No empty .Rs/.Re
[netbsd-mini2440.git] / sys / opencrypto / crypto.c
blobbeb025fed8e38da876e0e97f110c6730c2620970
1 /* $NetBSD: crypto.c,v 1.33 2009/03/25 01:26:13 darran Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
35 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.33 2009/03/25 01:26:13 darran Exp $");
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
69 #include "opt_ocf.h"
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/xform.h> /* XXX for M_XDATA */
73 kcondvar_t cryptoret_cv;
74 kmutex_t crypto_mtx;
76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
77 #define SWI_CRYPTO 17
78 #define register_swi(lvl, fn) \
79 softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
80 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
81 #define setsoftcrypto(x) softint_schedule(x)
83 #define SESID2HID(sid) (((sid) >> 32) & 0xffffffff)
85 int crypto_ret_q_check(struct cryptop *);
88 * Crypto drivers register themselves by allocating a slot in the
89 * crypto_drivers table with crypto_get_driverid() and then registering
90 * each algorithm they support with crypto_register() and crypto_kregister().
92 static struct cryptocap *crypto_drivers;
93 static int crypto_drivers_num;
94 static void* softintr_cookie;
97 * There are two queues for crypto requests; one for symmetric (e.g.
98 * cipher) operations and one for asymmetric (e.g. MOD) operations.
99 * See below for how synchronization is handled.
101 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
102 TAILQ_HEAD_INITIALIZER(crp_q);
103 static TAILQ_HEAD(,cryptkop) crp_kq =
104 TAILQ_HEAD_INITIALIZER(crp_kq);
107 * There are two queues for processing completed crypto requests; one
108 * for the symmetric and one for the asymmetric ops. We only need one
109 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
110 * for how synchronization is handled.
112 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
113 TAILQ_HEAD_INITIALIZER(crp_ret_q);
114 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
115 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
118 * XXX these functions are ghastly hacks for when the submission
119 * XXX routines discover a request that was not CBIMM is already
120 * XXX done, and must be yanked from the retq (where _done) put it
121 * XXX as cryptoret won't get the chance. The queue is walked backwards
122 * XXX as the request is generally the last one queued.
124 * call with the lock held, or else.
127 crypto_ret_q_remove(struct cryptop *crp)
129 struct cryptop * acrp, *next;
131 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
132 if (acrp == crp) {
133 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
134 crp->crp_flags &= (~CRYPTO_F_ONRETQ);
135 return 1;
138 return 0;
142 crypto_ret_kq_remove(struct cryptkop *krp)
144 struct cryptkop * akrp, *next;
146 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
147 if (akrp == krp) {
148 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
149 krp->krp_flags &= (~CRYPTO_F_ONRETQ);
150 return 1;
153 return 0;
157 * Crypto op and desciptor data structures are allocated
158 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
160 struct pool cryptop_pool;
161 struct pool cryptodesc_pool;
162 struct pool cryptkop_pool;
164 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
165 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
167 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
168 * access to hardware versus software transforms as below:
170 * crypto_devallowsoft < 0: Force userlevel requests to use software
171 * transforms, always
172 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
173 * requests for non-accelerated transforms
174 * (handling the latter in software)
175 * crypto_devallowsoft > 0: Allow user requests only for transforms which
176 * are hardware-accelerated.
178 int crypto_devallowsoft = 1; /* only use hardware crypto */
180 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
182 sysctl_createv(clog, 0, NULL, NULL,
183 CTLFLAG_PERMANENT,
184 CTLTYPE_NODE, "kern", NULL,
185 NULL, 0, NULL, 0,
186 CTL_KERN, CTL_EOL);
187 sysctl_createv(clog, 0, NULL, NULL,
188 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
189 CTLTYPE_INT, "usercrypto",
190 SYSCTL_DESCR("Enable/disable user-mode access to "
191 "crypto support"),
192 NULL, 0, &crypto_usercrypto, 0,
193 CTL_KERN, CTL_CREATE, CTL_EOL);
194 sysctl_createv(clog, 0, NULL, NULL,
195 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
196 CTLTYPE_INT, "userasymcrypto",
197 SYSCTL_DESCR("Enable/disable user-mode access to "
198 "asymmetric crypto support"),
199 NULL, 0, &crypto_userasymcrypto, 0,
200 CTL_KERN, CTL_CREATE, CTL_EOL);
201 sysctl_createv(clog, 0, NULL, NULL,
202 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
203 CTLTYPE_INT, "cryptodevallowsoft",
204 SYSCTL_DESCR("Enable/disable use of software "
205 "asymmetric crypto support"),
206 NULL, 0, &crypto_devallowsoft, 0,
207 CTL_KERN, CTL_CREATE, CTL_EOL);
210 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
213 * Synchronization: read carefully, this is non-trivial.
