1 /* dfa - DFA construction routines */
4 * Copyright (c) 1990 The Regents of the University of California.
7 * This code is derived from software contributed to Berkeley by
10 * The United States Government has rights in this work pursuant
11 * to contract no. DE-AC03-76SF00098 between the United States
12 * Department of Energy and the University of California.
14 * Redistribution and use in source and binary forms are permitted provided
15 * that: (1) source distributions retain this entire copyright notice and
16 * comment, and (2) distributions including binaries display the following
17 * acknowledgement: ``This product includes software developed by the
18 * University of California, Berkeley and its contributors'' in the
19 * documentation or other materials provided with the distribution and in
20 * all advertising materials mentioning features or use of this software.
21 * Neither the name of the University nor the names of its contributors may
22 * be used to endorse or promote products derived from this software without
23 * specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29 /* $NetBSD: dfa.c,v 1.11 1998/01/05 05:15:45 perry Exp $ */
34 /* declare functions that have forward references */
36 void dump_associated_rules
PROTO((FILE*, int));
37 void dump_transitions
PROTO((FILE*, int[]));
38 void sympartition
PROTO((int[], int, int[], int[]));
39 int symfollowset
PROTO((int[], int, int, int[]));
42 /* check_for_backing_up - check a DFA state for backing up
45 * void check_for_backing_up( int ds, int state[numecs] );
47 * ds is the number of the state to check and state[] is its out-transitions,
48 * indexed by equivalence class.
51 void check_for_backing_up( ds
, state
)
55 if ( (reject
&& ! dfaacc
[ds
].dfaacc_set
) ||
56 (! reject
&& ! dfaacc
[ds
].dfaacc_state
) )
57 { /* state is non-accepting */
60 if ( backing_up_report
)
62 fprintf( backing_up_file
,
63 _( "State #%d is non-accepting -\n" ), ds
);
65 /* identify the state */
66 dump_associated_rules( backing_up_file
, ds
);
68 /* Now identify it further using the out- and
71 dump_transitions( backing_up_file
, state
);
73 putc( '\n', backing_up_file
);
79 /* check_trailing_context - check to see if NFA state set constitutes
80 * "dangerous" trailing context
83 * void check_trailing_context( int nfa_states[num_states+1], int num_states,
84 * int accset[nacc+1], int nacc );
87 * Trailing context is "dangerous" if both the head and the trailing
88 * part are of variable size \and/ there's a DFA state which contains
89 * both an accepting state for the head part of the rule and NFA states
90 * which occur after the beginning of the trailing context.
92 * When such a rule is matched, it's impossible to tell if having been
93 * in the DFA state indicates the beginning of the trailing context or
94 * further-along scanning of the pattern. In these cases, a warning
97 * nfa_states[1 .. num_states] is the list of NFA states in the DFA.
98 * accset[1 .. nacc] is the list of accepting numbers for the DFA state.
101 void check_trailing_context( nfa_states
, num_states
, accset
, nacc
)
102 int *nfa_states
, num_states
;
108 for ( i
= 1; i
<= num_states
; ++i
)
110 int ns
= nfa_states
[i
];
111 register int type
= state_type
[ns
];
112 register int ar
= assoc_rule
[ns
];
114 if ( type
== STATE_NORMAL
|| rule_type
[ar
] != RULE_VARIABLE
)
118 else if ( type
== STATE_TRAILING_CONTEXT
)
120 /* Potential trouble. Scan set of accepting numbers
121 * for the one marking the end of the "head". We
122 * assume that this looping will be fairly cheap
123 * since it's rare that an accepting number set
126 for ( j
= 1; j
<= nacc
; ++j
)
127 if ( accset
[j
] & YY_TRAILING_HEAD_MASK
)
130 _( "dangerous trailing context" ),
139 /* dump_associated_rules - list the rules associated with a DFA state
141 * Goes through the set of NFA states associated with the DFA and
142 * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
143 * and writes a report to the given file.
