2 * This file has no copyright assigned and is placed in the Public Domain.
3 * This file is part of the mingw-w64 runtime package.
4 * No warranty is given; refer to the file DISCLAIMER.PD within this package.
14 * long double x, y, erfl();
27 * erf(x) = -------- | exp( - t ) dt.
32 * The magnitude of x is limited to about 106.56 for IEEE
33 * arithmetic; 1 or -1 is returned outside this range.
35 * For 0 <= |x| < 1, erf(x) = x * P6(x^2)/Q6(x^2);
36 * Otherwise: erf(x) = 1 - erfc(x).
43 * arithmetic domain # trials peak rms
44 * IEEE 0,1 50000 2.0e-19 5.7e-20
50 * Complementary error function
56 * long double x, y, erfcl();
70 * erfc(x) = -------- | exp( - t ) dt
76 * For small x, erfc(x) = 1 - erf(x); otherwise rational
77 * approximations are computed.
79 * A special function expx2l.c is used to suppress error amplification
80 * in computing exp(-x^2).
86 * arithmetic domain # trials peak rms
87 * IEEE 0,13 50000 8.4e-19 9.7e-20
88 * IEEE 6,106.56 20000 2.9e-19 7.1e-20
93 * message condition value returned
94 * erfcl underflow x^2 > MAXLOGL 0.0
101 Modified from file ndtrl.c
102 Cephes Math Library Release 2.3: January, 1995
103 Copyright 1984, 1995 by Stephen L. Moshier
107 #include "cephes_mconf.h"
109 long double erfl(long double x
);
111 /* erfc(x) = exp(-x^2) P(1/x)/Q(1/x)
113 Peak relative error 5.8e-21 */
115 static const uLD P
[10] = {
116 { { 0x4bf0,0x9ad8,0x7a03,0x86c7,0x401d, 0, 0, 0 } },
117 { { 0xdf23,0xd843,0x4032,0x8881,0x401e, 0, 0, 0 } },
118 { { 0xd025,0xcfd5,0x8494,0x88d3,0x401e, 0, 0, 0 } },
119 { { 0xb6d0,0xc92b,0x5417,0xacb1,0x401d, 0, 0, 0 } },
120 { { 0xada8,0x356a,0x4982,0x94a6,0x401c, 0, 0, 0 } },
121 { { 0x4e13,0xcaee,0x9e31,0xb258,0x401a, 0, 0, 0 } },
122 { { 0x5840,0x554d,0x37a3,0x9239,0x4018, 0, 0, 0 } },
123 { { 0x3b58,0x3da2,0xaf02,0x9780,0x4015, 0, 0, 0 } },
124 { { 0x0144,0x489e,0xbe68,0x9c31,0x4011, 0, 0, 0 } },
125 { { 0x333b,0xd9e6,0xd404,0x986f,0xbfee, 0, 0, 0 } }
127 static const uLD Q
[] = {
128 { { 0x0e43,0x302d,0x79ed,0x86c7,0x401d, 0, 0, 0 } },
129 { { 0xf817,0x9128,0xc0f8,0xd48b,0x401e, 0, 0, 0 } },
130 { { 0x8eae,0x8dad,0x6eb4,0x9aa2,0x401f, 0, 0, 0 } },
131 { { 0x00e7,0x7595,0xcd06,0x88bb,0x401f, 0, 0, 0 } },
132 { { 0x4991,0xcfda,0x52f1,0xa2a9,0x401e, 0, 0, 0 } },
133 { { 0xc39d,0xe415,0xc43d,0x87c0,0x401d, 0, 0, 0 } },
134 { { 0xa75d,0x436f,0x30dd,0xa027,0x401b, 0, 0, 0 } },
135 { { 0xc4cb,0x305a,0xbf78,0x8220,0x4019, 0, 0, 0 } },
136 { { 0x3708,0x33b1,0x07fa,0x8644,0x4016, 0, 0, 0 } },
137 { { 0x24fa,0x96f6,0x7153,0x8a6c,0x4012, 0, 0, 0 } }
140 /* erfc(x) = exp(-x^2) 1/x R(1/x^2) / S(1/x^2)
142 Peak relative error 1.9e-21 */
144 static const uLD R
[] = {
145 { { 0x260a,0xab95,0x2fc7,0xe7c4,0x4000, 0, 0, 0 } },
