1 /* $NetBSD: uvm_aobj.c,v 1.107 2009/09/13 18:45:12 pooka Exp $ */
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
37 * uvm_aobj.c: anonymous memory uvm_object pager
39 * author: Chuck Silvers <chuq@chuq.com>
42 * - design mostly from Chuck Cranor
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.107 2009/09/13 18:45:12 pooka Exp $");
48 #include "opt_uvmhist.h"
50 #include <sys/param.h>
51 #include <sys/systm.h>
53 #include <sys/kernel.h>
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
96 * the swhash hash function
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
113 * the number of buckets in a swhash, with an upper bound
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
122 * uao_swhash_elt: when a hash table is being used, this structure defines
123 * the format of an entry in the bucket list.
126 struct uao_swhash_elt
{
127 LIST_ENTRY(uao_swhash_elt
) list
; /* the hash list */
128 voff_t tag
; /* our 'tag' */
129 int count
; /* our number of active slots */
130 int slots
[UAO_SWHASH_CLUSTER_SIZE
]; /* the slots */
134 * uao_swhash: the swap hash table structure
137 LIST_HEAD(uao_swhash
, uao_swhash_elt
);
140 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
141 * NOTE: Pages for this pool must not come from a pageable kernel map!
143 static struct pool uao_swhash_elt_pool
;
145 static struct pool_cache uvm_aobj_cache
;
148 * uvm_aobj: the actual anon-backed uvm_object
150 * => the uvm_object is at the top of the structure, this allows
151 * (struct uvm_aobj *) == (struct uvm_object *)
152 * => only one of u_swslots and u_swhash is used in any given aobj
156 struct uvm_object u_obj
; /* has: lock, pgops, memq, #pages, #refs */
157 pgoff_t u_pages
; /* number of pages in entire object */
158 int u_flags
; /* the flags (see uvm_aobj.h) */
159 int *u_swslots
; /* array of offset->swapslot mappings */
161 * hashtable of offset->swapslot mappings
162 * (u_swhash is an array of bucket heads)
164 struct uao_swhash
*u_swhash
;
165 u_long u_swhashmask
; /* mask for hashtable */
166 LIST_ENTRY(uvm_aobj
) u_list
; /* global list of aobjs */
173 static void uao_free(struct uvm_aobj
*);
174 static int uao_get(struct uvm_object
*, voff_t
, struct vm_page
**,
175 int *, int, vm_prot_t
, int, int);
176 static int uao_put(struct uvm_object
*, voff_t
, voff_t
, int);
178 static void uao_detach_locked(struct uvm_object
*);
179 static void uao_reference_locked(struct uvm_object
*);
182 static struct uao_swhash_elt
*uao_find_swhash_elt
183 (struct uvm_aobj
*, int, bool);
185 static bool uao_pagein(struct uvm_aobj
*, int, int);
186 static bool uao_pagein_page(struct uvm_aobj
*, int);
187 static void uao_dropswap_range1(struct uvm_aobj
*, voff_t
, voff_t
);
188 #endif /* defined(VMSWAP) */
193 * note that some functions (e.g. put) are handled elsewhere
196 const struct uvm_pagerops aobj_pager
= {
197 .pgo_reference
= uao_reference
,
198 .pgo_detach
= uao_detach
,
204 * uao_list: global list of active aobjs, locked by uao_list_lock
207 static LIST_HEAD(aobjlist
, uvm_aobj
) uao_list
;
208 static kmutex_t uao_list_lock
;
215 * hash table/array related functions
221 * uao_find_swhash_elt: find (or create) a hash table entry for a page
224 * => the object should be locked by the caller
227 static struct uao_swhash_elt
*
228 uao_find_swhash_elt(struct uvm_aobj
*aobj
, int pageidx
, bool create
)
230 struct uao_swhash
*swhash
;
231 struct uao_swhash_elt
*elt
;
234 swhash
= UAO_SWHASH_HASH(aobj
, pageidx
);
235 page_tag
= UAO_SWHASH_ELT_TAG(pageidx
);
238 * now search the bucket for the requested tag
241 LIST_FOREACH(elt
, swhash
, list
) {
242 if (elt
->tag
== page_tag
) {
251 * allocate a new entry for the bucket and init/insert it in
254 elt
= pool_get(&uao_swhash_elt_pool
, PR_NOWAIT
);
258 LIST_INSERT_HEAD(swhash
, elt
, list
);
261 memset(elt
->slots
, 0, sizeof(elt
->slots
));
266 * uao_find_swslot: find the swap slot number for an aobj/pageidx
268 * => object must be locked by caller
272 uao_find_swslot(struct uvm_object
*uobj
, int pageidx
)
274 struct uvm_aobj
*aobj
= (struct uvm_aobj
*)uobj
;
275 struct uao_swhash_elt
*elt
;
278 * if noswap flag is set, then we never return a slot
281 if (aobj
->u_flags
& UAO_FLAG_NOSWAP
)
285 * if hashing, look in hash table.