146 void dump_associated_rules( file
, ds
)
151 register int num_associated_rules
= 0;
152 int rule_set
[MAX_ASSOC_RULES
+ 1];
154 int size
= dfasiz
[ds
];
156 for ( i
= 1; i
<= size
; ++i
)
158 register int rule_num
= rule_linenum
[assoc_rule
[dset
[i
]]];
160 for ( j
= 1; j
<= num_associated_rules
; ++j
)
161 if ( rule_num
== rule_set
[j
] )
164 if ( j
> num_associated_rules
)
166 if ( num_associated_rules
< MAX_ASSOC_RULES
)
167 rule_set
[++num_associated_rules
] = rule_num
;
171 bubble( rule_set
, num_associated_rules
);
173 fprintf( file
, _( " associated rule line numbers:" ) );
175 for ( i
= 1; i
<= num_associated_rules
; ++i
)
180 fprintf( file
, "\t%d", rule_set
[i
] );
187 /* dump_transitions - list the transitions associated with a DFA state
190 * dump_transitions( FILE *file, int state[numecs] );
192 * Goes through the set of out-transitions and lists them in human-readable
193 * form (i.e., not as equivalence classes); also lists jam transitions
194 * (i.e., all those which are not out-transitions, plus EOF). The dump
195 * is done to the given file.
198 void dump_transitions( file
, state
)
203 int out_char_set
[CSIZE
];
205 for ( i
= 0; i
< csize
; ++i
)
207 ec
= ABS( ecgroup
[i
] );
208 out_char_set
[i
] = state
[ec
];
211 fprintf( file
, _( " out-transitions: " ) );
213 list_character_set( file
, out_char_set
);
215 /* now invert the members of the set to get the jam transitions */
216 for ( i
= 0; i
< csize
; ++i
)
217 out_char_set
[i
] = ! out_char_set
[i
];
219 fprintf( file
, _( "\n jam-transitions: EOF " ) );
221 list_character_set( file
, out_char_set
);
227 /* epsclosure - construct the epsilon closure of a set of ndfa states
230 * int *epsclosure( int t[num_states], int *numstates_addr,
231 * int accset[num_rules+1], int *nacc_addr,
232 * int *hashval_addr );
235 * The epsilon closure is the set of all states reachable by an arbitrary
236 * number of epsilon transitions, which themselves do not have epsilon
237 * transitions going out, unioned with the set of states which have non-null
238 * accepting numbers. t is an array of size numstates of nfa state numbers.
239 * Upon return, t holds the epsilon closure and *numstates_addr is updated.
240 * accset holds a list of the accepting numbers, and the size of accset is
241 * given by *nacc_addr. t may be subjected to reallocation if it is not
242 * large enough to hold the epsilon closure.
244 * hashval is the hash value for the dfa corresponding to the state set.
247 int *epsclosure( t
, ns_addr
, accset
, nacc_addr
, hv_addr
)
248 int *t
, *ns_addr
, accset
[], *nacc_addr
, *hv_addr
;
250 register int stkpos
, ns
, tsp
;
251 int numstates
= *ns_addr
, nacc
, hashval
, transsym
, nfaccnum
;
253 static int did_stk_init
= false, *stk
;
255 #define MARK_STATE(state) \
256 trans1[state] = trans1[state] - MARKER_DIFFERENCE;
258 #define IS_MARKED(state) (trans1[state] < 0)
260 #define UNMARK_STATE(state) \
261 trans1[state] = trans1[state] + MARKER_DIFFERENCE;
263 #define CHECK_ACCEPT(state) \
265 nfaccnum = accptnum[state]; \
266 if ( nfaccnum != NIL ) \
267 accset[++nacc] = nfaccnum; \
270 #define DO_REALLOCATION \
272 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
274 t = reallocate_integer_array( t, current_max_dfa_size ); \
275 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
278 #define PUT_ON_STACK(state) \
280 if ( ++stkend >= current_max_dfa_size ) \
282 stk[stkend] = state; \
286 #define ADD_STATE(state) \
288 if ( ++numstates >= current_max_dfa_size ) \
290 t[numstates] = state; \
294 #define STACK_STATE(state) \
296 PUT_ON_STACK(state) \
297 CHECK_ACCEPT(state) \
298 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
303 if ( ! did_stk_init
)
305 stk
= allocate_integer_array( current_max_dfa_size
);
309 nacc
= stkend
= hashval
= 0;
311 for ( nstate
= 1; nstate
<= numstates
; ++nstate
)
315 /* The state could be marked if we've already pushed it onto
318 if ( ! IS_MARKED(ns
) )
326 for ( stkpos