215 * Crypto requests are submitted via crypto_dispatch. Typically
216 * these come in from network protocols at spl0 (output path) or
217 * spl[,soft]net (input path).
219 * Requests are typically passed on the driver directly, but they
220 * may also be queued for processing by a software interrupt thread,
221 * cryptointr, that runs at splsoftcrypto. This thread dispatches
222 * the requests to crypto drivers (h/w or s/w) who call crypto_done
223 * when a request is complete. Hardware crypto drivers are assumed
224 * to register their IRQ's as network devices so their interrupt handlers
225 * and subsequent "done callbacks" happen at spl[imp,net].
227 * Completed crypto ops are queued for a separate kernel thread that
228 * handles the callbacks at spl0. This decoupling insures the crypto
229 * driver interrupt service routine is not delayed while the callback
230 * takes place and that callbacks are delivered after a context switch
231 * (as opposed to a software interrupt that clients must block).
233 * This scheme is not intended for SMP machines.
235 static void cryptointr(void); /* swi thread to dispatch ops */
236 static void cryptoret(void); /* kernel thread for callbacks*/
237 static struct lwp *cryptothread;
238 static void crypto_destroy(void);
239 static int crypto_invoke(struct cryptop *crp, int hint);
240 static int crypto_kinvoke(struct cryptkop *krp, int hint);
242 static struct cryptostats cryptostats;
243 #ifdef CRYPTO_TIMING
244 static int crypto_timing = 0;
245 #endif
247 static int
248 crypto_init0(void)
250 int error;
252 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
253 cv_init(&cryptoret_cv, "crypto_wait");
254 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
255 0, "cryptop", NULL, IPL_NET);
256 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
257 0, "cryptodesc", NULL, IPL_NET);
258 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
259 0, "cryptkop", NULL, IPL_NET);
261 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
262 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
263 if (crypto_drivers == NULL) {
264 printf("crypto_init: cannot malloc driver table\n");
265 return 0;
267 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
269 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
270 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
271 (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
272 if (error) {
273 printf("crypto_init: cannot start cryptoret thread; error %d",
274 error);
275 crypto_destroy();
278 return 0;
281 void
282 crypto_init(void)
284 static ONCE_DECL(crypto_init_once);
286 RUN_ONCE(&crypto_init_once, crypto_init0);
289 static void
290 crypto_destroy(void)
292 /* XXX no wait to reclaim zones */
293 if (crypto_drivers != NULL)
294 free(crypto_drivers, M_CRYPTO_DATA);
295 unregister_swi(SWI_CRYPTO, cryptointr);
299 * Create a new session. Must be called with crypto_mtx held.
302 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
304 struct cryptoini *cr;
305 u_int32_t hid, lid;
306 int err = EINVAL;
308 KASSERT(mutex_owned(&crypto_mtx));
310 if (crypto_drivers == NULL)
311 goto done;
314 * The algorithm we use here is pretty stupid; just use the
315 * first driver that supports all the algorithms we need.
317 * XXX We need more smarts here (in real life too, but that's
318 * XXX another story altogether).
321 for (hid = 0; hid < crypto_drivers_num; hid++) {
323 * If it's not initialized or has remaining sessions
324 * referencing it, skip.
326 if (crypto_drivers[hid].cc_newsession == NULL ||
327 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
328 continue;
330 /* Hardware required -- ignore software drivers. */
331 if (hard > 0 &&
332 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
333 continue;
334 /* Software required -- ignore hardware drivers. */
335 if (hard < 0 &&
336 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
337 continue;
339 /* See if all the algorithms are supported. */
340 for (cr = cri; cr; cr = cr->cri_next)
341 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
342 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
343 break;
346 if (cr == NULL) {
347 /* Ok, all algorithms are supported. */
350 * Can't do everything in one session.
352 * XXX Fix this. We need to inject a "virtual" session layer right
353 * XXX about here.
