2 * Copyright (c) 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 #include <sys/param.h>
34 #if defined(LIBC_SCCS) && !defined(lint)
35 static char sccsid
[] = "@(#)hash_bigkey.c 8.3 (Berkeley) 5/31/94";
36 #endif /* LIBC_SCCS and not lint */
37 #include <sys/cdefs.h>
42 * Big key/data handling for the hashing package.
57 #include <sys/param.h>
73 static int collect_key(HTAB
*, BUFHEAD
*, int, DBT
*, int);
74 static int collect_data(HTAB
*, BUFHEAD
*, int, int);
79 * You need to do an insert and the key/data pair is too big
94 int key_size
, n
, val_size
;
95 __uint16_t space
, move_bytes
, off
;
96 char *cp
, *key_data
, *val_data
;
98 cp
= bufp
->page
; /* Character pointer of p. */
101 key_data
= (char *)key
->data
;
102 key_size
= key
->size
;
103 val_data
= (char *)val
->data
;
104 val_size
= val
->size
;
106 /* First move the Key */
107 for (space
= FREESPACE(p
) - BIGOVERHEAD
; key_size
;
108 space
= FREESPACE(p
) - BIGOVERHEAD
) {
109 move_bytes
= MIN(space
, key_size
);
110 off
= OFFSET(p
) - move_bytes
;
111 memmove(cp
+ off
, key_data
, move_bytes
);
112 key_size
-= move_bytes
;
113 key_data
+= move_bytes
;
117 FREESPACE(p
) = off
- PAGE_META(n
);
120 bufp
= __add_ovflpage(hashp
, bufp
);
126 move_bytes
= MIN(FREESPACE(p
), val_size
);
127 off
= OFFSET(p
) - move_bytes
;
129 memmove(cp
+ off
, val_data
, move_bytes
);
130 val_data
+= move_bytes
;
131 val_size
-= move_bytes
;
132 p
[n
- 2] = FULL_KEY_DATA
;
133 FREESPACE(p
) = FREESPACE(p
) - move_bytes
;
138 p
= (__uint16_t
*)bufp
->page
;
140 bufp
->flags
|= BUF_MOD
;
143 /* Now move the data */
144 for (space
= FREESPACE(p
) - BIGOVERHEAD
; val_size
;
145 space
= FREESPACE(p
) - BIGOVERHEAD
) {
146 move_bytes
= MIN(space
, val_size
);
148 * Here's the hack to make sure that if the data ends on the
149 * same page as the key ends, FREESPACE is at least one.
151 if (space
== val_size
&& val_size
== val
->size
)
153 off
= OFFSET(p
) - move_bytes
;
154 memmove(cp
+ off
, val_data
, move_bytes
);
155 val_size
-= move_bytes
;
156 val_data
+= move_bytes
;
160 FREESPACE(p
) = off
- PAGE_META(n
);
164 bufp
= __add_ovflpage(hashp
, bufp
);
168 p
= (__uint16_t
*)cp
;
170 p
[n
] = FULL_KEY_DATA
;
171 bufp
->flags
|= BUF_MOD
;
177 * Called when bufp's page contains a partial key (index should be 1)
179 * All pages in the big key/data pair except bufp are freed. We cannot
180 * free bufp because the page pointing to it is lost and we can't get rid
193 BUFHEAD
*last_bfp
, *rbufp
;
194 __uint16_t
*bp
, pageno
;
199 bp
= (__uint16_t
*)bufp
->page
;
203 while (!key_done
|| (bp
[2] != FULL_KEY_DATA
)) {
204 if (bp
[2] == FULL_KEY
|| bp
[2] == FULL_KEY_DATA
)
208 * If there is freespace left on a FULL_KEY_DATA page, then
209 * the data is short and fits entirely on this page, and this
212 if (bp
[2] == FULL_KEY_DATA
&& FREESPACE(bp
))
214 pageno
= bp
[bp
[0] - 1];
215 rbufp
->flags
|= BUF_MOD
;
216 rbufp
= __get_buf(hashp
, pageno
, rbufp
, 0);
218 __free_ovflpage(hashp
, last_bfp
);
221 return (-1); /* Error. */
222 bp
= (__uint16_t
*)rbufp
->page
;
226 * If we get here then rbufp points to the last page of the big
227 * key/data pair. Bufp points to the first one -- it should now be
228 * empty pointing to the next page after this pair. Can't free it
229 * because we don't have the page pointing to it.