= 1; stkpos
<= stkend
; ++stkpos
)
329 transsym
= transchar
[ns
];
331 if ( transsym
== SYM_EPSILON
)
333 tsp
= trans1
[ns
] + MARKER_DIFFERENCE
;
335 if ( tsp
!= NO_TRANSITION
)
337 if ( ! IS_MARKED(tsp
) )
342 if ( tsp
!= NO_TRANSITION
&& ! IS_MARKED(tsp
) )
348 /* Clear out "visit" markers. */
350 for ( stkpos
= 1; stkpos
<= stkend
; ++stkpos
)
352 if ( IS_MARKED(stk
[stkpos
]) )
353 UNMARK_STATE(stk
[stkpos
])
356 _( "consistency check failed in epsclosure()" ) );
359 *ns_addr
= numstates
;
367 /* increase_max_dfas - increase the maximum number of DFAs */
369 void increase_max_dfas()
371 current_max_dfas
+= MAX_DFAS_INCREMENT
;
375 base
= reallocate_integer_array( base
, current_max_dfas
);
376 def
= reallocate_integer_array( def
, current_max_dfas
);
377 dfasiz
= reallocate_integer_array( dfasiz
, current_max_dfas
);
378 accsiz
= reallocate_integer_array( accsiz
, current_max_dfas
);
379 dhash
= reallocate_integer_array( dhash
, current_max_dfas
);
380 dss
= reallocate_int_ptr_array( dss
, current_max_dfas
);
381 dfaacc
= reallocate_dfaacc_union( dfaacc
, current_max_dfas
);
385 reallocate_integer_array( nultrans
, current_max_dfas
);
389 /* ntod - convert an ndfa to a dfa
391 * Creates the dfa corresponding to the ndfa we've constructed. The
392 * dfa starts out in state #1.
397 int *accset
, ds
, nacc
, newds
;
398 int sym
, hashval
, numstates
, dsize
;
399 int num_full_table_rows
= 0; /* used only for -f; XXX: GCC warn */
401 int targptr
, totaltrans
, i
, comstate
, comfreq
, targ
;
402 int symlist
[CSIZE
+ 1];
403 int num_start_states
;
404 int todo_head
, todo_next
;
406 /* Note that the following are indexed by *equivalence classes*
407 * and not by characters. Since equivalence classes are indexed
408 * beginning with 1, even if the scanner accepts NUL's, this
409 * means that (since every character is potentially in its own
410 * equivalence class) these arrays must have room for indices
411 * from 1 to CSIZE, so their size must be CSIZE + 1.
413 int duplist
[CSIZE
+ 1], state
[CSIZE
+ 1];
414 int targfreq
[CSIZE
+ 1], targstate
[CSIZE
+ 1];
416 accset
= allocate_integer_array( num_rules
+ 1 );
417 nset
= allocate_integer_array( current_max_dfa_size
);
419 /* The "todo" queue is represented by the head, which is the DFA
420 * state currently being processed, and the "next", which is the
421 * next DFA state number available (not in use). We depend on the
422 * fact that snstods() returns DFA's \in increasing order/, and thus
423 * need only know the bounds of the dfas to be processed.
425 todo_head
= todo_next
= 0;
427 for ( i
= 0; i
<= csize
; ++i
)
433 for ( i
= 0; i
<= num_rules
; ++i
)
439 fputs( _( "\n\nDFA Dump:\n\n" ), stderr
);
444 /* Check to see whether we should build a separate table for
445 * transitions on NUL characters. We don't do this for full-speed
446 * (-F) scanners, since for them we don't have a simple state
447 * number lying around with which to index the table. We also
448 * don't bother doing it for scanners unless (1) NUL is in its own
449 * equivalence class (indicated by a positive value of
450 * ecgroup[NUL]), (2) NUL's equivalence class is the last
451 * equivalence class, and (3) the number of equivalence classes is
452 * the same as the number of characters. This latter case comes
453 * about when useecs is false or when it's true but every character
454 * still manages to land in its own class (unlikely, but it's
455 * cheap to check for). If all these things are true then the
456 * character code needed to represent NUL's equivalence class for
457 * indexing the tables is going to take one more bit than the
458 * number of characters, and therefore we won't be assured of
459 * being able to fit it into a YY_CHAR variable. This rules out
460 * storing the transitions in a compressed table, since the code
461 * for interpreting them uses a YY_CHAR variable (perhaps it
462 * should just use an integer, though; this is worth pondering ...
