase = sc->sc_timebase;
3833 tp->t_template = tcp_template(tp);
3834 if (tp->t_template == 0) {
3835 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3836 so = NULL;
3837 m_freem(m);
3838 goto abort;
3841 tp->iss = sc->sc_iss;
3842 tp->irs = sc->sc_irs;
3843 tcp_sendseqinit(tp);
3844 tcp_rcvseqinit(tp);
3845 tp->t_state = TCPS_SYN_RECEIVED;
3846 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3847 TCP_STATINC(TCP_STAT_ACCEPTS);
3849 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3850 tp->t_flags |= TF_WILL_SACK;
3852 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3853 tp->t_flags |= TF_ECN_PERMIT;
3855 #ifdef TCP_SIGNATURE
3856 if (sc->sc_flags & SCF_SIGNATURE)
3857 tp->t_flags |= TF_SIGNATURE;
3858 #endif
3860 /* Initialize tp->t_ourmss before we deal with the peer's! */
3861 tp->t_ourmss = sc->sc_ourmaxseg;
3862 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3865 * Initialize the initial congestion window. If we
3866 * had to retransmit the SYN,ACK, we must initialize cwnd
3867 * to 1 segment (i.e. the Loss Window).
3869 if (sc->sc_rxtshift)
3870 tp->snd_cwnd = tp->t_peermss;
3871 else {
3872 int ss = tcp_init_win;
3873 #ifdef INET
3874 if (inp != NULL && in_localaddr(inp->inp_faddr))
3875 ss = tcp_init_win_local;
3876 #endif
3877 #ifdef INET6
3878 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3879 ss = tcp_init_win_local;
3880 #endif
3881 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3884 tcp_rmx_rtt(tp);
3885 tp->snd_wl1 = sc->sc_irs;
3886 tp->rcv_up = sc->sc_irs + 1;
3889 * This is what whould have happened in tcp_output() when
3890 * the SYN,ACK was sent.
3892 tp->snd_up = tp->snd_una;
3893 tp->snd_max = tp->snd_nxt = tp->iss+1;
3894 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3895 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3896 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3897 tp->last_ack_sent = tp->rcv_nxt;
3898 tp->t_partialacks = -1;
3899 tp->t_dupacks = 0;
3901 TCP_STATINC(TCP_STAT_SC_COMPLETED);
3902 s = splsoftnet();
3903 syn_cache_put(sc);
3904 splx(s);
3905 return (so);
3907 resetandabort:
3908 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3909 abort:
3910 if (so != NULL) {
3911 (void) soqremque(so, 1);
3912 (void) soabort(so);
3913 mutex_enter(softnet_lock);
3915 s = splsoftnet();
3916 syn_cache_put(sc);
3917 splx(s);
3918 TCP_STATINC(TCP_STAT_SC_ABORTED);
3919 return ((struct socket *)(-1));
3923 * This function is called when we get a RST for a
3924 * non-existent connection, so that we can see if the
3925 * connection is in the syn cache. If it is, zap it.
3928 void
3929 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3931 struct syn_cache *sc;
3932 struct syn_cache_head *scp;
3933 int s = splsoftnet();
3935 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3936 splx(s);
3937 return;
3939 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3940 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3941 splx(s);
3942 return;
3944 syn_cache_rm(sc);
3945 TCP_STATINC(TCP_STAT_SC_RESET);
3946 syn_cache_put(sc); /* calls pool_put but see spl above */
3947 splx(s);
3950 void
3951 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3952 struct tcphdr *th)
3954 struct syn_cache *sc;
3955 struct syn_cache_head *scp;
3956 int s;
3958 s = splsoftnet();
3959 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3960 splx(s);
3961 return;
3963 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3964 if (ntohl (th->th_seq) != sc->sc_iss) {
3965 splx(s);
3966 return;
3970 * If we've retransmitted 3 times and this is our second error,
3971 * we remove the entry. Otherwise, we allow it to continue on.
3972 * This prevents us from incorrectly nuking an entry during a
3973 * spurious network outage.
3975 * See tcp_notify().
