1 /* Double-precision e^x function.
2 Copyright (c) 2018 Arm Ltd. All rights reserved.
4 SPDX-License-Identifier: BSD-3-Clause
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions
9 1. Redistributions of source code must retain the above copyright
10 notice, this list of conditions and the following disclaimer.
11 2. Redistributions in binary form must reproduce the above copyright
12 notice, this list of conditions and the following disclaimer in the
13 documentation and/or other materials provided with the distribution.
14 3. The name of the company may not be used to endorse or promote
15 products derived from this software without specific prior written
18 THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23 TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
34 #include "math_config.h"
36 #define N (1 << EXP_TABLE_BITS)
37 #define InvLn2N __exp_data.invln2N
38 #define NegLn2hiN __exp_data.negln2hiN
39 #define NegLn2loN __exp_data.negln2loN
40 #define Shift __exp_data.shift
41 #define T __exp_data.tab
42 #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
43 #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
44 #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
45 #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
46 #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
48 /* Handle cases that may overflow or underflow when computing the result that
49 is scale*(1+TMP) without intermediate rounding. The bit representation of
50 scale is in SBITS, however it has a computed exponent that may have
51 overflown into the sign bit so that needs to be adjusted before using it as
52 a double. (int32_t)KI is the k used in the argument reduction and exponent
53 adjustment of scale, positive k here means the result may overflow and
54 negative k means the result may underflow. */
56 specialcase (double_t tmp
, uint64_t sbits
, uint64_t ki
)
60 if ((ki
& 0x80000000) == 0)
62 /* k > 0, the exponent of scale might have overflowed by <= 460. */
63 sbits
-= 1009ull << 52;
64 scale
= asdouble (sbits
);
65 y
= 0x1p
1009 * (scale
+ scale
* tmp
);
66 return check_oflow (y
);
68 /* k < 0, need special care in the subnormal range. */
69 sbits
+= 1022ull << 52;
70 scale
= asdouble (sbits
);
71 y
= scale
+ scale
* tmp
;
74 /* Round y to the right precision before scaling it into the subnormal
75 range to avoid double rounding that can cause 0.5+E/2 ulp error where
76 E is the worst-case ulp error outside the subnormal range. So this
77 is only useful if the goal is better than 1 ulp worst-case error. */
79 lo
= scale
- y
+ scale
* tmp
;
81 lo
= 1.0 - hi
+ y
+ lo
;
82 y
= eval_as_double (hi
+ lo
) - 1.0;
83 /* Avoid -0.0 with downward rounding. */
84 if (WANT_ROUNDING
&& y
== 0.0)
86 /* The underflow exception needs to be signaled explicitly. */
87 force_eval_double (opt_barrier_double (0x1p
-1022) * 0x1p
-1022);
90 return check_uflow (y
);
93 /* Top 12 bits of a double (sign and exponent bits). */
94 static inline uint32_t
97 return asuint64 (x
) >> 52;
104 uint64_t ki
, idx
, top
, sbits
;
105 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
106 double_t kd
, z
, r
, r2
, scale
, tail
, tmp
;
108 abstop
= top12 (x
) & 0x7ff;
109 if (unlikely (abstop
- top12 (0x1p
-54) >= top12 (512.0) - top12 (0x1p
-54)))
111 if (abstop
- top12 (0x1p
-54) >= 0x80000000)
112 /* Avoid spurious underflow for tiny x. */
113 /* Note: 0 is common input. */
114 return WANT_ROUNDING
? 1.0 + x
: 1.0;
115 if (abstop
>= top12 (1024.0))
117 if (asuint64 (x
) == asuint64 (-INFINITY
))
119 if (abstop
>= top12 (INFINITY
))
121 if (asuint64 (x
) >> 63)
122 return __math_uflow (0);
124 return __math_oflow (0);
126 /* Large x is special cased below. */
130 /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
131 /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
135 ki
= converttoint (z
);
136 #elif EXP_USE_TOINT_NARROW
137 /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */
138 kd
= eval_as_double (z
+ Shift
);
139 ki
= asuint64 (kd
) >> 16;
140 kd
= (double_t
) (int32_t) ki
;
142 /* z - kd is in [-1, 1] in non-nearest rounding modes. */
143 kd
= eval_as_double (z
+ Shift
);
147 r
= x
+ kd
* NegLn2hiN
+ kd
* NegLn2loN
;
148 /* 2^(k/N) ~= scale * (1 + tail). */
150 top
= ki
<< (52 - EXP_TABLE_BITS
);
151 tail
= asdouble (T
[idx
]);
152 /* This is only a valid scale when -1023*N < k < 1024*N. */
153 sbits
= T
[idx
+ 1] + top
;
154 /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
155 /* Evaluation is optimized assuming superscalar pipelined execution. */
157 /* Without fma the worst case error is 0.25/N ulp larger. */
158 /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
159 #if EXP_POLY_ORDER == 4
160 tmp
= tail
+ r
+ r2
* C2
+ r
* r2
* (C3
+ r
* C4
);
161 #elif EXP_POLY_ORDER == 5
162 tmp
= tail
+ r
+ r2
* (C2
+ r
* C3
) + r2
* r2
* (C4
+ r
* C5
);
163 #elif EXP_POLY_ORDER == 6
164 tmp
= tail
+ r
+ r2
* (0.5 + r
* C3
) + r2
* r2
* (C4
+ r
* C5
+ r2
* C6
);
166 if (unlikely (abstop
== 0))
167 return specialcase (tmp
, sbits
, ki
);
168 scale
= asdouble (sbits
);
169 /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-739, so there
170 is no spurious underflow here even without fma. */
171 return scale
+ scale
* tmp
;