No empty .Rs/.Re
[netbsd-mini2440.git] / sys / uvm / uvm_km.c
blobf62dc8482c0a976bfcb057b89b926cebf5686a18
1 /* $NetBSD: uvm_km.c,v 1.103 2008/12/13 11:34:43 ad Exp $ */
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 * All rights reserved.
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 * Carnegie Mellon requests users of this software to return to
60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
70 * uvm_km.c: handle kernel memory allocation and management
74 * overview of kernel memory management:
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc.
94 * mb_map => memory for large mbufs,
95 * pager_map => used to map "buf" structures into kernel space
96 * exec_map => used during exec to handle exec args
97 * etc...
99 * the kernel allocates its private memory out of special uvm_objects whose
100 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
101 * are "special" and never die). all kernel objects should be thought of
102 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
103 * object is equal to the size of kernel virtual address space (i.e. the
104 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
106 * note that just because a kernel object spans the entire kernel virtual
107 * address space doesn't mean that it has to be mapped into the entire space.
108 * large chunks of a kernel object's space go unused either because
109 * that area of kernel VM is unmapped, or there is some other type of
110 * object mapped into that range (e.g. a vnode). for submap's kernel
111 * objects, the only part of the object that can ever be populated is the
112 * offsets that are managed by the submap.
114 * note that the "offset" in a kernel object is always the kernel virtual
115 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
116 * example:
117 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
118 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
119 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
120 * then that means that the page at offset 0x235000 in kernel_object is
121 * mapped at 0xf8235000.
123 * kernel object have one other special property: when the kernel virtual
124 * memory mapping them is unmapped, the backing memory in the object is
125 * freed right away. this is done with the uvm_km_pgremove() function.
126 * this has to be done because there is no backing store for kernel pages
127 * and no need to save them after they are no longer referenced.
130 #include <sys/cdefs.h>
131 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.103 2008/12/13 11:34:43 ad Exp $");
133 #include "opt_uvmhist.h"
135 #include <sys/param.h>
136 #include <sys/malloc.h>
137 #include <sys/systm.h>
138 #include <sys/proc.h>
139 #include <sys/pool.h>
141 #include <uvm/uvm.h>
144 * global data structures
147 struct vm_map *kernel_map = NULL;
150 * local data structues
153 static struct vm_map_kernel kernel_map_store;
154 static struct vm_map_entry kernel_first_mapent_store;
156 #if !defined(PMAP_MAP_POOLPAGE)
159 * kva cache
161 * XXX maybe it's better to do this at the uvm_map layer.
164 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
166 static void *km_vacache_alloc(struct pool *, int);
167 static void km_vacache_free(struct pool *, void *);
168 static void km_vacache_init(struct vm_map *, const char *, size_t);
170 /* XXX */
171 #define KM_VACACHE_POOL_TO_MAP(pp) \
172 ((struct vm_map *)((char *)(pp) - \
173 offsetof(struct vm_map_kernel, vmk_vacache)))
175 static void *
176 km_vacache_alloc(struct pool *pp, int flags)
178 vaddr_t va;
179 size_t size;
180 struct vm_map *map;
181 size = pp->pr_alloc->pa_pagesz;
183 map = KM_VACACHE_POOL_TO_MAP(pp);
185 va = vm_map_min(map); /* hint */
186 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
187 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
188 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
189 ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
190 UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
191 return NULL;
193 return (void *)va;
196 static void
197 km_vacache_free(struct pool *pp, void *v)
199 vaddr_t va = (vaddr_t)v;
200 size_t size = pp->pr_alloc->pa_pagesz;
201 struct vm_map *map;
203 map = KM_VACACHE_POOL_TO_MAP(pp);
204 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
208 * km_vacache_init: initialize kva cache.