3977 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3978 sc->sc_flags |= SCF_UNREACH;
3979 splx(s);
3980 return;
3983 syn_cache_rm(sc);
3984 TCP_STATINC(TCP_STAT_SC_UNREACH);
3985 syn_cache_put(sc); /* calls pool_put but see spl above */
3986 splx(s);
3990 * Given a LISTEN socket and an inbound SYN request, add
3991 * this to the syn cache, and send back a segment:
3992 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3993 * to the source.
3995 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3996 * Doing so would require that we hold onto the data and deliver it
3997 * to the application. However, if we are the target of a SYN-flood
3998 * DoS attack, an attacker could send data which would eventually
3999 * consume all available buffer space if it were ACKed. By not ACKing
4000 * the data, we avoid this DoS scenario.
4004 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4005 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4006 int optlen, struct tcp_opt_info *oi)
4008 struct tcpcb tb, *tp;
4009 long win;
4010 struct syn_cache *sc;
4011 struct syn_cache_head *scp;
4012 struct mbuf *ipopts;
4013 struct tcp_opt_info opti;
4014 int s;
4016 tp = sototcpcb(so);
4018 memset(&opti, 0, sizeof(opti));
4021 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4023 * Note this check is performed in tcp_input() very early on.
4027 * Initialize some local state.
4029 win = sbspace(&so->so_rcv);
4030 if (win > TCP_MAXWIN)
4031 win = TCP_MAXWIN;
4033 switch (src->sa_family) {
4034 #ifdef INET
4035 case AF_INET:
4037 * Remember the IP options, if any.
4039 ipopts = ip_srcroute();
4040 break;
4041 #endif
4042 default:
4043 ipopts = NULL;
4046 #ifdef TCP_SIGNATURE
4047 if (optp || (tp->t_flags & TF_SIGNATURE))
4048 #else
4049 if (optp)
4050 #endif
4052 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4053 #ifdef TCP_SIGNATURE
4054 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4055 #endif
4056 tb.t_state = TCPS_LISTEN;
4057 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4058 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4059 return (0);
4060 } else
4061 tb.t_flags = 0;
4064 * See if we already have an entry for this connection.
4065 * If we do, resend the SYN,ACK. We do not count this
4066 * as a retransmission (XXX though maybe we should).
4068 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4069 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4070 if (ipopts) {
4072 * If we were remembering a previous source route,
4073 * forget it and use the new one we've been given.
4075 if (sc->sc_ipopts)
4076 (void) m_free(sc->sc_ipopts);
4077 sc->sc_ipopts = ipopts;
4079 sc->sc_timestamp = tb.ts_recent;
4080 if (syn_cache_respond(sc, m) == 0) {
4081 uint64_t *tcps = TCP_STAT_GETREF();
4082 tcps[TCP_STAT_SNDACKS]++;
4083 tcps[TCP_STAT_SNDTOTAL]++;
4084 TCP_STAT_PUTREF();
4086 return (1);
4089 s = splsoftnet();
4090 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4091 splx(s);
4092 if (sc == NULL) {
4093 if (ipopts)
4094 (void) m_free(ipopts);
4095 return (0);
4099 * Fill in the cache, and put the necessary IP and TCP
4100 * options into the reply.
4102 memset(sc, 0, sizeof(struct syn_cache));
4103 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4104 bcopy(src, &sc->sc_src, src->sa_len);
4105 bcopy(dst, &sc->sc_dst, dst->sa_len);
4106 sc->sc_flags = 0;
4107 sc->sc_ipopts = ipopts;
4108 sc->sc_irs = th->th_seq;
4109 switch (src->sa_family) {
4110 #ifdef INET
4111 case AF_INET:
4113 struct sockaddr_in *srcin = (void *) src;
4114 struct sockaddr_in *dstin = (void *) dst;
4116 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4117 &srcin->sin_addr, dstin->sin_port,
4118 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4119 break;
4121 #endif /* INET */
4122 #ifdef INET6
4123 case AF_INET6:
4125 struct sockaddr_in6 *srcin6 = (void *) src;
4126 struct sockaddr_in6 *dstin6 = (void *) dst;
4128 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4129 &srcin6->sin6_addr, dstin6->sin6_port,
4130 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4131 break;
4133 #endif /* INET6 */
4135 sc->sc_peermaxseg = oi->maxseg;
4136 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4137 m->m_pkthdr.rcvif : NULL,
4138 sc->sc_src.sa.sa_family);
4139 sc->sc_win = win;
4140 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4141 sc->sc_timestamp = tb.ts_recent;
4142 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4143 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4144 sc->sc_flags |= SCF_TIMESTAMP;
4145 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4146 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4147 sc->sc_requested_s_scale = tb.requested_s_scale;
4148 sc->sc_request_r_scale = 0;
4150 * Pick the smallest possible scaling factor that
4151 * will still allow us to scale up to sb_max.