356 /* Call the driver initialization routine. */
357 lid = hid; /* Pass the driver ID. */
358 err = crypto_drivers[hid].cc_newsession(
359 crypto_drivers[hid].cc_arg, &lid, cri);
360 if (err == 0) {
361 (*sid) = hid;
362 (*sid) <<= 32;
363 (*sid) |= (lid & 0xffffffff);
364 crypto_drivers[hid].cc_sessions++;
366 goto done;
367 /*break;*/
370 done:
371 return err;
375 * Delete an existing session (or a reserved session on an unregistered
376 * driver). Must be called with crypto_mtx mutex held.
379 crypto_freesession(u_int64_t sid)
381 u_int32_t hid;
382 int err = 0;
384 KASSERT(mutex_owned(&crypto_mtx));
386 if (crypto_drivers == NULL) {
387 err = EINVAL;
388 goto done;
391 /* Determine two IDs. */
392 hid = SESID2HID(sid);
394 if (hid >= crypto_drivers_num) {
395 err = ENOENT;
396 goto done;
399 if (crypto_drivers[hid].cc_sessions)
400 crypto_drivers[hid].cc_sessions--;
402 /* Call the driver cleanup routine, if available. */
403 if (crypto_drivers[hid].cc_freesession) {
404 err = crypto_drivers[hid].cc_freesession(
405 crypto_drivers[hid].cc_arg, sid);
407 else
408 err = 0;
411 * If this was the last session of a driver marked as invalid,
412 * make the entry available for reuse.
414 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
415 crypto_drivers[hid].cc_sessions == 0)
416 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
418 done:
419 return err;
423 * Return an unused driver id. Used by drivers prior to registering
424 * support for the algorithms they handle.
426 int32_t
427 crypto_get_driverid(u_int32_t flags)
429 struct cryptocap *newdrv;
430 int i;
432 crypto_init(); /* XXX oh, this is foul! */
434 mutex_spin_enter(&crypto_mtx);
435 for (i = 0; i < crypto_drivers_num; i++)
436 if (crypto_drivers[i].cc_process == NULL &&
437 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
438 crypto_drivers[i].cc_sessions == 0)
439 break;
441 /* Out of entries, allocate some more. */
442 if (i == crypto_drivers_num) {
443 /* Be careful about wrap-around. */
444 if (2 * crypto_drivers_num <= crypto_drivers_num) {
445 mutex_spin_exit(&crypto_mtx);
446 printf("crypto: driver count wraparound!\n");
447 return -1;
450 newdrv = malloc(2 * crypto_drivers_num *
451 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
452 if (newdrv == NULL) {
453 mutex_spin_exit(&crypto_mtx);
454 printf("crypto: no space to expand driver table!\n");
455 return -1;
458 memcpy(newdrv, crypto_drivers,
459 crypto_drivers_num * sizeof(struct cryptocap));
461 crypto_drivers_num *= 2;
463 free(crypto_drivers, M_CRYPTO_DATA);
464 crypto_drivers = newdrv;
467 /* NB: state is zero'd on free */
468 crypto_drivers[i].cc_sessions = 1; /* Mark */
469 crypto_drivers[i].cc_flags = flags;
471 if (bootverbose)
472 printf("crypto: assign driver %u, flags %u\n", i, flags);
474 mutex_spin_exit(&crypto_mtx);
476 return i;
479 static struct cryptocap *
480 crypto_checkdriver(u_int32_t hid)
482 if (crypto_drivers == NULL)
483 return NULL;
484 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
488 * Register support for a key-related algorithm. This routine
489 * is called once for each algorithm supported a driver.
492 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
493 int (*kprocess)(void*, struct cryptkop *, int),
494 void *karg)
496 struct cryptocap *cap;
497 int err;
499 mutex_spin_enter(&crypto_mtx);
501 cap = crypto_checkdriver(driverid);
502 if (cap != NULL &&
503 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
505 * XXX Do some performance testing to determine placing.
506 * XXX We probably need an auxiliary data structure that
507 * XXX describes relative performances.
510 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
511 if (bootverbose) {
512 printf("crypto: driver %u registers key alg %u "
513 " flags %u\n",
514 driverid,
515 kalg,
516 flags
520 if (cap->cc_kprocess == NULL) {
521 cap->cc_karg = karg;
522 cap->cc_kprocess = kprocess;
524 err = 0;
525 } else
526 err = EINVAL;
528 mutex_spin_exit(&crypto_mtx);
529 return err;
533 * Register support for a non-key-related algorithm. This routine
534 * is called once for each such algorithm supported by a driver.