288 if (UAO_USES_SWHASH(aobj
)) {
289 elt
= uao_find_swhash_elt(aobj
, pageidx
, false);
291 return(UAO_SWHASH_ELT_PAGESLOT(elt
, pageidx
));
297 * otherwise, look in the array
300 return(aobj
->u_swslots
[pageidx
]);
304 * uao_set_swslot: set the swap slot for a page in an aobj.
306 * => setting a slot to zero frees the slot
307 * => object must be locked by caller
308 * => we return the old slot number, or -1 if we failed to allocate
309 * memory to record the new slot number
313 uao_set_swslot(struct uvm_object
*uobj
, int pageidx
, int slot
)
315 struct uvm_aobj
*aobj
= (struct uvm_aobj
*)uobj
;
316 struct uao_swhash_elt
*elt
;
318 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist
);
319 UVMHIST_LOG(pdhist
, "aobj %p pageidx %d slot %d",
320 aobj
, pageidx
, slot
, 0);
323 * if noswap flag is set, then we can't set a non-zero slot.
326 if (aobj
->u_flags
& UAO_FLAG_NOSWAP
) {
330 printf("uao_set_swslot: uobj = %p\n", uobj
);
331 panic("uao_set_swslot: NOSWAP object");
335 * are we using a hash table? if so, add it in the hash.
338 if (UAO_USES_SWHASH(aobj
)) {
341 * Avoid allocating an entry just to free it again if
342 * the page had not swap slot in the first place, and
346 elt
= uao_find_swhash_elt(aobj
, pageidx
, slot
!= 0);
348 return slot
? -1 : 0;
351 oldslot
= UAO_SWHASH_ELT_PAGESLOT(elt
, pageidx
);
352 UAO_SWHASH_ELT_PAGESLOT(elt
, pageidx
) = slot
;
355 * now adjust the elt's reference counter and free it if we've
356 * dropped it to zero.
366 if (elt
->count
== 0) {
367 LIST_REMOVE(elt
, list
);
368 pool_put(&uao_swhash_elt_pool
, elt
);
372 /* we are using an array */
373 oldslot
= aobj
->u_swslots
[pageidx
];
374 aobj
->u_swslots
[pageidx
] = slot
;
379 #endif /* defined(VMSWAP) */
382 * end of hash/array functions
386 * uao_free: free all resources held by an aobj, and then free the aobj
388 * => the aobj should be dead
392 uao_free(struct uvm_aobj
*aobj
)
394 int swpgonlydelta
= 0;
398 uao_dropswap_range1(aobj
, 0, 0);
399 #endif /* defined(VMSWAP) */
401 mutex_exit(&aobj
->u_obj
.vmobjlock
);
404 if (UAO_USES_SWHASH(aobj
)) {
407 * free the hash table itself.
410 hashdone(aobj
->u_swhash
, HASH_LIST
, aobj
->u_swhashmask
);
414 * free the array itsself.
417 kmem_free(aobj
->u_swslots
, aobj
->u_pages
* sizeof(int));
419 #endif /* defined(VMSWAP) */
422 * finally free the aobj itself
425 UVM_OBJ_DESTROY(&aobj
->u_obj
);
426 pool_cache_put(&uvm_aobj_cache
, aobj
);
429 * adjust the counter of pages only in swap for all
430 * the swap slots we've freed.
433 if (swpgonlydelta
> 0) {
434 mutex_enter(&uvm_swap_data_lock
);
435 KASSERT(uvmexp
.swpgonly
>= swpgonlydelta
);
436 uvmexp
.swpgonly
-= swpgonlydelta
;
437 mutex_exit(&uvm_swap_data_lock
);
446 * uao_create: create an aobj of the given size and return its uvm_object.
448 * => for normal use, flags are always zero
449 * => for the kernel object, the flags are:
450 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
451 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
455 uao_create(vsize_t size
, int flags
)
457 static struct uvm_aobj kernel_object_store
;
458 static int kobj_alloced
= 0;
459 pgoff_t pages
= round_page(size
) >> PAGE_SHIFT
;
460 struct uvm_aobj
*aobj
;
464 * malloc a new aobj unless we are asked for the kernel object
467 if (flags
& UAO_FLAG_KERNOBJ
) {
468 KASSERT(!kobj_alloced
);
469 aobj
= &kernel_object_store
;
470 aobj
->u_pages
= pages
;
471 aobj
->u_flags
= UAO_FLAG_NOSWAP
;
473 kobj_alloced
= UAO_FLAG_KERNOBJ
;
474 } else if (flags
& UAO_FLAG_KERNSWAP
) {
475 KASSERT(kobj_alloced
== UAO_FLAG_KERNOBJ
);
476 aobj
= &kernel_object_store
;
477 kobj_alloced
= UAO_FLAG_KERNSWAP
;
478 refs
= 0xdeadbeaf; /* XXX: gcc */
480 aobj
= pool_cache_get(&uvm_aobj_cache
, PR_WAITOK
);
481 aobj
->u_pages
= pages
;
487 * allocate hash/array if necessary
489 * note: in the KERNSWAP case no need to worry about locking since
490 * we are still booting we should be the only thread around.