211 static void
212 km_vacache_init(struct vm_map *map, const char *name, size_t size)
214 struct vm_map_kernel *vmk;
215 struct pool *pp;
216 struct pool_allocator *pa;
217 int ipl;
219 KASSERT(VM_MAP_IS_KERNEL(map));
220 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
223 vmk = vm_map_to_kernel(map);
224 pp = &vmk->vmk_vacache;
225 pa = &vmk->vmk_vacache_allocator;
226 memset(pa, 0, sizeof(*pa));
227 pa->pa_alloc = km_vacache_alloc;
228 pa->pa_free = km_vacache_free;
229 pa->pa_pagesz = (unsigned int)size;
230 pa->pa_backingmap = map;
231 pa->pa_backingmapptr = NULL;
233 if ((map->flags & VM_MAP_INTRSAFE) != 0)
234 ipl = IPL_VM;
235 else
236 ipl = IPL_NONE;
238 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
239 ipl);
242 void
243 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
246 map->flags |= VM_MAP_VACACHE;
247 if (size == 0)
248 size = KM_VACACHE_SIZE;
249 km_vacache_init(map, name, size);
252 #else /* !defined(PMAP_MAP_POOLPAGE) */
254 void
255 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
258 /* nothing */
261 #endif /* !defined(PMAP_MAP_POOLPAGE) */
263 void
264 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
266 struct vm_map_kernel *vmk = vm_map_to_kernel(map);
268 callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
272 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
273 * KVM already allocated for text, data, bss, and static data structures).
275 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
276 * we assume that [vmin -> start] has already been allocated and that
277 * "end" is the end.
280 void
281 uvm_km_init(vaddr_t start, vaddr_t end)
283 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
286 * next, init kernel memory objects.
289 /* kernel_object: for pageable anonymous kernel memory */
290 uao_init();
291 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
292 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
295 * init the map and reserve any space that might already
296 * have been allocated kernel space before installing.
299 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
300 kernel_map_store.vmk_map.pmap = pmap_kernel();
301 if (start != base) {
302 int error;
303 struct uvm_map_args args;
305 error = uvm_map_prepare(&kernel_map_store.vmk_map,
306 base, start - base,
307 NULL, UVM_UNKNOWN_OFFSET, 0,
308 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
309 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
310 if (!error) {
311 kernel_first_mapent_store.flags =
312 UVM_MAP_KERNEL | UVM_MAP_FIRST;
313 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
314 &kernel_first_mapent_store);
317 if (error)
318 panic(
319 "uvm_km_init: could not reserve space for kernel");
323 * install!
326 kernel_map = &kernel_map_store.vmk_map;
327 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
331 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
332 * is allocated all references to that area of VM must go through it. this
333 * allows the locking of VAs in kernel_map to be broken up into regions.
335 * => if `fixed' is true, *vmin specifies where the region described
336 * by the submap must start
337 * => if submap is non NULL we use that as the submap, otherwise we
338 * alloc a new map
341 struct vm_map *
342 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
343 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
344 struct vm_map_kernel *submap)
346 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
348 KASSERT(vm_map_pmap(map) == pmap_kernel());
350 size = round_page(size); /* round up to pagesize */
351 size += uvm_mapent_overhead(size, flags);
354 * first allocate a blank spot in the parent map
357 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
358 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
359 UVM_ADV_RANDOM, mapflags)) != 0) {
360 panic("uvm_km_suballoc: unable to allocate space in parent map");
364 * set VM bounds (vmin is filled in by uvm_map)
367 *vmax = *vmin + size;
370 * add references to pmap and create or init the submap
373 pmap_reference(vm_map_pmap(map));
374 if (submap == NULL) {
375 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
376 if (submap == NULL)
377 panic("uvm_km_suballoc: unable to create submap");
379 uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
380 submap->vmk_map.pmap = vm_map_pmap(map);
383 * now let uvm_map_submap plug in it...
386 if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
387 panic("uvm_km_suballoc: submap allocation failed");
389 return(&submap->vmk_map);
393 * uvm_km_pgremove: remove pages from a kernel uvm_object.
395 * => when you unmap a part of anonymous kernel memory you want to toss
396 * the pages right away. (this gets called from uvm_unmap_...).
399 void
400 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
402 struct uvm_object * const uobj = uvm_kernel_object;
403 const voff_t start = startva - vm_map_min(kernel_map);
404 const voff_t end = endva - vm_map_min(kernel_map);
405 struct vm_page *pg;
406 voff_t curoff, nextoff;
407 int swpgonlydelta = 0;
408 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
410 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
411 KASSERT(startva < endva);
412 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
414 mutex_enter(&uobj->vmobjlock);
416 for (curoff = start; curoff < end; curoff = nextoff) {
417 nextoff = curoff + PAGE_SIZE;
418 pg = uvm_pagelookup(uobj, curoff);
419 if (pg != NULL && pg->flags & PG_BUSY) {
420 pg->flags |= PG_WANTED;
421 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
422 "km_pgrm", 0);
423 mutex_enter(&uobj->vmobjlock);
424 nextoff = curoff;
425 continue;
429 * free the swap slot, then the page.