537 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
538 u_int32_t flags,
539 int (*newses)(void*, u_int32_t*, struct cryptoini*),
540 int (*freeses)(void*, u_int64_t),
541 int (*process)(void*, struct cryptop *, int),
542 void *arg)
544 struct cryptocap *cap;
545 int err;
547 mutex_spin_enter(&crypto_mtx);
549 cap = crypto_checkdriver(driverid);
550 /* NB: algorithms are in the range [1..max] */
551 if (cap != NULL &&
552 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
554 * XXX Do some performance testing to determine placing.
555 * XXX We probably need an auxiliary data structure that
556 * XXX describes relative performances.
559 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
560 cap->cc_max_op_len[alg] = maxoplen;
561 if (bootverbose) {
562 printf("crypto: driver %u registers alg %u "
563 "flags %u maxoplen %u\n",
564 driverid,
565 alg,
566 flags,
567 maxoplen
571 if (cap->cc_process == NULL) {
572 cap->cc_arg = arg;
573 cap->cc_newsession = newses;
574 cap->cc_process = process;
575 cap->cc_freesession = freeses;
576 cap->cc_sessions = 0; /* Unmark */
578 err = 0;
579 } else
580 err = EINVAL;
582 mutex_spin_exit(&crypto_mtx);
583 return err;
587 * Unregister a crypto driver. If there are pending sessions using it,
588 * leave enough information around so that subsequent calls using those
589 * sessions will correctly detect the driver has been unregistered and
590 * reroute requests.
593 crypto_unregister(u_int32_t driverid, int alg)
595 int i, err;
596 u_int32_t ses;
597 struct cryptocap *cap;
599 mutex_spin_enter(&crypto_mtx);
601 cap = crypto_checkdriver(driverid);
602 if (cap != NULL &&
603 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
604 cap->cc_alg[alg] != 0) {
605 cap->cc_alg[alg] = 0;
606 cap->cc_max_op_len[alg] = 0;
608 /* Was this the last algorithm ? */
609 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
610 if (cap->cc_alg[i] != 0)
611 break;
613 if (i == CRYPTO_ALGORITHM_MAX + 1) {
614 ses = cap->cc_sessions;
615 memset(cap, 0, sizeof(struct cryptocap));
616 if (ses != 0) {
618 * If there are pending sessions, just mark as invalid.
620 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
621 cap->cc_sessions = ses;
624 err = 0;
625 } else
626 err = EINVAL;
628 mutex_spin_exit(&crypto_mtx);
629 return err;
633 * Unregister all algorithms associated with a crypto driver.
634 * If there are pending sessions using it, leave enough information
635 * around so that subsequent calls using those sessions will
636 * correctly detect the driver has been unregistered and reroute
637 * requests.
639 * XXX careful. Don't change this to call crypto_unregister() for each
640 * XXX registered algorithm unless you drop the mutex across the calls;
641 * XXX you can't take it recursively.
644 crypto_unregister_all(u_int32_t driverid)
646 int i, err;
647 u_int32_t ses;
648 struct cryptocap *cap;
650 mutex_spin_enter(&crypto_mtx);
651 cap = crypto_checkdriver(driverid);
652 if (cap != NULL) {
653 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
654 cap->cc_alg[i] = 0;
655 cap->cc_max_op_len[i] = 0;
657 ses = cap->cc_sessions;
658 memset(cap, 0, sizeof(struct cryptocap));
659 if (ses != 0) {
661 * If there are pending sessions, just mark as invalid.
663 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
664 cap->cc_sessions = ses;
666 err = 0;
667 } else
668 err = EINVAL;
670 mutex_spin_exit(&crypto_mtx);
671 return err;
675 * Clear blockage on a driver. The what parameter indicates whether
676 * the driver is now ready for cryptop's and/or cryptokop's.
679 crypto_unblock(u_int32_t driverid, int what)
681 struct cryptocap *cap;
682 int needwakeup, err;
684 mutex_spin_enter(&crypto_mtx);
685 cap = crypto_checkdriver(driverid);
686 if (cap != NULL) {
687 needwakeup = 0;
688 if (what & CRYPTO_SYMQ) {
689 needwakeup |= cap->cc_qblocked;
690 cap->cc_qblocked = 0;
692 if (what & CRYPTO_ASYMQ) {
693 needwakeup |= cap->cc_kqblocked;
694 cap->cc_kqblocked = 0;
696 err = 0;
697 mutex_spin_exit(&crypto_mtx);
698 if (needwakeup)
699 setsoftcrypto(softintr_cookie);
700 } else {
701 err = EINVAL;
702 mutex_spin_exit(&crypto_mtx);
705 return err;
709 * Dispatch a crypto request to a driver or queue
710 * it, to be processed by the kernel thread.