493 if (flags
== 0 || (flags
& UAO_FLAG_KERNSWAP
) != 0) {
495 const int kernswap
= (flags
& UAO_FLAG_KERNSWAP
) != 0;
497 /* allocate hash table or array depending on object size */
498 if (UAO_USES_SWHASH(aobj
)) {
499 aobj
->u_swhash
= hashinit(UAO_SWHASH_BUCKETS(aobj
),
500 HASH_LIST
, kernswap
? false : true,
501 &aobj
->u_swhashmask
);
502 if (aobj
->u_swhash
== NULL
)
503 panic("uao_create: hashinit swhash failed");
505 aobj
->u_swslots
= kmem_zalloc(pages
* sizeof(int),
506 kernswap
? KM_NOSLEEP
: KM_SLEEP
);
507 if (aobj
->u_swslots
== NULL
)
508 panic("uao_create: malloc swslots failed");
510 #endif /* defined(VMSWAP) */
513 aobj
->u_flags
&= ~UAO_FLAG_NOSWAP
; /* clear noswap */
514 return(&aobj
->u_obj
);
522 UVM_OBJ_INIT(&aobj
->u_obj
, &aobj_pager
, refs
);
525 * now that aobj is ready, add it to the global list
528 mutex_enter(&uao_list_lock
);
529 LIST_INSERT_HEAD(&uao_list
, aobj
, u_list
);
530 mutex_exit(&uao_list_lock
);
531 return(&aobj
->u_obj
);
537 * uao_init: set up aobj pager subsystem
539 * => called at boot time from uvm_pager_init()
545 static int uao_initialized
;
549 uao_initialized
= true;
550 LIST_INIT(&uao_list
);
551 mutex_init(&uao_list_lock
, MUTEX_DEFAULT
, IPL_NONE
);
552 pool_cache_bootstrap(&uvm_aobj_cache
, sizeof(struct uvm_aobj
), 0, 0,
553 0, "aobj", NULL
, IPL_NONE
, NULL
, NULL
, NULL
);
554 pool_init(&uao_swhash_elt_pool
, sizeof(struct uao_swhash_elt
),
555 0, 0, 0, "uaoeltpl", NULL
, IPL_VM
);
559 * uao_reference: add a ref to an aobj
561 * => aobj must be unlocked
562 * => just lock it and call the locked version
566 uao_reference(struct uvm_object
*uobj
)
570 * kernel_object already has plenty of references, leave it alone.
573 if (UVM_OBJ_IS_KERN_OBJECT(uobj
))
576 mutex_enter(&uobj
->vmobjlock
);
577 uao_reference_locked(uobj
);
578 mutex_exit(&uobj
->vmobjlock
);
582 * uao_reference_locked: add a ref to an aobj that is already locked
584 * => aobj must be locked
585 * this needs to be separate from the normal routine
586 * since sometimes we need to add a reference to an aobj when
587 * it's already locked.
591 uao_reference_locked(struct uvm_object
*uobj
)
593 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist
);
596 * kernel_object already has plenty of references, leave it alone.
599 if (UVM_OBJ_IS_KERN_OBJECT(uobj
))
603 UVMHIST_LOG(maphist
, "<- done (uobj=0x%x, ref = %d)",
604 uobj
, uobj
->uo_refs
,0,0);
608 * uao_detach: drop a reference to an aobj
610 * => aobj must be unlocked
611 * => just lock it and call the locked version
615 uao_detach(struct uvm_object
*uobj
)
619 * detaching from kernel_object is a noop.
622 if (UVM_OBJ_IS_KERN_OBJECT(uobj
))
625 mutex_enter(&uobj
->vmobjlock
);
626 uao_detach_locked(uobj
);
630 * uao_detach_locked: drop a reference to an aobj
632 * => aobj must be locked, and is unlocked (or freed) upon return.
633 * this needs to be separate from the normal routine
634 * since sometimes we need to detach from an aobj when
635 * it's already locked.
639 uao_detach_locked(struct uvm_object
*uobj
)
641 struct uvm_aobj
*aobj
= (struct uvm_aobj
*)uobj
;
643 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist
);
646 * detaching from kernel_object is a noop.