432 if (pg == NULL &&
433 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
434 swpgonlydelta++;
436 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
437 if (pg != NULL) {
438 mutex_enter(&uvm_pageqlock);
439 uvm_pagefree(pg);
440 mutex_exit(&uvm_pageqlock);
443 mutex_exit(&uobj->vmobjlock);
445 if (swpgonlydelta > 0) {
446 mutex_enter(&uvm_swap_data_lock);
447 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
448 uvmexp.swpgonly -= swpgonlydelta;
449 mutex_exit(&uvm_swap_data_lock);
455 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
456 * regions.
458 * => when you unmap a part of anonymous kernel memory you want to toss
459 * the pages right away. (this is called from uvm_unmap_...).
460 * => none of the pages will ever be busy, and none of them will ever
461 * be on the active or inactive queues (because they have no object).
464 void
465 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
467 struct vm_page *pg;
468 paddr_t pa;
469 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
471 KASSERT(VM_MAP_IS_KERNEL(map));
472 KASSERT(vm_map_min(map) <= start);
473 KASSERT(start < end);
474 KASSERT(end <= vm_map_max(map));
476 for (; start < end; start += PAGE_SIZE) {
477 if (!pmap_extract(pmap_kernel(), start, &pa)) {
478 continue;
480 pg = PHYS_TO_VM_PAGE(pa);
481 KASSERT(pg);
482 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
483 uvm_pagefree(pg);
487 #if defined(DEBUG)
488 void
489 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
491 struct vm_page *pg;
492 vaddr_t va;
493 paddr_t pa;
495 KDASSERT(VM_MAP_IS_KERNEL(map));
496 KDASSERT(vm_map_min(map) <= start);
497 KDASSERT(start < end);
498 KDASSERT(end <= vm_map_max(map));
500 for (va = start; va < end; va += PAGE_SIZE) {
501 if (pmap_extract(pmap_kernel(), va, &pa)) {
502 panic("uvm_km_check_empty: va %p has pa 0x%llx",
503 (void *)va, (long long)pa);
505 if ((map->flags & VM_MAP_INTRSAFE) == 0) {
506 mutex_enter(&uvm_kernel_object->vmobjlock);
507 pg = uvm_pagelookup(uvm_kernel_object,
508 va - vm_map_min(kernel_map));
509 mutex_exit(&uvm_kernel_object->vmobjlock);
510 if (pg) {
511 panic("uvm_km_check_empty: "
512 "has page hashed at %p", (const void *)va);
517 #endif /* defined(DEBUG) */
520 * uvm_km_alloc: allocate an area of kernel memory.
522 * => NOTE: we can return 0 even if we can wait if there is not enough
523 * free VM space in the map... caller should be prepared to handle
524 * this case.
525 * => we return KVA of memory allocated
528 vaddr_t
529 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
531 vaddr_t kva, loopva;
532 vaddr_t offset;
533 vsize_t loopsize;
534 struct vm_page *pg;
535 struct uvm_object *obj;
536 int pgaflags;
537 vm_prot_t prot;
538 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
540 KASSERT(vm_map_pmap(map) == pmap_kernel());
541 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
542 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
543 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
546 * setup for call
549 kva = vm_map_min(map); /* hint */
550 size = round_page(size);
551 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
552 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
553 map, obj, size, flags);
556 * allocate some virtual space
559 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
560 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
561 UVM_ADV_RANDOM,
562 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
563 | UVM_FLAG_QUANTUM)) != 0)) {
564 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
565 return(0);
569 * if all we wanted was VA, return now
572 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
573 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
574 return(kva);
578 * recover object offset from virtual address
581 offset = kva - vm_map_min(kernel_map);
582 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
585 * now allocate and map in the memory... note that we are the only ones
586 * whom should ever get a handle on this area of VM.
589 loopva = kva;
590 loopsize = size;
592 pgaflags = 0;
593 if (flags & UVM_KMF_NOWAIT)
594 pgaflags |= UVM_PGA_USERESERVE;
595 if (flags & UVM_KMF_ZERO)
596 pgaflags |= UVM_PGA_ZERO;
597 prot = VM_PROT_READ | VM_PROT_WRITE;
598 if (flags & UVM_KMF_EXEC)
599 prot |= VM_PROT_EXECUTE;
600 while (loopsize) {
601 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
603 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
606 * out of memory?