465 * Finally, for full tables, we want the number of entries in the
466 * table to be a power of two so the array references go fast (it
467 * will just take a shift to compute the major index). If
468 * encoding NUL's transitions in the table will spoil this, we
469 * give it its own table (note that this will be the case if we're
470 * not using equivalence classes).
473 /* Note that the test for ecgroup[0] == numecs below accomplishes
474 * both (1) and (2) above
476 if ( ! fullspd
&& ecgroup
[0] == numecs
)
478 /* NUL is alone in its equivalence class, which is the
481 int use_NUL_table
= (numecs
== csize
);
483 if ( fulltbl
&& ! use_NUL_table
)
485 /* We still may want to use the table if numecs
490 for ( power_of_two
= 1; power_of_two
<= csize
;
492 if ( numecs
== power_of_two
)
494 use_NUL_table
= true;
500 nultrans
= allocate_integer_array( current_max_dfas
);
502 /* From now on, nultrans != nil indicates that we're
503 * saving null transitions for later, separate encoding.
510 for ( i
= 0; i
<= numecs
; ++i
)
513 place_state( state
, 0, 0 );
514 dfaacc
[0].dfaacc_state
= 0;
520 /* We won't be including NUL's transitions in the
521 * table, so build it for entries from 0 .. numecs - 1.
523 num_full_table_rows
= numecs
;
526 /* Take into account the fact that we'll be including
527 * the NUL entries in the transition table. Build it
530 num_full_table_rows
= numecs
+ 1;
532 /* Unless -Ca, declare it "short" because it's a real
533 * long-shot that that won't be large enough.
535 out_str_dec( "static yyconst %s yy_nxt[][%d] =\n {\n",
536 /* '}' so vi doesn't get too confused */
537 long_align
? "long" : "short", num_full_table_rows
);
541 /* Generate 0 entries for state #0. */
542 for ( i
= 0; i
< num_full_table_rows
; ++i
)
549 /* Create the first states. */
551 num_start_states
= lastsc
* 2;
553 for ( i
= 1; i
<= num_start_states
; ++i
)
557 /* For each start condition, make one state for the case when
558 * we're at the beginning of the line (the '^' operator) and
559 * one for the case when we're not.
562 nset
[numstates
] = scset
[(i
/ 2) + 1];
565 mkbranch( scbol
[i
/ 2], scset
[i
/ 2] );
567 nset
= epsclosure( nset
, &numstates
, accset
, &nacc
, &hashval
);
569 if ( snstods( nset
, numstates
, accset
, nacc
, hashval
, &ds
) )
575 if ( variable_trailing_context_rules
&& nacc
> 0 )
576 check_trailing_context( nset
, numstates
,
583 if ( ! snstods( nset
, 0, accset
, 0, 0, &end_of_buffer_state
) )
585 _( "could not create unique end-of-buffer state" ) );
592 while ( todo_head
< todo_next
)
597 for ( i
= 1; i
<= numecs
; ++i
)
606 fprintf( stderr
, _( "state # %d:\n" ), ds
);
608 sympartition( dset
, dsize
, symlist
, duplist
);
610 for ( sym
= 1; sym
<= numecs
; ++sym
)
616 if ( duplist
[sym
] == NIL
)
618 /* Symbol has unique out-transitions. */
619 numstates
= symfollowset( dset
, dsize
,
621 nset
= epsclosure( nset
, &numstates
,
622 accset
, &nacc
, &hashval
);
624 if ( snstods( nset
, numstates
, accset
,
625 nacc
, hashval
, &newds
) )
627 totnst
= totnst
+ numstates
;
632 variable_trailing_context_rules
&&
634 check_trailing_context(
642 fprintf( stderr
, "\t%d\t%d\n",
645 targfreq
[++targptr
] = 1;
646 targstate
[targptr
] = newds
;
652 /* sym's equivalence class has the same