649 if (UVM_OBJ_IS_KERN_OBJECT(uobj
)) {
650 mutex_exit(&uobj
->vmobjlock
);
654 UVMHIST_LOG(maphist
," (uobj=0x%x) ref=%d", uobj
,uobj
->uo_refs
,0,0);
657 mutex_exit(&uobj
->vmobjlock
);
658 UVMHIST_LOG(maphist
, "<- done (rc>0)", 0,0,0,0);
663 * remove the aobj from the global list.
666 mutex_enter(&uao_list_lock
);
667 LIST_REMOVE(aobj
, u_list
);
668 mutex_exit(&uao_list_lock
);
671 * free all the pages left in the aobj. for each page,
672 * when the page is no longer busy (and thus after any disk i/o that
673 * it's involved in is complete), release any swap resources and
674 * free the page itself.
677 mutex_enter(&uvm_pageqlock
);
678 while ((pg
= TAILQ_FIRST(&uobj
->memq
)) != NULL
) {
679 pmap_page_protect(pg
, VM_PROT_NONE
);
680 if (pg
->flags
& PG_BUSY
) {
681 pg
->flags
|= PG_WANTED
;
682 mutex_exit(&uvm_pageqlock
);
683 UVM_UNLOCK_AND_WAIT(pg
, &uobj
->vmobjlock
, false,
685 mutex_enter(&uobj
->vmobjlock
);
686 mutex_enter(&uvm_pageqlock
);
689 uao_dropswap(&aobj
->u_obj
, pg
->offset
>> PAGE_SHIFT
);
692 mutex_exit(&uvm_pageqlock
);
695 * finally, free the aobj itself.
702 * uao_put: flush pages out of a uvm object
704 * => object should be locked by caller. we may _unlock_ the object
705 * if (and only if) we need to clean a page (PGO_CLEANIT).
706 * XXXJRT Currently, however, we don't. In the case of cleaning
707 * XXXJRT a page, we simply just deactivate it. Should probably
708 * XXXJRT handle this better, in the future (although "flushing"
709 * XXXJRT anonymous memory isn't terribly important).
710 * => if PGO_CLEANIT is not set, then we will neither unlock the object
712 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
714 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
715 * that new pages are inserted on the tail end of the list. thus,
716 * we can make a complete pass through the object in one go by starting
717 * at the head and working towards the tail (new pages are put in
719 * => NOTE: we are allowed to lock the page queues, so the caller
720 * must not be holding the lock on them [e.g. pagedaemon had
721 * better not call us with the queues locked]
722 * => we return 0 unless we encountered some sort of I/O error
723 * XXXJRT currently never happens, as we never directly initiate
726 * note on page traversal:
727 * we can traverse the pages in an object either by going down the
728 * linked list in "uobj->memq", or we can go over the address range
729 * by page doing hash table lookups for each address. depending
730 * on how many pages are in the object it may be cheaper to do one
731 * or the other. we set "by_list" to true if we are using memq.
732 * if the cost of a hash lookup was equal to the cost of the list
733 * traversal we could compare the number of pages in the start->stop
734 * range to the total number of pages in the object. however, it
735 * seems that a hash table lookup is more expensive than the linked
736 * list traversal, so we multiply the number of pages in the
737 * start->stop range by a penalty which we define below.
741 uao_put(struct uvm_object
*uobj
, voff_t start
, voff_t stop
, int flags
)
743 struct uvm_aobj
*aobj
= (struct uvm_aobj
*)uobj
;
744 struct vm_page
*pg
, *nextpg
, curmp
, endmp
;
747 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist
);
749 KASSERT(mutex_owned(&uobj
->vmobjlock
));
752 if (flags
& PGO_ALLPAGES
) {
754 stop
= aobj
->u_pages
<< PAGE_SHIFT
;
755 by_list
= true; /* always go by the list */
757 start
= trunc_page(start
);
759 stop
= aobj
->u_pages
<< PAGE_SHIFT
;
761 stop
= round_page(stop
);
763 if (stop
> (aobj
->u_pages
<< PAGE_SHIFT
)) {
764 printf("uao_flush: strange, got an out of range "
766 stop
= aobj
->u_pages
<< PAGE_SHIFT
;
768 by_list
= (uobj
->uo_npages
<=
769 ((stop
- start
) >> PAGE_SHIFT
) * UVM_PAGE_TREE_PENALTY
);
772 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
773 start
, stop
, by_list
, flags
);
776 * Don't need to do any work here if we're not freeing
777 * or deactivating pages.
780 if ((flags
& (PGO_DEACTIVATE
|PGO_FREE
)) == 0) {
781 mutex_exit(&uobj
->vmobjlock
);
786 * Initialize the marker pages. See the comment in
787 * genfs_putpages() also.