713 crypto_dispatch(struct cryptop *crp)
715 u_int32_t hid = SESID2HID(crp->crp_sid);
716 int result;
718 mutex_spin_enter(&crypto_mtx);
719 DPRINTF(("crypto_dispatch: crp %08x, reqid 0x%x, alg %d\n",
720 (uint32_t)crp,
721 crp->crp_reqid,
722 crp->crp_desc->crd_alg));
724 cryptostats.cs_ops++;
726 #ifdef CRYPTO_TIMING
727 if (crypto_timing)
728 nanouptime(&crp->crp_tstamp);
729 #endif
730 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
731 struct cryptocap *cap;
733 * Caller marked the request to be processed
734 * immediately; dispatch it directly to the
735 * driver unless the driver is currently blocked.
737 cap = crypto_checkdriver(hid);
738 if (cap && !cap->cc_qblocked) {
739 mutex_spin_exit(&crypto_mtx);
740 result = crypto_invoke(crp, 0);
741 if (result == ERESTART) {
743 * The driver ran out of resources, mark the
744 * driver ``blocked'' for cryptop's and put
745 * the op on the queue.
747 mutex_spin_enter(&crypto_mtx);
748 crypto_drivers[hid].cc_qblocked = 1;
749 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
750 cryptostats.cs_blocks++;
751 mutex_spin_exit(&crypto_mtx);
753 goto out_released;
754 } else {
756 * The driver is blocked, just queue the op until
757 * it unblocks and the swi thread gets kicked.
759 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
760 result = 0;
762 } else {
763 int wasempty = TAILQ_EMPTY(&crp_q);
765 * Caller marked the request as ``ok to delay'';
766 * queue it for the swi thread. This is desirable
767 * when the operation is low priority and/or suitable
768 * for batching.
770 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
771 if (wasempty) {
772 mutex_spin_exit(&crypto_mtx);
773 setsoftcrypto(softintr_cookie);
774 result = 0;
775 goto out_released;
778 result = 0;
781 mutex_spin_exit(&crypto_mtx);
782 out_released:
783 return result;
787 * Add an asymetric crypto request to a queue,
788 * to be processed by the kernel thread.
791 crypto_kdispatch(struct cryptkop *krp)
793 struct cryptocap *cap;
794 int result;
796 mutex_spin_enter(&crypto_mtx);
797 cryptostats.cs_kops++;
799 cap = crypto_checkdriver(krp->krp_hid);
800 if (cap && !cap->cc_kqblocked) {
801 mutex_spin_exit(&crypto_mtx);
802 result = crypto_kinvoke(krp, 0);
803 if (result == ERESTART) {
805 * The driver ran out of resources, mark the
806 * driver ``blocked'' for cryptop's and put
807 * the op on the queue.
809 mutex_spin_enter(&crypto_mtx);
810 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
811 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
812 cryptostats.cs_kblocks++;
813 mutex_spin_exit(&crypto_mtx);
815 } else {
817 * The driver is blocked, just queue the op until
818 * it unblocks and the swi thread gets kicked.
820 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
821 result = 0;
822 mutex_spin_exit(&crypto_mtx);
825 return result;
829 * Dispatch an assymetric crypto request to the appropriate crypto devices.
831 static int
832 crypto_kinvoke(struct cryptkop *krp, int hint)
834 u_int32_t hid;
835 int error;
837 /* Sanity checks. */
838 if (krp == NULL)
839 return EINVAL;
840 if (krp->krp_callback == NULL) {
841 cv_destroy(&krp->krp_cv);
842 pool_put(&cryptkop_pool, krp);
843 return EINVAL;
846 for (hid = 0; hid < crypto_drivers_num; hid++) {
847 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
848 crypto_devallowsoft == 0)
849 continue;
850 if (crypto_drivers[hid].cc_kprocess == NULL)
851 continue;
852 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
853 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
854 continue;
855 break;
857 if (hid < crypto_drivers_num) {
858 krp->krp_hid = hid;
859 error = crypto_drivers[hid].cc_kprocess(
860 crypto_drivers[hid].cc_karg, krp, hint);
861 } else {
862 error = ENODEV;
865 if (error) {
866 krp->krp_status = error;
867 crypto_kdone(krp);
869 return 0;
872 #ifdef CRYPTO_TIMING
873 static void
874 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
876 struct timespec now, t;
878 nanouptime(&now);
879 t.tv_sec = now.tv_sec - tv->tv_sec;
880 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
881 if (t.tv_nsec < 0) {
882 t.tv_sec--;
883 t.tv_nsec += 1000000000;
885 timespecadd(&ts->acc, &t, &t);
886 if (timespeccmp(&t, &ts->min, <))
887 ts->min = t;
888 if (timespeccmp(&t, &ts->max, >))
889 ts->max = t;
890 ts->count++;
892 *tv = now;
894 #endif
897 * Dispatch a crypto request to the appropriate crypto devices.