146 { { 0x4761,0x613e,0xdf6d,0xe58e,0x4001, 0, 0, 0 } },
147 { { 0x0615,0x4b00,0x575f,0xdc7b,0x4000, 0, 0, 0 } },
148 { { 0x521d,0x8527,0x3435,0x8dc2,0x3ffe, 0, 0, 0 } },
149 { { 0x22cf,0xc711,0x6c5b,0xdcfb,0x3ff9, 0, 0, 0 } }
151 static const uLD S
[] = {
152 { { 0x5de6,0x17d7,0x54d6,0xaba9,0x4002, 0, 0, 0 } },
153 { { 0x55d5,0xd300,0xe71e,0xf564,0x4002, 0, 0, 0 } },
154 { { 0xb611,0x8f76,0xf020,0xd255,0x4001, 0, 0, 0 } },
155 { { 0x3684,0x3798,0xb793,0x80b0,0x3fff, 0, 0, 0 } },
156 { { 0xf5af,0x2fb2,0x1e57,0xc3d7,0x3ffa, 0, 0, 0 } }
159 /* erf(x) = x T(x^2)/U(x^2)
161 Peak relative error 7.6e-23 */
163 static const uLD T
[] = {
164 { { 0xfd7a,0x3a1a,0x705b,0xe0c4,0x3ffb, 0, 0, 0 } },
165 { { 0x3128,0xc337,0x3716,0xace5,0x4001, 0, 0, 0 } },
166 { { 0x9517,0x4e93,0x540e,0x8f97,0x4007, 0, 0, 0 } },
167 { { 0x6118,0x6059,0x9093,0xa757,0x400a, 0, 0, 0 } },
168 { { 0xb954,0xa987,0xc60c,0xbc83,0x400e, 0, 0, 0 } },
169 { { 0x7a56,0xe45a,0xa4bd,0x975b,0x4010, 0, 0, 0 } },
170 { { 0xc446,0x6bab,0x0b2a,0x86d0,0x4013, 0, 0, 0 } }
173 static const uLD U
[] = {
174 { { 0x3453,0x1f8e,0xf688,0xb507,0x4004, 0, 0, 0 } },
175 { { 0x71ac,0xb12f,0x21ca,0xf2e2,0x4008, 0, 0, 0 } },
176 { { 0xffe8,0x9cac,0x3b84,0xc2ac,0x400c, 0, 0, 0 } },
177 { { 0x481d,0x445b,0xc807,0xc232,0x400f, 0, 0, 0 } },
178 { { 0x9ad5,0x1aef,0x45b1,0xe25e,0x4011, 0, 0, 0 } },
179 { { 0x71a7,0x1cad,0x012e,0xeef3,0x4012, 0, 0, 0 } }
184 * Exponential of squared argument
190 * long double x, y, expmx2l();
199 * Computes y = exp(x*x) while suppressing error amplification
200 * that would ordinarily arise from the inexactness of the
201 * exponential argument x*x.
208 * arithmetic domain # trials peak rms
209 * IEEE -106.566, 106.566 10^5 1.6e-19 4.4e-20
214 #define MINV 3.0517578125e-5L
216 static long double expx2l (long double x
)
218 long double u
, u1
, m
, f
;
221 /* Represent x as an exact multiple of M plus a residual.
222 M is a power of 2 chosen so that exp(m * m) does not overflow
223 or underflow and so that |x - m| is small. */
224 m
= MINV
* floorl(M
* x
+ 0.5L);
227 /* x^2 = m^2 + 2mf + f^2 */
229 u1
= 2 * m
* f
+ f
* f
;
231 if ((u
+ u1
) > MAXLOGL
)
234 /* u is exact, u1 is small. */
235 u
= expl(u
) * expl(u1
);
239 long double erfcl(long double a
)
241 long double p
, q
, x
, y
, z
;
244 return (signbit(a
) ? 2.0 : 0.0);
252 return (1.0L - erfl(a
));
259 mtherr("erfcl", UNDERFLOW
);
261 return (signbit(a
) ? 2.0 : 0.0);
264 /* Compute z = expl(a * a). */
270 p
= polevll(y
, P
, 9);
271 q
= p1evll(y
, Q
, 10);
276 p
= y
* polevll(q
, R
, 4);
290 long double erfl(long double x
)
298 return (signbit(x
) ? -1.0L : 1.0L);
301 return (1.0L - erfcl(x
));
304 y
= x
* polevll(z
, T
, 6) / p1evll(z
, U
, 6);