790 curmp
.uobject
= uobj
;
791 curmp
.offset
= (voff_t
)-1;
792 curmp
.flags
= PG_BUSY
;
793 endmp
.uobject
= uobj
;
794 endmp
.offset
= (voff_t
)-1;
795 endmp
.flags
= PG_BUSY
;
798 * now do it. note: we must update nextpg in the body of loop or we
799 * will get stuck. we need to use nextpg if we'll traverse the list
800 * because we may free "pg" before doing the next loop.
804 TAILQ_INSERT_TAIL(&uobj
->memq
, &endmp
, listq
.queue
);
805 nextpg
= TAILQ_FIRST(&uobj
->memq
);
808 nextpg
= NULL
; /* Quell compiler warning */
817 nextpg
= TAILQ_NEXT(pg
, listq
.queue
);
818 if (pg
->offset
< start
|| pg
->offset
>= stop
)
822 pg
= uvm_pagelookup(uobj
, curoff
);
831 * wait and try again if the page is busy.
834 if (pg
->flags
& PG_BUSY
) {
836 TAILQ_INSERT_BEFORE(pg
, &curmp
, listq
.queue
);
838 pg
->flags
|= PG_WANTED
;
839 UVM_UNLOCK_AND_WAIT(pg
, &uobj
->vmobjlock
, 0,
841 mutex_enter(&uobj
->vmobjlock
);
843 nextpg
= TAILQ_NEXT(&curmp
, listq
.queue
);
844 TAILQ_REMOVE(&uobj
->memq
, &curmp
,
851 switch (flags
& (PGO_CLEANIT
|PGO_FREE
|PGO_DEACTIVATE
)) {
854 * XXX In these first 3 cases, we always just
855 * XXX deactivate the page. We may want to
856 * XXX handle the different cases more specifically
860 case PGO_CLEANIT
|PGO_FREE
:
861 case PGO_CLEANIT
|PGO_DEACTIVATE
:
864 mutex_enter(&uvm_pageqlock
);
865 /* skip the page if it's wired */
866 if (pg
->wire_count
== 0) {
867 uvm_pagedeactivate(pg
);
869 mutex_exit(&uvm_pageqlock
);
874 * If there are multiple references to
875 * the object, just deactivate the page.
878 if (uobj
->uo_refs
> 1)
882 * free the swap slot and the page.
885 pmap_page_protect(pg
, VM_PROT_NONE
);
888 * freeing swapslot here is not strictly necessary.
889 * however, leaving it here doesn't save much
890 * because we need to update swap accounting anyway.
893 uao_dropswap(uobj
, pg
->offset
>> PAGE_SHIFT
);
894 mutex_enter(&uvm_pageqlock
);
896 mutex_exit(&uvm_pageqlock
);
900 panic("%s: impossible", __func__
);
904 TAILQ_REMOVE(&uobj
->memq
, &endmp
, listq
.queue
);
906 mutex_exit(&uobj
->vmobjlock
);
911 * uao_get: fetch me a page
913 * we have three cases:
914 * 1: page is resident -> just return the page.
915 * 2: page is zero-fill -> allocate a new page and zero it.
916 * 3: page is swapped out -> fetch the page from swap.
918 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
919 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
920 * then we will need to return EBUSY.
922 * => prefer map unlocked (not required)
923 * => object must be locked! we will _unlock_ it before starting any I/O.
924 * => flags: PGO_ALLPAGES: get all of the pages
925 * PGO_LOCKED: fault data structures are locked
926 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
927 * => NOTE: caller must check for released pages!!
931 uao_get(struct uvm_object
*uobj
, voff_t offset
, struct vm_page
**pps
,
932 int *npagesp
, int centeridx
, vm_prot_t access_type
, int advice
, int flags
)
935 struct uvm_aobj
*aobj
= (struct uvm_aobj
*)uobj
;
936 #endif /* defined(VMSWAP) */
937 voff_t current_offset
;
938 struct vm_page
*ptmp
= NULL
; /* Quell compiler warning */
939 int lcv
, gotpages
, maxpages
, swslot
, pageidx
;
941 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist
);
943 UVMHIST_LOG(pdhist
, "aobj=%p offset=%d, flags=%d",
944 (struct uvm_aobj
*)uobj
, offset
, flags
,0);
947 * get number of pages
953 * step 1: handled the case where fault data structures are locked.