232 /* This is information from the last page of the pair. */
236 /* Now, bp is the first page of the pair. */
237 bp
= (__uint16_t
*)bufp
->page
;
239 /* There is an overflow page. */
242 bufp
->ovfl
= rbufp
->ovfl
;
244 /* This is the last page. */
248 FREESPACE(bp
) = hashp
->BSIZE
- PAGE_META(n
);
249 OFFSET(bp
) = hashp
->BSIZE
- 1;
251 bufp
->flags
|= BUF_MOD
;
253 __free_ovflpage(hashp
, rbufp
);
254 if (last_bfp
!= rbufp
)
255 __free_ovflpage(hashp
, last_bfp
);
263 * -1 = get next overflow page
264 * -2 means key not found and this is big key/data
282 bp
= (__uint16_t
*)bufp
->page
;
287 for (bytes
= hashp
->BSIZE
- bp
[ndx
];
288 bytes
<= size
&& bp
[ndx
+ 1] == PARTIAL_KEY
;
289 bytes
= hashp
->BSIZE
- bp
[ndx
]) {
290 if (memcmp(p
+ bp
[ndx
], kkey
, bytes
))
294 bufp
= __get_buf(hashp
, bp
[ndx
+ 2], bufp
, 0);
298 bp
= (__uint16_t
*)p
;
302 if (bytes
!= ksize
|| memcmp(p
+ bp
[ndx
], kkey
, bytes
)) {
303 #ifdef HASH_STATISTICS
312 * Given the buffer pointer of the first overflow page of a big pair,
313 * find the end of the big pair
315 * This will set bpp to the buffer header of the last page of the big pair.
316 * It will return the pageno of the overflow page following the last page
317 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
327 __uint16_t
*bp
, pageno
;
331 bp
= (__uint16_t
*)bufp
->page
;
336 * This is the last page if: the tag is FULL_KEY_DATA and
337 * either only 2 entries OVFLPAGE marker is explicit there
338 * is freespace on the page.
340 if (bp
[2] == FULL_KEY_DATA
&&
341 ((n
== 2) || (bp
[n
] == OVFLPAGE
) || (FREESPACE(bp
))))
345 bufp
= __get_buf(hashp
, pageno
, bufp
, 0);
347 return (0); /* Need to indicate an error! */
348 bp
= (__uint16_t
*)bufp
->page
;
359 * Return the data for the key/data pair that begins on this page at this
360 * index (index should always be 1).
372 __uint16_t
*bp
, len
, off
, save_addr
;
375 bp
= (__uint16_t
*)bufp
->page
;
376 while (bp
[ndx
+ 1] == PARTIAL_KEY
) {
377 bufp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
380 bp
= (__uint16_t
*)bufp
->page
;
384 if (bp
[ndx
+ 1] == FULL_KEY
) {
385 bufp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
388 bp
= (__uint16_t
*)bufp
->page
;
390 save_addr
= save_p
->addr
;
394 if (!FREESPACE(bp
)) {
396 * This is a hack. We can't distinguish between
397 * FULL_KEY_DATA that contains complete data or
398 * incomplete data, so we require that if the data
399 * is complete, there is at least 1 byte of free
405 save_addr
= bufp
->addr
;
406 bufp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
409 bp
= (__uint16_t
*)bufp
->page
;
411 /* The data is all on one page. */
414 val
->data
= (u_char
*)tp
+ off
;
415 val
->size
= bp
[1] - off
;
417 if (bp
[0] == 2) { /* No more buckets in
423 hashp
->cpage
= __get_buf(hashp
,
424 bp
[bp
[0] - 1], bufp
, 0);
429 hashp
->cpage
->page
)[0]) {
438 val
->size
= collect_data(hashp
, bufp
, (int)len
, set_current
);
441 if (save_p
->addr
!= save_addr
) {
442 /* We are pretty short on buffers. */
443 errno
= EINVAL
; /* OUT OF BUFFERS */
446 memmove(hashp
->tmp_buf
, (save_p
->page
) + off
, len
);
447 val
->data
= (u_char
*)hashp
->tmp_buf
;
451 * Count how big the total datasize is by recursing through the pages. Then
452 * allocate a buffer and copy the data as you recurse up.