653 * transitions as duplist(sym)'s
656 targ
= state
[duplist
[sym
]];
660 fprintf( stderr
, "\t%d\t%d\n",
663 /* Update frequency count for
668 while ( targstate
[++i
] != targ
)
680 if ( caseins
&& ! useecs
)
684 for ( i
= 'A', j
= 'a'; i
<= 'Z'; ++i
, ++j
)
686 if ( state
[i
] == 0 && state
[j
] != 0 )
687 /* We're adding a transition. */
690 else if ( state
[i
] != 0 && state
[j
] == 0 )
691 /* We're taking away a transition. */
698 numsnpairs
+= totaltrans
;
700 if ( ds
> num_start_states
)
701 check_for_backing_up( ds
, state
);
705 nultrans
[ds
] = state
[NUL_ec
];
706 state
[NUL_ec
] = 0; /* remove transition */
713 /* Supply array's 0-element. */
714 if ( ds
== end_of_buffer_state
)
715 mk2data( -end_of_buffer_state
);
717 mk2data( end_of_buffer_state
);
719 for ( i
= 1; i
< num_full_table_rows
; ++i
)
720 /* Jams are marked by negative of state
723 mk2data( state
[i
] ? state
[i
] : -ds
);
730 place_state( state
, ds
, totaltrans
);
732 else if ( ds
== end_of_buffer_state
)
733 /* Special case this state to make sure it does what
734 * it's supposed to, i.e., jam on end-of-buffer.
736 stack1( ds
, 0, 0, JAMSTATE
);
738 else /* normal, compressed state */
740 /* Determine which destination state is the most
741 * common, and how many transitions to it there are.
747 for ( i
= 1; i
<= targptr
; ++i
)
748 if ( targfreq
[i
] > comfreq
)
750 comfreq
= targfreq
[i
];
751 comstate
= targstate
[i
];
754 bldtbl( state
, ds
, totaltrans
, comstate
, comfreq
);
761 else if ( ! fullspd
)
763 cmptmps(); /* create compressed template entries */
765 /* Create tables for all the states with only one
770 mk1tbl( onestate
[onesp
], onesym
[onesp
], onenext
[onesp
],
778 flex_free( (void *) accset
);
779 flex_free( (void *) nset
);
783 /* snstods - converts a set of ndfa states into a dfa state
786 * is_new_state = snstods( int sns[numstates], int numstates,
787 * int accset[num_rules+1], int nacc,
788 * int hashval, int *newds_addr );
790 * On return, the dfa state number is in newds.
793 int snstods( sns
, numstates
, accset
, nacc
, hashval
, newds_addr
)
794 int sns
[], numstates
, accset
[], nacc
, hashval
, *newds_addr
;
800 for ( i
= 1; i
<= lastdfa
; ++i
)
801 if ( hashval
== dhash
[i
] )
803 if ( numstates
== dfasiz
[i
] )
809 /* We sort the states in sns so we
810 * can compare it to oldsns quickly.
811 * We use bubble because there probably
812 * aren't very many states.
814 bubble( sns
, numstates
);
818 for ( j
= 1; j
<= numstates
; ++j
)
819 if ( sns
[j
] != oldsns
[j
] )
836 /* Make a new dfa. */
838 if ( ++lastdfa
>= current_max_dfas
)
843 dss
[newds
] = allocate_integer_array( numstates
+ 1 );
845 /* If we haven't already sorted the states in sns, we do so now,
846 * so that future comparisons with it can be made quickly.
850 bubble( sns
, numstates
);
852 for ( i
= 1; i
<= numstates
; ++i
)
853 dss
[newds
][i
] = sns
[i
];
855 dfasiz
[newds
] = numstates
;
856 dhash
[newds
] = hashval
;
861 dfaacc
[newds
].dfaacc_set
= (int *) 0;
863 dfaacc
[newds
].dfaacc_state
= 0;
870 /* We sort the accepting set in increasing order so the
871 * disambiguating rule that the first rule listed is considered
872 * match in the event of ties will work. We use a bubble
873 * sort since the list is probably quite small.