899 static int
900 crypto_invoke(struct cryptop *crp, int hint)
902 u_int32_t hid;
903 int (*process)(void*, struct cryptop *, int);
905 #ifdef CRYPTO_TIMING
906 if (crypto_timing)
907 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
908 #endif
909 /* Sanity checks. */
910 if (crp == NULL)
911 return EINVAL;
912 if (crp->crp_callback == NULL) {
913 return EINVAL;
915 if (crp->crp_desc == NULL) {
916 crp->crp_etype = EINVAL;
917 crypto_done(crp);
918 return 0;
921 hid = SESID2HID(crp->crp_sid);
922 if (hid < crypto_drivers_num) {
923 mutex_spin_enter(&crypto_mtx);
924 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
925 crypto_freesession(crp->crp_sid);
926 process = crypto_drivers[hid].cc_process;
927 mutex_spin_exit(&crypto_mtx);
928 } else {
929 process = NULL;
932 if (process == NULL) {
933 struct cryptodesc *crd;
934 u_int64_t nid = 0;
937 * Driver has unregistered; migrate the session and return
938 * an error to the caller so they'll resubmit the op.
940 mutex_spin_enter(&crypto_mtx);
941 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
942 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
944 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
945 crp->crp_sid = nid;
947 crp->crp_etype = EAGAIN;
948 mutex_spin_exit(&crypto_mtx);
950 crypto_done(crp);
951 return 0;
952 } else {
954 * Invoke the driver to process the request.
956 DPRINTF(("calling process for %08x\n", (uint32_t)crp));
957 return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
962 * Release a set of crypto descriptors.
964 void
965 crypto_freereq(struct cryptop *crp)
967 struct cryptodesc *crd;
969 if (crp == NULL)
970 return;
971 DPRINTF(("crypto_freereq[%d]: crp %p\n",
972 (uint32_t)crp->crp_sid, crp));
974 /* sanity check */
975 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
976 panic("crypto_freereq() freeing crp on RETQ\n");
979 while ((crd = crp->crp_desc) != NULL) {
980 crp->crp_desc = crd->crd_next;
981 pool_put(&cryptodesc_pool, crd);
983 cv_destroy(&crp->crp_cv);
984 pool_put(&cryptop_pool, crp);
988 * Acquire a set of crypto descriptors.
990 struct cryptop *
991 crypto_getreq(int num)
993 struct cryptodesc *crd;
994 struct cryptop *crp;
996 crp = pool_get(&cryptop_pool, 0);
997 if (crp == NULL) {
998 return NULL;
1000 memset(crp, 0, sizeof(struct cryptop));
1001 cv_init(&crp->crp_cv, "crydev");
1003 while (num--) {
1004 crd = pool_get(&cryptodesc_pool, 0);
1005 if (crd == NULL) {
1006 crypto_freereq(crp);
1007 return NULL;
1010 memset(crd, 0, sizeof(struct cryptodesc));
1011 crd->crd_next = crp->crp_desc;
1012 crp->crp_desc = crd;
1015 return crp;
1019 * Invoke the callback on behalf of the driver.
1021 void
1022 crypto_done(struct cryptop *crp)
1024 int wasempty;
1026 if (crp->crp_etype != 0)
1027 cryptostats.cs_errs++;
1028 #ifdef CRYPTO_TIMING
1029 if (crypto_timing)
1030 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1031 #endif
1032 DPRINTF(("crypto_done[%d]: crp %08x\n",
1033 (uint32_t)crp->crp_sid, (uint32_t)crp));
1036 * Normal case; queue the callback for the thread.