4153 * We do this because there are broken firewalls that
4154 * will corrupt the window scale option, leading to
4155 * the other endpoint believing that our advertised
4156 * window is unscaled. At scale factors larger than
4157 * 5 the unscaled window will drop below 1500 bytes,
4158 * leading to serious problems when traversing these
4159 * broken firewalls.
4161 * With the default sbmax of 256K, a scale factor
4162 * of 3 will be chosen by this algorithm. Those who
4163 * choose a larger sbmax should watch out
4164 * for the compatiblity problems mentioned above.
4166 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4167 * or <SYN,ACK>) segment itself is never scaled.
4169 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4170 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4171 sc->sc_request_r_scale++;
4172 } else {
4173 sc->sc_requested_s_scale = 15;
4174 sc->sc_request_r_scale = 15;
4176 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4177 sc->sc_flags |= SCF_SACK_PERMIT;
4180 * ECN setup packet recieved.
4182 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4183 sc->sc_flags |= SCF_ECN_PERMIT;
4185 #ifdef TCP_SIGNATURE
4186 if (tb.t_flags & TF_SIGNATURE)
4187 sc->sc_flags |= SCF_SIGNATURE;
4188 #endif
4189 sc->sc_tp = tp;
4190 if (syn_cache_respond(sc, m) == 0) {
4191 uint64_t *tcps = TCP_STAT_GETREF();
4192 tcps[TCP_STAT_SNDACKS]++;
4193 tcps[TCP_STAT_SNDTOTAL]++;
4194 TCP_STAT_PUTREF();
4195 syn_cache_insert(sc, tp);
4196 } else {
4197 s = splsoftnet();
4198 syn_cache_put(sc);
4199 splx(s);
4200 TCP_STATINC(TCP_STAT_SC_DROPPED);
4202 return (1);
4206 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4208 #ifdef INET6
4209 struct rtentry *rt;
4210 #endif
4211 struct route *ro;
4212 u_int8_t *optp;
4213 int optlen, error;
4214 u_int16_t tlen;
4215 struct ip *ip = NULL;
4216 #ifdef INET6
4217 struct ip6_hdr *ip6 = NULL;
4218 #endif
4219 struct tcpcb *tp = NULL;
4220 struct tcphdr *th;
4221 u_int hlen;
4222 struct socket *so;
4224 ro = &sc->sc_route;
4225 switch (sc->sc_src.sa.sa_family) {
4226 case AF_INET:
4227 hlen = sizeof(struct ip);
4228 break;
4229 #ifdef INET6
4230 case AF_INET6:
4231 hlen = sizeof(struct ip6_hdr);
4232 break;
4233 #endif
4234 default:
4235 if (m)
4236 m_freem(m);
4237 return (EAFNOSUPPORT);
4240 /* Compute the size of the TCP options. */
4241 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4242 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4243 #ifdef TCP_SIGNATURE
4244 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4245 #endif
4246 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4248 tlen = hlen + sizeof(struct tcphdr) + optlen;
4251 * Create the IP+TCP header from scratch.