876 bubble( accset
, nacc
);
878 dfaacc
[newds
].dfaacc_set
= allocate_integer_array( nacc
+ 1 );
880 /* Save the accepting set for later */
881 for ( i
= 1; i
<= nacc
; ++i
)
883 dfaacc
[newds
].dfaacc_set
[i
] = accset
[i
];
885 if ( accset
[i
] <= num_rules
)
886 /* Who knows, perhaps a REJECT can yield
889 rule_useful
[accset
[i
]] = true;
892 accsiz
[newds
] = nacc
;
897 /* Find lowest numbered rule so the disambiguating rule
902 for ( i
= 1; i
<= nacc
; ++i
)
906 dfaacc
[newds
].dfaacc_state
= j
;
908 if ( j
<= num_rules
)
909 rule_useful
[j
] = true;
918 /* symfollowset - follow the symbol transitions one step
921 * numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
922 * int transsym, int nset[current_max_dfa_size] );
925 int symfollowset( ds
, dsize
, transsym
, nset
)
926 int ds
[], dsize
, transsym
, nset
[];
928 int ns
, tsp
, sym
, i
, j
, lenccl
, ch
, numstates
, ccllist
;
932 for ( i
= 1; i
<= dsize
; ++i
)
933 { /* for each nfa state ns in the state set of ds */
939 { /* it's a character class */
941 ccllist
= cclmap
[sym
];
942 lenccl
= ccllen
[sym
];
946 for ( j
= 0; j
< lenccl
; ++j
)
948 /* Loop through negated character
951 ch
= ccltbl
[ccllist
+ j
];
957 /* Transsym isn't in negated
962 else if ( ch
== transsym
)
963 /* next 2 */ goto bottom
;
966 /* Didn't find transsym in ccl. */
967 nset
[++numstates
] = tsp
;
971 for ( j
= 0; j
< lenccl
; ++j
)
973 ch
= ccltbl
[ccllist
+ j
];
980 else if ( ch
== transsym
)
982 nset
[++numstates
] = tsp
;
988 else if ( sym
>= 'A' && sym
<= 'Z' && caseins
)
990 _( "consistency check failed in symfollowset" ) );
992 else if ( sym
== SYM_EPSILON
)
996 else if ( ABS( ecgroup
[sym
] ) == transsym
)
997 nset
[++numstates
] = tsp
;
1006 /* sympartition - partition characters with same out-transitions
1009 * sympartition( int ds[current_max_dfa_size], int numstates,
1010 * int symlist[numecs], int duplist[numecs] );
1013 void sympartition( ds
, numstates
, symlist
, duplist
)
1014 int ds
[], numstates
;
1015 int symlist
[], duplist
[];
1017 int tch
, i
, j
, k
, ns
, dupfwd
[CSIZE
+ 1], lenccl
, cclp
, ich
;
1019 /* Partitioning is done by creating equivalence classes for those
1020 * characters which have out-transitions from the given state. Thus
1021 * we are really creating equivalence classes of equivalence classes.
1024 for ( i
= 1; i
<= numecs
; ++i
)
1025 { /* initialize equivalence class list */
1031 dupfwd
[numecs
] = NIL
;
1033 for ( i
= 1; i
<= numstates
; ++i
)
1036 tch
= transchar
[ns
];
1038 if ( tch
!= SYM_EPSILON
)
1040 if ( tch
< -lastccl
|| tch
>= csize
)
1043 _( "bad transition character detected in sympartition()" ) );
1047 { /* character transition */
1048 int ec
= ecgroup
[tch
];
1050 mkechar( ec
, dupfwd
, duplist
);
1055 { /* character class */
1058 lenccl
= ccllen
[tch
];
1060 mkeccl( ccltbl
+ cclp
, lenccl
, dupfwd
,
1061 duplist
, numecs
, NUL_ec
);
1067 for ( k
= 0; k
< lenccl
; ++k
)
1069 ich
= ccltbl
[cclp
+ k
];
1074 for ( ++j
; j
< ich
; ++j
)
1078 for ( ++j
; j
<= numecs
; ++j
)
1083 for ( k
= 0; k
< lenccl
; ++k
)
1085 ich
= ccltbl
[cclp
+ k
];