956 if (flags
& PGO_LOCKED
) {
959 * step 1a: get pages that are already resident. only do
960 * this if the data structures are locked (i.e. the first
964 done
= true; /* be optimistic */
965 gotpages
= 0; /* # of pages we got so far */
966 for (lcv
= 0, current_offset
= offset
; lcv
< maxpages
;
967 lcv
++, current_offset
+= PAGE_SIZE
) {
968 /* do we care about this page? if not, skip it */
969 if (pps
[lcv
] == PGO_DONTCARE
)
971 ptmp
= uvm_pagelookup(uobj
, current_offset
);
974 * if page is new, attempt to allocate the page,
978 if (ptmp
== NULL
&& uao_find_swslot(&aobj
->u_obj
,
979 current_offset
>> PAGE_SHIFT
) == 0) {
980 ptmp
= uvm_pagealloc(uobj
, current_offset
,
984 ptmp
->flags
&= ~(PG_FAKE
);
985 ptmp
->pqflags
|= PQ_AOBJ
;
991 * to be useful must get a non-busy page
994 if (ptmp
== NULL
|| (ptmp
->flags
& PG_BUSY
) != 0) {
995 if (lcv
== centeridx
||
996 (flags
& PGO_ALLPAGES
) != 0)
997 /* need to do a wait or I/O! */
1003 * useful page: busy/lock it and plug it in our
1007 /* caller must un-busy this page */
1008 ptmp
->flags
|= PG_BUSY
;
1009 UVM_PAGE_OWN(ptmp
, "uao_get1");
1016 * step 1b: now we've either done everything needed or we
1017 * to unlock and do some waiting or I/O.
1020 UVMHIST_LOG(pdhist
, "<- done (done=%d)", done
, 0,0,0);
1021 *npagesp
= gotpages
;
1029 * step 2: get non-resident or busy pages.
1030 * object is locked. data structures are unlocked.
1033 if ((flags
& PGO_SYNCIO
) == 0) {
1037 for (lcv
= 0, current_offset
= offset
; lcv
< maxpages
;
1038 lcv
++, current_offset
+= PAGE_SIZE
) {
1041 * - skip over pages we've already gotten or don't want
1042 * - skip over pages we don't _have_ to get
1045 if (pps
[lcv
] != NULL
||
1046 (lcv
!= centeridx
&& (flags
& PGO_ALLPAGES
) == 0))
1049 pageidx
= current_offset
>> PAGE_SHIFT
;
1052 * we have yet to locate the current page (pps[lcv]). we
1053 * first look for a page that is already at the current offset.
1054 * if we find a page, we check to see if it is busy or
1055 * released. if that is the case, then we sleep on the page
1056 * until it is no longer busy or released and repeat the lookup.
1057 * if the page we found is neither busy nor released, then we
1058 * busy it (so we own it) and plug it into pps[lcv]. this
1059 * 'break's the following while loop and indicates we are
1060 * ready to move on to the next page in the "lcv" loop above.
1062 * if we exit the while loop with pps[lcv] still set to NULL,
1063 * then it means that we allocated a new busy/fake/clean page
1064 * ptmp in the object and we need to do I/O to fill in the data.
1067 /* top of "pps" while loop */
1068 while (pps
[lcv
] == NULL
) {
1069 /* look for a resident page */
1070 ptmp
= uvm_pagelookup(uobj
, current_offset
);
1072 /* not resident? allocate one now (if we can) */
1075 ptmp
= uvm_pagealloc(uobj
, current_offset
,
1080 mutex_exit(&uobj
->vmobjlock
);
1082 "sleeping, ptmp == NULL\n",0,0,0,0);
1083 uvm_wait("uao_getpage");
1084 mutex_enter(&uobj
->vmobjlock
);
1089 * safe with PQ's unlocked: because we just
1093 ptmp
->pqflags
|= PQ_AOBJ
;
1096 * got new page ready for I/O. break pps while
1097 * loop. pps[lcv] is still NULL.
1103 /* page is there, see if we need to wait on it */
1104 if ((ptmp
->flags
& PG_BUSY
) != 0) {
1105 ptmp
->flags
|= PG_WANTED
;
1107 "sleeping, ptmp->flags 0x%x\n",
1109 UVM_UNLOCK_AND_WAIT(ptmp
, &uobj
->vmobjlock
,
1110 false, "uao_get", 0);
1111 mutex_enter(&uobj
->vmobjlock
);
1116 * if we get here then the page has become resident and
1117 * unbusy between steps 1 and 2. we busy it now (so we
1118 * own it) and set pps[lcv] (so that we exit the while
1122 /* we own it, caller must un-busy */
1123 ptmp
->flags
|= PG_BUSY
;
1124 UVM_PAGE_OWN(ptmp
, "uao_get2");
1129 * if we own the valid page at the correct offset, pps[lcv] will
1130 * point to it. nothing more to do except go to the next page.
1134 continue; /* next lcv */
1137 * we have a "fake/busy/clean" page that we just allocated.
1138 * do the needed "i/o", either reading from swap or zeroing.
1141 swslot
= uao_find_swslot(&aobj
->u_obj
, pageidx
);
1144 * just zero the page if there's nothing in swap.
1150 * page hasn't existed before, just zero it.
1158 UVMHIST_LOG(pdhist
, "pagein from swslot %d",
1162 * page in the swapped-out page.
1163 * unlock object for i/o, relock when done.