4253 if (m)
4254 m_freem(m);
4255 #ifdef DIAGNOSTIC
4256 if (max_linkhdr + tlen > MCLBYTES)
4257 return (ENOBUFS);
4258 #endif
4259 MGETHDR(m, M_DONTWAIT, MT_DATA);
4260 if (m && tlen > MHLEN) {
4261 MCLGET(m, M_DONTWAIT);
4262 if ((m->m_flags & M_EXT) == 0) {
4263 m_freem(m);
4264 m = NULL;
4267 if (m == NULL)
4268 return (ENOBUFS);
4269 MCLAIM(m, &tcp_tx_mowner);
4271 /* Fixup the mbuf. */
4272 m->m_data += max_linkhdr;
4273 m->m_len = m->m_pkthdr.len = tlen;
4274 if (sc->sc_tp) {
4275 tp = sc->sc_tp;
4276 if (tp->t_inpcb)
4277 so = tp->t_inpcb->inp_socket;
4278 #ifdef INET6
4279 else if (tp->t_in6pcb)
4280 so = tp->t_in6pcb->in6p_socket;
4281 #endif
4282 else
4283 so = NULL;
4284 } else
4285 so = NULL;
4286 m->m_pkthdr.rcvif = NULL;
4287 memset(mtod(m, u_char *), 0, tlen);
4289 switch (sc->sc_src.sa.sa_family) {
4290 case AF_INET:
4291 ip = mtod(m, struct ip *);
4292 ip->ip_v = 4;
4293 ip->ip_dst = sc->sc_src.sin.sin_addr;
4294 ip->ip_src = sc->sc_dst.sin.sin_addr;
4295 ip->ip_p = IPPROTO_TCP;
4296 th = (struct tcphdr *)(ip + 1);
4297 th->th_dport = sc->sc_src.sin.sin_port;
4298 th->th_sport = sc->sc_dst.sin.sin_port;
4299 break;
4300 #ifdef INET6
4301 case AF_INET6:
4302 ip6 = mtod(m, struct ip6_hdr *);
4303 ip6->ip6_vfc = IPV6_VERSION;
4304 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4305 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4306 ip6->ip6_nxt = IPPROTO_TCP;
4307 /* ip6_plen will be updated in ip6_output() */
4308 th = (struct tcphdr *)(ip6 + 1);
4309 th->th_dport = sc->sc_src.sin6.sin6_port;
4310 th->th_sport = sc->sc_dst.sin6.sin6_port;
4311 break;
4312 #endif
4313 default:
4314 th = NULL;
4317 th->th_seq = htonl(sc->sc_iss);
4318 th->th_ack = htonl(sc->sc_irs + 1);
4319 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4320 th->th_flags = TH_SYN|TH_ACK;
4321 th->th_win = htons(sc->sc_win);
4322 /* th_sum already 0 */
4323 /* th_urp already 0 */
4325 /* Tack on the TCP options. */
4326 optp = (u_int8_t *)(th + 1);
4327 *optp++ = TCPOPT_MAXSEG;
4328 *optp++ = 4;
4329 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4330 *optp++ = sc->sc_ourmaxseg & 0xff;
4332 if (sc->sc_request_r_scale != 15) {
4333 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4334 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4335 sc->sc_request_r_scale);
4336 optp += 4;
4339 if (sc->sc_flags & SCF_TIMESTAMP) {
4340 u_int32_t *lp = (u_int32_t *)(optp);
4341 /* Form timestamp option as shown in appendix A of RFC 1323. */
4342 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4343 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4344 *lp = htonl(sc->sc_timestamp);
4345 optp += TCPOLEN_TSTAMP_APPA;
4348 if (sc->sc_flags & SCF_SACK_PERMIT) {
4349 u_int8_t *p = optp;
4351 /* Let the peer know that we will SACK. */
4352 p[0] = TCPOPT_SACK_PERMITTED;
4353 p[1] = 2;
4354 p[2] = TCPOPT_NOP;
4355 p[3] = TCPOPT_NOP;
4356 optp += 4;
4360 * Send ECN SYN-ACK setup packet.
4361 * Routes can be asymetric, so, even if we receive a packet
4362 * with ECE and CWR set, we must not assume no one will block
4363 * the ECE packet we are about to send.
4365 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4366 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4367 th->th_flags |= TH_ECE;
4368 TCP_STATINC(TCP_STAT_ECN_SHS);
4371 * draft-ietf-tcpm-ecnsyn-00.txt
4373 * "[...] a TCP node MAY respond to an ECN-setup
4374 * SYN packet by setting ECT in the responding
4375 * ECN-setup SYN/ACK packet, indicating to routers
4376 * that the SYN/ACK packet is ECN-Capable.