1038 * The return queue is manipulated by the swi thread
1039 * and, potentially, by crypto device drivers calling
1040 * back to mark operations completed. Thus we need
1041 * to mask both while manipulating the return queue.
1043 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1045 * Do the callback directly. This is ok when the
1046 * callback routine does very little (e.g. the
1047 * /dev/crypto callback method just does a wakeup).
1049 mutex_spin_enter(&crypto_mtx);
1050 crp->crp_flags |= CRYPTO_F_DONE;
1051 mutex_spin_exit(&crypto_mtx);
1053 #ifdef CRYPTO_TIMING
1054 if (crypto_timing) {
1056 * NB: We must copy the timestamp before
1057 * doing the callback as the cryptop is
1058 * likely to be reclaimed.
1060 struct timespec t = crp->crp_tstamp;
1061 crypto_tstat(&cryptostats.cs_cb, &t);
1062 crp->crp_callback(crp);
1063 crypto_tstat(&cryptostats.cs_finis, &t);
1064 } else
1065 #endif
1066 crp->crp_callback(crp);
1067 } else {
1068 mutex_spin_enter(&crypto_mtx);
1069 crp->crp_flags |= CRYPTO_F_DONE;
1071 if (crp->crp_flags & CRYPTO_F_USER) {
1072 /* the request has completed while
1073 * running in the user context
1074 * so don't queue it - the user
1075 * thread won't sleep when it sees
1076 * the CRYPTO_F_DONE flag.
1077 * This is an optimization to avoid
1078 * unecessary context switches.
1080 DPRINTF(("crypto_done[%d]: crp %08x CRYPTO_F_USER\n",
1081 (uint32_t)crp->crp_sid, (uint32_t)crp));
1082 } else {
1083 wasempty = TAILQ_EMPTY(&crp_ret_q);
1084 DPRINTF(("crypto_done[%d]: queueing %08x\n",
1085 (uint32_t)crp->crp_sid, (uint32_t)crp));
1086 crp->crp_flags |= CRYPTO_F_ONRETQ;
1087 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1088 if (wasempty) {
1089 DPRINTF(("crypto_done[%d]: waking cryptoret, crp %08x " \
1090 "hit empty queue\n.",
1091 (uint32_t)crp->crp_sid, (uint32_t)crp));
1092 cv_signal(&cryptoret_cv);
1095 mutex_spin_exit(&crypto_mtx);
1100 * Invoke the callback on behalf of the driver.
1102 void
1103 crypto_kdone(struct cryptkop *krp)
1105 int wasempty;
1107 if (krp->krp_status != 0)
1108 cryptostats.cs_kerrs++;
1110 krp->krp_flags |= CRYPTO_F_DONE;
1113 * The return queue is manipulated by the swi thread
1114 * and, potentially, by crypto device drivers calling
1115 * back to mark operations completed. Thus we need
1116 * to mask both while manipulating the return queue.
1118 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1119 krp->krp_callback(krp);
1120 } else {
1121 mutex_spin_enter(&crypto_mtx);
1122 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1123 krp->krp_flags |= CRYPTO_F_ONRETQ;
1124 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1125 if (wasempty)
1126 cv_signal(&cryptoret_cv);
1127 mutex_spin_exit(&crypto_mtx);
1132 crypto_getfeat(int *featp)
1134 int hid, kalg, feat = 0;
1136 mutex_spin_enter(&crypto_mtx);
1138 if (crypto_userasymcrypto == 0)
1139 goto out;
1141 for (hid = 0; hid < crypto_drivers_num; hid++) {
1142 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1143 crypto_devallowsoft == 0) {
1144 continue;
1146 if (crypto_drivers[hid].cc_kprocess == NULL)
1147 continue;
1148 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1149 if ((crypto_drivers[hid].cc_kalg[kalg] &
1150 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1151 feat |= 1 << kalg;
1153 out:
1154 mutex_spin_exit(&crypto_mtx);
1155 *featp = feat;
1156 return (0);
1160 * Software interrupt thread to dispatch crypto requests.
1162 static void
1163 cryptointr(void)
1165 struct cryptop *crp, *submit, *cnext;
1166 struct cryptkop *krp, *knext;
1167 struct cryptocap *cap;
1168 int result, hint;
1170 cryptostats.cs_intrs++;
1171 mutex_spin_enter(&crypto_mtx);
1172 do {
1174 * Find the first element in the queue that can be
1175 * processed and look-ahead to see if multiple ops
1176 * are ready for the same driver.