1166 mutex_exit(&uobj
->vmobjlock
);
1167 error
= uvm_swap_get(ptmp
, swslot
, PGO_SYNCIO
);
1168 mutex_enter(&uobj
->vmobjlock
);
1171 * I/O done. check for errors.
1175 UVMHIST_LOG(pdhist
, "<- done (error=%d)",
1177 if (ptmp
->flags
& PG_WANTED
)
1181 * remove the swap slot from the aobj
1182 * and mark the aobj as having no real slot.
1183 * don't free the swap slot, thus preventing
1184 * it from being used again.
1187 swslot
= uao_set_swslot(&aobj
->u_obj
, pageidx
,
1190 uvm_swap_markbad(swslot
, 1);
1193 mutex_enter(&uvm_pageqlock
);
1195 mutex_exit(&uvm_pageqlock
);
1196 mutex_exit(&uobj
->vmobjlock
);
1199 #else /* defined(VMSWAP) */
1200 panic("%s: pagein", __func__
);
1201 #endif /* defined(VMSWAP) */
1204 if ((access_type
& VM_PROT_WRITE
) == 0) {
1205 ptmp
->flags
|= PG_CLEAN
;
1206 pmap_clear_modify(ptmp
);
1210 * we got the page! clear the fake flag (indicates valid
1211 * data now in page) and plug into our result array. note
1212 * that page is still busy.
1214 * it is the callers job to:
1215 * => check if the page is released
1216 * => unbusy the page
1217 * => activate the page
1220 ptmp
->flags
&= ~PG_FAKE
;
1225 * finally, unlock object and return.
1229 mutex_exit(&uobj
->vmobjlock
);
1230 UVMHIST_LOG(pdhist
, "<- done (OK)",0,0,0,0);
1237 * uao_dropswap: release any swap resources from this aobj page.
1239 * => aobj must be locked or have a reference count of 0.
1243 uao_dropswap(struct uvm_object
*uobj
, int pageidx
)
1247 slot
= uao_set_swslot(uobj
, pageidx
, 0);
1249 uvm_swap_free(slot
, 1);
1254 * page in every page in every aobj that is paged-out to a range of swslots.
1256 * => nothing should be locked.
1257 * => returns true if pagein was aborted due to lack of memory.
1261 uao_swap_off(int startslot
, int endslot
)
1263 struct uvm_aobj
*aobj
, *nextaobj
;
1267 * walk the list of all aobjs.
1271 mutex_enter(&uao_list_lock
);
1272 for (aobj
= LIST_FIRST(&uao_list
);
1277 * try to get the object lock, start all over if we fail.
1278 * most of the time we'll get the aobj lock,
1279 * so this should be a rare case.
1282 if (!mutex_tryenter(&aobj
->u_obj
.vmobjlock
)) {
1283 mutex_exit(&uao_list_lock
);
1284 /* XXX Better than yielding but inadequate. */
1285 kpause("livelock", false, 1, NULL
);
1290 * add a ref to the aobj so it doesn't disappear
1291 * while we're working.
1294 uao_reference_locked(&aobj
->u_obj
);
1297 * now it's safe to unlock the uao list.
1300 mutex_exit(&uao_list_lock
);
1303 * page in any pages in the swslot range.
1304 * if there's an error, abort and return the error.
1307 rv
= uao_pagein(aobj
, startslot
, endslot
);
1309 uao_detach_locked(&aobj
->u_obj
);
1314 * we're done with this aobj.
1315 * relock the list and drop our ref on the aobj.
1318 mutex_enter(&uao_list_lock
);
1319 nextaobj
= LIST_NEXT(aobj
, u_list
);
1320 uao_detach_locked(&aobj
->u_obj
);
1324 * done with traversal, unlock the list
1326 mutex_exit(&uao_list_lock
);
1332 * page in any pages from aobj in the given range.
1334 * => aobj must be locked and is returned locked.
1335 * => returns true if pagein was aborted due to lack of memory.
1338 uao_pagein(struct uvm_aobj
*aobj
, int startslot
, int endslot
)
1342 if (UAO_USES_SWHASH(aobj
)) {
1343 struct uao_swhash_elt
*elt
;
1347 for (buck
= aobj
->u_swhashmask
; buck
>= 0; buck
--) {
1348 for (elt
= LIST_FIRST(&aobj
->u_swhash
[buck
]);
1350 elt
= LIST_NEXT(elt
, list
)) {
1353 for (i
= 0; i
< UAO_SWHASH_CLUSTER_SIZE
; i
++) {
1354 int slot
= elt
->slots
[i
];
1357 * if the slot isn't in range, skip it.
1360 if (slot
< startslot
||
1367 * the start over on this object
1368 * since the swhash elt
1369 * may have been freed.