609 if (__predict_false(pg == NULL)) {
610 if ((flags & UVM_KMF_NOWAIT) ||
611 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
612 /* free everything! */
613 uvm_km_free(map, kva, size,
614 flags & UVM_KMF_TYPEMASK);
615 return (0);
616 } else {
617 uvm_wait("km_getwait2"); /* sleep here */
618 continue;
622 pg->flags &= ~PG_BUSY; /* new page */
623 UVM_PAGE_OWN(pg, NULL);
626 * map it in
629 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
630 prot | PMAP_KMPAGE, 0);
631 loopva += PAGE_SIZE;
632 offset += PAGE_SIZE;
633 loopsize -= PAGE_SIZE;
636 pmap_update(pmap_kernel());
638 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
639 return(kva);
643 * uvm_km_free: free an area of kernel memory
646 void
647 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
650 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
651 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
652 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
653 KASSERT((addr & PAGE_MASK) == 0);
654 KASSERT(vm_map_pmap(map) == pmap_kernel());
656 size = round_page(size);
658 if (flags & UVM_KMF_PAGEABLE) {
659 uvm_km_pgremove(addr, addr + size);
660 pmap_remove(pmap_kernel(), addr, addr + size);
661 } else if (flags & UVM_KMF_WIRED) {
662 uvm_km_pgremove_intrsafe(map, addr, addr + size);
663 pmap_kremove(addr, size);
667 * uvm_unmap_remove calls pmap_update for us.
670 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
673 /* Sanity; must specify both or none. */
674 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
675 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
676 #error Must specify MAP and UNMAP together.
677 #endif
680 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
682 * => if the pmap specifies an alternate mapping method, we use it.
685 /* ARGSUSED */
686 vaddr_t
687 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
689 #if defined(PMAP_MAP_POOLPAGE)
690 return uvm_km_alloc_poolpage(map, waitok);
691 #else
692 struct vm_page *pg;
693 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
694 vaddr_t va;
696 if ((map->flags & VM_MAP_VACACHE) == 0)
697 return uvm_km_alloc_poolpage(map, waitok);
699 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
700 if (va == 0)
701 return 0;
702 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
703 again:
704 pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
705 if (__predict_false(pg == NULL)) {
706 if (waitok) {
707 uvm_wait("plpg");
708 goto again;
709 } else {
710 pool_put(pp, (void *)va);
711 return 0;
714 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
715 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
716 pmap_update(pmap_kernel());
718 return va;
719 #endif /* PMAP_MAP_POOLPAGE */
722 vaddr_t
723 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
725 #if defined(PMAP_MAP_POOLPAGE)
726 struct vm_page *pg;
727 vaddr_t va;
729 again:
730 pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
731 if (__predict_false(pg == NULL)) {
732 if (waitok) {
733 uvm_wait("plpg");
734 goto again;
735 } else
736 return (0);
738 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
739 if (__predict_false(va == 0))
740 uvm_pagefree(pg);
741 return (va);
742 #else
743 vaddr_t va;
745 va = uvm_km_alloc(map, PAGE_SIZE, 0,
746 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
747 return (va);
748 #endif /* PMAP_MAP_POOLPAGE */
752 * uvm_km_free_poolpage: free a previously allocated pool page
754 * => if the pmap specifies an alternate unmapping method, we use it.
757 /* ARGSUSED */
758 void
759 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
761 #if defined(PMAP_UNMAP_POOLPAGE)
762 uvm_km_free_poolpage(map, addr);
763 #else
764 struct pool *pp;
766 if ((map->flags & VM_MAP_VACACHE) == 0) {
767 uvm_km_free_poolpage(map, addr);
768 return;
771 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
772 uvm_km_pgremove_intrsafe(map, addr, addr + PAGE_SIZE);
773 pmap_kremove(addr, PAGE_SIZE);
774 #if defined(DEBUG)
775 pmap_update(pmap_kernel());
776 #endif
777 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
778 pp = &vm_map_to_kernel(map)->vmk_vacache;
779 pool_put(pp, (void *)addr);
780 #endif
783 /* ARGSUSED */
784 void
785 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
787 #if defined(PMAP_UNMAP_POOLPAGE)
788 paddr_t pa;
790 pa = PMAP_UNMAP_POOLPAGE(addr);
791 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
792 #else
793 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
794 #endif /* PMAP_UNMAP_POOLPAGE */