4377 * This allows a congested router along the path
4378 * to mark the packet instead of dropping the
4379 * packet as an indication of congestion."
4381 * "[...] There can be a great benefit in setting
4382 * an ECN-capable codepoint in SYN/ACK packets [...]
4383 * Congestion is most likely to occur in
4384 * the server-to-client direction. As a result,
4385 * setting an ECN-capable codepoint in SYN/ACK
4386 * packets can reduce the occurence of three-second
4387 * retransmit timeouts resulting from the drop
4388 * of SYN/ACK packets."
4390 * Page 4 and 6, January 2006.
4393 switch (sc->sc_src.sa.sa_family) {
4394 #ifdef INET
4395 case AF_INET:
4396 ip->ip_tos |= IPTOS_ECN_ECT0;
4397 break;
4398 #endif
4399 #ifdef INET6
4400 case AF_INET6:
4401 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4402 break;
4403 #endif
4405 TCP_STATINC(TCP_STAT_ECN_ECT);
4408 #ifdef TCP_SIGNATURE
4409 if (sc->sc_flags & SCF_SIGNATURE) {
4410 struct secasvar *sav;
4411 u_int8_t *sigp;
4413 sav = tcp_signature_getsav(m, th);
4415 if (sav == NULL) {
4416 if (m)
4417 m_freem(m);
4418 return (EPERM);
4421 *optp++ = TCPOPT_SIGNATURE;
4422 *optp++ = TCPOLEN_SIGNATURE;
4423 sigp = optp;
4424 memset(optp, 0, TCP_SIGLEN);
4425 optp += TCP_SIGLEN;
4426 *optp++ = TCPOPT_NOP;
4427 *optp++ = TCPOPT_EOL;
4429 (void)tcp_signature(m, th, hlen, sav, sigp);
4431 key_sa_recordxfer(sav, m);
4432 #ifdef FAST_IPSEC
4433 KEY_FREESAV(&sav);
4434 #else
4435 key_freesav(sav);
4436 #endif
4438 #endif
4440 /* Compute the packet's checksum. */
4441 switch (sc->sc_src.sa.sa_family) {
4442 case AF_INET:
4443 ip->ip_len = htons(tlen - hlen);
4444 th->th_sum = 0;
4445 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4446 break;
4447 #ifdef INET6
4448 case AF_INET6:
4449 ip6->ip6_plen = htons(tlen - hlen);
4450 th->th_sum = 0;
4451 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4452 break;
4453 #endif
4457 * Fill in some straggling IP bits. Note the stack expects
4458 * ip_len to be in host order, for convenience.
4460 switch (sc->sc_src.sa.sa_family) {
4461 #ifdef INET
4462 case AF_INET:
4463 ip->ip_len = htons(tlen);
4464 ip->ip_ttl = ip_defttl;
4465 /* XXX tos? */
4466 break;
4467 #endif
4468 #ifdef INET6
4469 case AF_INET6:
4470 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4471 ip6->ip6_vfc |= IPV6_VERSION;
4472 ip6->ip6_plen = htons(tlen - hlen);
4473 /* ip6_hlim will be initialized afterwards */
4474 /* XXX flowlabel? */
4475 break;
4476 #endif
4479 /* XXX use IPsec policy on listening socket, on SYN ACK */
4480 tp = sc->sc_tp;
4482 switch (sc->sc_src.sa.sa_family) {
4483 #ifdef INET
4484 case AF_INET:
4485 error = ip_output(m, sc->sc_ipopts, ro,
4486 (ip_mtudisc ? IP_MTUDISC : 0),
4487 (struct ip_moptions *)NULL, so);
4488 break;
4489 #endif
4490 #ifdef INET6
4491 case AF_INET6:
4492 ip6->ip6_hlim = in6_selecthlim(NULL,
4493 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4494 : NULL);
4496 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4497 break;
4498 #endif
4499 default:
4500 error = EAFNOSUPPORT;
4501 break;
4503 return (error);