1178 submit = NULL;
1179 hint = 0;
1180 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1181 u_int32_t hid = SESID2HID(crp->crp_sid);
1182 cap = crypto_checkdriver(hid);
1183 if (cap == NULL || cap->cc_process == NULL) {
1184 /* Op needs to be migrated, process it. */
1185 if (submit == NULL)
1186 submit = crp;
1187 break;
1189 if (!cap->cc_qblocked) {
1190 if (submit != NULL) {
1192 * We stop on finding another op,
1193 * regardless whether its for the same
1194 * driver or not. We could keep
1195 * searching the queue but it might be
1196 * better to just use a per-driver
1197 * queue instead.
1199 if (SESID2HID(submit->crp_sid) == hid)
1200 hint = CRYPTO_HINT_MORE;
1201 break;
1202 } else {
1203 submit = crp;
1204 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1205 break;
1206 /* keep scanning for more are q'd */
1210 if (submit != NULL) {
1211 TAILQ_REMOVE(&crp_q, submit, crp_next);
1212 mutex_spin_exit(&crypto_mtx);
1213 result = crypto_invoke(submit, hint);
1214 /* we must take here as the TAILQ op or kinvoke
1215 may need this mutex below. sigh. */
1216 mutex_spin_enter(&crypto_mtx);
1217 if (result == ERESTART) {
1219 * The driver ran out of resources, mark the
1220 * driver ``blocked'' for cryptop's and put
1221 * the request back in the queue. It would
1222 * best to put the request back where we got
1223 * it but that's hard so for now we put it
1224 * at the front. This should be ok; putting
1225 * it at the end does not work.
1227 /* XXX validate sid again? */
1228 crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1229 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1230 cryptostats.cs_blocks++;
1234 /* As above, but for key ops */
1235 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1236 cap = crypto_checkdriver(krp->krp_hid);
1237 if (cap == NULL || cap->cc_kprocess == NULL) {
1238 /* Op needs to be migrated, process it. */
1239 break;
1241 if (!cap->cc_kqblocked)
1242 break;
1244 if (krp != NULL) {
1245 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1246 mutex_spin_exit(&crypto_mtx);
1247 result = crypto_kinvoke(krp, 0);
1248 /* the next iteration will want the mutex. :-/ */
1249 mutex_spin_enter(&crypto_mtx);
1250 if (result == ERESTART) {
1252 * The driver ran out of resources, mark the
1253 * driver ``blocked'' for cryptkop's and put
1254 * the request back in the queue. It would
1255 * best to put the request back where we got
1256 * it but that's hard so for now we put it
1257 * at the front. This should be ok; putting
1258 * it at the end does not work.
1260 /* XXX validate sid again? */
1261 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1262 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1263 cryptostats.cs_kblocks++;
1266 } while (submit != NULL || krp != NULL);
1267 mutex_spin_exit(&crypto_mtx);
1271 * Kernel thread to do callbacks.
1273 static void
1274 cryptoret(void)
1276 struct cryptop *crp;
1277 struct cryptkop *krp;
1279 mutex_spin_enter(&crypto_mtx);
1280 for (;;) {
1281 crp = TAILQ_FIRST(&crp_ret_q);
1282 if (crp != NULL) {
1283 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1284 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1286 krp = TAILQ_FIRST(&crp_ret_kq);
1287 if (krp != NULL) {
1288 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1289 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1292 /* drop before calling any callbacks. */
1293 if (crp == NULL && krp == NULL) {
1294 cryptostats.cs_rets++;
1295 cv_wait(&cryptoret_cv, &crypto_mtx);
1296 continue;
1299 mutex_spin_exit(&crypto_mtx);
1301 if (crp != NULL) {
1302 #ifdef CRYPTO_TIMING
1303 if (crypto_timing) {
1305 * NB: We must copy the timestamp before
1306 * doing the callback as the cryptop is
1307 * likely to be reclaimed.
1309 struct timespec t = crp->crp_tstamp;
1310 crypto_tstat(&cryptostats.cs_cb, &t);
1311 crp->crp_callback(crp);
1312 crypto_tstat(&cryptostats.cs_finis, &t);
1313 } else
1314 #endif
1316 crp->crp_callback(crp);
1319 if (krp != NULL)
1320 krp->krp_callback(krp);
1322 mutex_spin_enter(&crypto_mtx);