Cygwin: (mostly) drop NT4 and Samba < 3.0 support
[newlib-cygwin.git] / winsup / cygwin / math / tanhl.c
blob2c48a6aab8627e137afb90792fa6cef958d39375
1 /**
2 * This file has no copyright assigned and is placed in the Public Domain.
3 * This file is part of the mingw-w64 runtime package.
4 * No warranty is given; refer to the file DISCLAIMER.PD within this package.
5 */
6 #include "cephes_mconf.h"
7 #ifndef _SET_ERRNO
8 #define _SET_ERRNO(x)
9 #endif
11 #ifdef UNK
12 static uLD P[] = {
13 { { -6.8473739392677100872869E-5L } },
14 { { -9.5658283111794641589011E-1L } },
15 { { -8.4053568599672284488465E1L } },
16 { { -1.3080425704712825945553E3L } }
18 static uLD Q[] = {
19 { { 9.6259501838840336946872E1L } },
20 { { 1.8218117903645559060232E3L } },
21 { { 3.9241277114138477845780E3L } }
23 #endif
25 #ifdef IBMPC
26 static uLD P[] = {
27 { { 0xd2a4,0x1b0c,0x8f15,0x8f99,0xbff1, 0, 0, 0 } },
28 { { 0x5959,0x9111,0x9cc7,0xf4e2,0xbffe, 0, 0, 0 } },
29 { { 0xb576,0xef5e,0x6d57,0xa81b,0xc005, 0, 0, 0 } },
30 { { 0xe3be,0xbfbd,0x5cbc,0xa381,0xc009, 0, 0, 0 } }
32 static uLD Q[] = {
33 { { 0x687f,0xce24,0xdd6c,0xc084,0x4005, 0, 0, 0 } },
34 { { 0x3793,0xc95f,0xfa2f,0xe3b9,0x4009, 0, 0, 0 } },
35 { { 0xd5a2,0x1f9c,0x0b1b,0xf542,0x400a, 0, 0, 0 } }
37 #endif
39 #ifdef MIEEE
40 static uLD P[] = {
41 { { 0xbff10000,0x8f998f15,0x1b0cd2a4, 0 } },
42 { { 0xbffe0000,0xf4e29cc7,0x91115959, 0 } },
43 { { 0xc0050000,0xa81b6d57,0xef5eb576, 0 } },
44 { { 0xc0090000,0xa3815cbc,0xbfbde3be, 0 } }
46 static uLD Q[] = {
47 { { 0x40050000,0xc084dd6c,0xce24687f, 0 } },
48 { { 0x40090000,0xe3b9fa2f,0xc95f3793, 0 } },
49 { { 0x400a0000,0xf5420b1b,0x1f9cd5a2, 0 } }
51 #endif
53 long double tanhl(long double x)
55 long double s, z;
57 #ifdef MINUSZERO
58 if (x == 0.0L)
59 return (x);
60 #endif
61 if (isnanl(x))
63 _SET_ERRNO (EDOM);
64 return x;
67 z = fabsl(x);
68 if (z > 0.5L * MAXLOGL)
70 _SET_ERRNO (ERANGE);
71 if (x > 0)
72 return (1.0L);
73 else
74 return (-1.0L);
76 if (z >= 0.625L)
78 s = expl(2.0*z);
79 z = 1.0L - 2.0/(s + 1.0L);
80 if (x < 0)
81 z = -z;
83 else
85 s = x * x;
86 z = polevll( s, P, 3 )/p1evll(s, Q, 3);
87 z = x * s * z;
88 z = x + z;
90 return (z);