1372 rv
= uao_pagein_page(aobj
,
1373 UAO_SWHASH_ELT_PAGEIDX_BASE(elt
) + i
);
1384 for (i
= 0; i
< aobj
->u_pages
; i
++) {
1385 int slot
= aobj
->u_swslots
[i
];
1388 * if the slot isn't in range, skip it
1391 if (slot
< startslot
|| slot
>= endslot
) {
1399 rv
= uao_pagein_page(aobj
, i
);
1410 * page in a page from an aobj. used for swap_off.
1411 * returns true if pagein was aborted due to lack of memory.
1413 * => aobj must be locked and is returned locked.
1417 uao_pagein_page(struct uvm_aobj
*aobj
, int pageidx
)
1425 rv
= uao_get(&aobj
->u_obj
, pageidx
<< PAGE_SHIFT
,
1426 &pg
, &npages
, 0, VM_PROT_READ
|VM_PROT_WRITE
, 0, PGO_SYNCIO
);
1427 /* unlocked: aobj */
1430 * relock and finish up.
1433 mutex_enter(&aobj
->u_obj
.vmobjlock
);
1442 * nothing more to do on errors.
1443 * ERESTART can only mean that the anon was freed,
1444 * so again there's nothing to do.
1454 * ok, we've got the page now.
1455 * mark it as dirty, clear its swslot and un-busy it.
1457 uao_dropswap(&aobj
->u_obj
, pageidx
);
1460 * make sure it's on a page queue.
1462 mutex_enter(&uvm_pageqlock
);
1463 if (pg
->wire_count
== 0)
1464 uvm_pageenqueue(pg
);
1465 mutex_exit(&uvm_pageqlock
);
1467 if (pg
->flags
& PG_WANTED
) {
1470 pg
->flags
&= ~(PG_WANTED
|PG_BUSY
|PG_CLEAN
|PG_FAKE
);
1471 UVM_PAGE_OWN(pg
, NULL
);
1477 * uao_dropswap_range: drop swapslots in the range.
1479 * => aobj must be locked and is returned locked.
1480 * => start is inclusive. end is exclusive.
1484 uao_dropswap_range(struct uvm_object
*uobj
, voff_t start
, voff_t end
)
1486 struct uvm_aobj
*aobj
= (struct uvm_aobj
*)uobj
;
1488 KASSERT(mutex_owned(&uobj
->vmobjlock
));
1490 uao_dropswap_range1(aobj
, start
, end
);
1494 uao_dropswap_range1(struct uvm_aobj
*aobj
, voff_t start
, voff_t end
)
1496 int swpgonlydelta
= 0;
1502 if (UAO_USES_SWHASH(aobj
)) {
1503 int i
, hashbuckets
= aobj
->u_swhashmask
+ 1;
1507 taglo
= UAO_SWHASH_ELT_TAG(start
);
1508 taghi
= UAO_SWHASH_ELT_TAG(end
);
1510 for (i
= 0; i
< hashbuckets
; i
++) {
1511 struct uao_swhash_elt
*elt
, *next
;
1513 for (elt
= LIST_FIRST(&aobj
->u_swhash
[i
]);
1516 int startidx
, endidx
;
1519 next
= LIST_NEXT(elt
, list
);
1521 if (elt
->tag
< taglo
|| taghi
< elt
->tag
) {
1525 if (elt
->tag
== taglo
) {
1527 UAO_SWHASH_ELT_PAGESLOT_IDX(start
);
1532 if (elt
->tag
== taghi
) {
1534 UAO_SWHASH_ELT_PAGESLOT_IDX(end
);
1536 endidx
= UAO_SWHASH_CLUSTER_SIZE
;
1539 for (j
= startidx
; j
< endidx
; j
++) {
1540 int slot
= elt
->slots
[j
];
1542 KASSERT(uvm_pagelookup(&aobj
->u_obj
,
1543 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt
)
1544 + j
) << PAGE_SHIFT
) == NULL
);
1546 uvm_swap_free(slot
, 1);
1548 KASSERT(elt
->count
> 0);
1554 if (elt
->count
== 0) {
1555 LIST_REMOVE(elt
, list
);
1556 pool_put(&uao_swhash_elt_pool
, elt
);
1563 if (aobj
->u_pages
< end
) {
1564 end
= aobj
->u_pages
;
1566 for (i
= start
; i
< end
; i
++) {
1567 int slot
= aobj
->u_swslots
[i
];
1570 uvm_swap_free(slot
, 1);
1577 * adjust the counter of pages only in swap for all
1578 * the swap slots we've freed.
1581 if (swpgonlydelta
> 0) {
1582 mutex_enter(&uvm_swap_data_lock
);
1583 KASSERT(uvmexp
.swpgonly
>= swpgonlydelta
);
1584 uvmexp
.swpgonly
-= swpgonlydelta
;
1585 mutex_exit(&uvm_swap_data_lock
);
1589 #endif /* defined(VMSWAP) */