465 __uint16_t save_addr
;
469 bp
= (__uint16_t
*)p
;
470 mylen
= hashp
->BSIZE
- bp
[1];
471 save_addr
= bufp
->addr
;
473 if (bp
[2] == FULL_KEY_DATA
) { /* End of Data */
474 totlen
= len
+ mylen
;
476 free(hashp
->tmp_buf
);
477 if ((hashp
->tmp_buf
= (char *)malloc(totlen
)) == NULL
)
481 if (bp
[0] == 2) { /* No more buckets in chain */
486 __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
489 else if (!((__uint16_t
*)hashp
->cpage
->page
)[0]) {
496 xbp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
497 if (!xbp
|| ((totlen
=
498 collect_data(hashp
, xbp
, len
+ mylen
, set
)) < 1))
501 if (bufp
->addr
!= save_addr
) {
502 errno
= EINVAL
; /* Out of buffers. */
505 memmove(&hashp
->tmp_buf
[len
], (bufp
->page
) + bp
[1], mylen
);
510 * Fill in the key and data for this big pair.
521 key
->size
= collect_key(hashp
, bufp
, 0, val
, set
);
524 key
->data
= (u_char
*)hashp
->tmp_key
;
529 * Count how big the total key size is by recursing through the pages. Then
530 * collect the data, allocate a buffer and copy the key as you recurse up.
544 __uint16_t
*bp
, save_addr
;
547 bp
= (__uint16_t
*)p
;
548 mylen
= hashp
->BSIZE
- bp
[1];
550 save_addr
= bufp
->addr
;
551 totlen
= len
+ mylen
;
552 if (bp
[2] == FULL_KEY
|| bp
[2] == FULL_KEY_DATA
) { /* End of Key. */
553 if (hashp
->tmp_key
!= NULL
)
554 free(hashp
->tmp_key
);
555 if ((hashp
->tmp_key
= (char *)malloc(totlen
)) == NULL
)
557 if (__big_return(hashp
, bufp
, 1, val
, set
))
560 xbp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
561 if (!xbp
|| ((totlen
=
562 collect_key(hashp
, xbp
, totlen
, val
, set
)) < 1))
565 if (bufp
->addr
!= save_addr
) {
566 errno
= EINVAL
; /* MIS -- OUT OF BUFFERS */
569 memmove(&hashp
->tmp_key
[len
], (bufp
->page
) + bp
[1], mylen
);
581 BUFHEAD
*op
, /* Pointer to where to put keys that go in old bucket */
582 BUFHEAD
*np
, /* Pointer to new bucket page */
583 /* Pointer to first page containing the big key/data */
585 int addr
, /* Address of big_keyp */
586 __uint32_t obucket
,/* Old Bucket */
595 __uint16_t free_space
, n
, off
;
599 /* Now figure out where the big key/data goes */
600 if (__big_keydata(hashp
, big_keyp
, &key
, &val
, 0))
602 change
= (__call_hash(hashp
, key
.data
, key
.size
) != obucket
);
604 if ( (ret
->next_addr
= __find_last_page(hashp
, &big_keyp
)) ) {
606 __get_buf(hashp
, ret
->next_addr
, big_keyp
, 0)))
611 /* Now make one of np/op point to the big key/data pair */
613 assert(np
->ovfl
== NULL
);
620 tmpp
->flags
|= BUF_MOD
;
622 (void)fprintf(stderr
,
623 "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp
->addr
,
624 (tmpp
->ovfl
? tmpp
->ovfl
->addr
: 0), (bp
? bp
->addr
: 0));
626 tmpp
->ovfl
= bp
; /* one of op/np point to big_keyp */
627 tp
= (__uint16_t
*)tmpp
->page
;
629 assert(FREESPACE(tp
) >= OVFLSIZE
);
633 free_space
= FREESPACE(tp
);
634 tp
[++n
] = (__uint16_t
)addr
;
638 FREESPACE(tp
) = free_space
- OVFLSIZE
;
641 * Finally, set the new and old return values. BIG_KEYP contains a
642 * pointer to the last page of the big key_data pair. Make sure that
643 * big_keyp has no following page (2 elements) or create an empty
650 tp
= (__uint16_t
*)big_keyp
->page
;
651 big_keyp
->flags
|= BUF_MOD
;
654 * There may be either one or two offsets on this page. If
655 * there is one, then the overflow page is linked on normally
656 * and tp[4] is OVFLPAGE. If there are two, tp[4] contains
657 * the second offset and needs to get stuffed in after the
658 * next overflow page is added.
661 free_space
= FREESPACE(tp
);
664 FREESPACE(tp
) = free_space
+ OVFLSIZE
;
666 tmpp
= __add_ovflpage(hashp
, big_keyp
);