Cygwin: mmap: allow remapping part of an existing anonymous mapping
[newlib-cygwin.git] / newlib / libm / common / fdlibm.h
blob7a49e29e0bee3501023779ffbe96f29c609c3f4f
2 /* @(#)fdlibm.h 5.1 93/09/24 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 /* REDHAT LOCAL: Include files. */
15 #include <math.h>
16 #include <sys/types.h>
17 #include <machine/ieeefp.h>
18 #include "math_config.h"
20 /* Most routines need to check whether a float is finite, infinite, or not a
21 number, and many need to know whether the result of an operation will
22 overflow. These conditions depend on whether the largest exponent is
23 used for NaNs & infinities, or whether it's used for finite numbers. The
24 macros below wrap up that kind of information:
26 FLT_UWORD_IS_FINITE(X)
27 True if a positive float with bitmask X is finite.
29 FLT_UWORD_IS_NAN(X)
30 True if a positive float with bitmask X is not a number.
32 FLT_UWORD_IS_INFINITE(X)
33 True if a positive float with bitmask X is +infinity.
35 FLT_UWORD_MAX
36 The bitmask of FLT_MAX.
38 FLT_UWORD_HALF_MAX
39 The bitmask of FLT_MAX/2.
41 FLT_UWORD_EXP_MAX
42 The bitmask of the largest finite exponent (129 if the largest
43 exponent is used for finite numbers, 128 otherwise).
45 FLT_UWORD_LOG_MAX
46 The bitmask of log(FLT_MAX), rounded down. This value is the largest
47 input that can be passed to exp() without producing overflow.
49 FLT_UWORD_LOG_2MAX
50 The bitmask of log(2*FLT_MAX), rounded down. This value is the
51 largest input than can be passed to cosh() without producing
52 overflow.
54 FLT_LARGEST_EXP
55 The largest biased exponent that can be used for finite numbers
56 (255 if the largest exponent is used for finite numbers, 254
57 otherwise) */
59 #ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL
60 #define FLT_UWORD_IS_FINITE(x) 1
61 #define FLT_UWORD_IS_NAN(x) 0
62 #define FLT_UWORD_IS_INFINITE(x) 0
63 #define FLT_UWORD_MAX 0x7fffffff
64 #define FLT_UWORD_EXP_MAX 0x43010000
65 #define FLT_UWORD_LOG_MAX 0x42b2d4fc
66 #define FLT_UWORD_LOG_2MAX 0x42b437e0
67 #define HUGE ((float)0X1.FFFFFEP128)
68 #else
69 #define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)
70 #define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L)
71 #define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L)
72 #define FLT_UWORD_MAX 0x7f7fffffL
73 #define FLT_UWORD_EXP_MAX 0x43000000
74 #define FLT_UWORD_LOG_MAX 0x42b17217
75 #define FLT_UWORD_LOG_2MAX 0x42b2d4fc
76 #define HUGE ((float)3.40282346638528860e+38)
77 #endif
78 #define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1L<<23))
79 #define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23)
81 /* Many routines check for zero and subnormal numbers. Such things depend
82 on whether the target supports denormals or not:
84 FLT_UWORD_IS_ZERO(X)
85 True if a positive float with bitmask X is +0. Without denormals,
86 any float with a zero exponent is a +0 representation. With
87 denormals, the only +0 representation is a 0 bitmask.
89 FLT_UWORD_IS_SUBNORMAL(X)
90 True if a non-zero positive float with bitmask X is subnormal.
91 (Routines should check for zeros first.)
93 FLT_UWORD_MIN
94 The bitmask of the smallest float above +0. Call this number
95 REAL_FLT_MIN...
97 FLT_UWORD_EXP_MIN
98 The bitmask of the float representation of REAL_FLT_MIN's exponent.
100 FLT_UWORD_LOG_MIN
101 The bitmask of |log(REAL_FLT_MIN)|, rounding down.
103 FLT_SMALLEST_EXP
104 REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported,
105 -22 if they are).
108 #ifdef _FLT_NO_DENORMALS
109 #define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L)
110 #define FLT_UWORD_IS_SUBNORMAL(x) 0
111 #define FLT_UWORD_MIN 0x00800000
112 #define FLT_UWORD_EXP_MIN 0x42fc0000
113 #define FLT_UWORD_LOG_MIN 0x42aeac50
114 #define FLT_SMALLEST_EXP 1
115 #else
116 #define FLT_UWORD_IS_ZERO(x) ((x)==0)
117 #define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L)
118 #define FLT_UWORD_MIN 0x00000001
119 #define FLT_UWORD_EXP_MIN 0x43160000
120 #define FLT_UWORD_LOG_MIN 0x42cff1b5
121 #define FLT_SMALLEST_EXP -22
122 #endif
124 #ifdef __STDC__
125 #undef __P
126 #define __P(p) p
127 #else
128 #define __P(p) ()
129 #endif
132 * set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
133 * (one may replace the following line by "#include <values.h>")
136 #define X_TLOSS 1.41484755040568800000e+16
138 /* Functions that are not documented, and are not in <math.h>. */
140 #ifdef _SCALB_INT
141 extern double scalb __P((double, int));
142 #else
143 extern double scalb __P((double, double));
144 #endif
145 extern double significand __P((double));
147 extern long double __ieee754_hypotl __P((long double, long double));
149 /* ieee style elementary functions */
150 extern double __ieee754_sqrt __P((double));
151 extern double __ieee754_acos __P((double));
152 extern double __ieee754_acosh __P((double));
153 extern double __ieee754_log __P((double));
154 extern double __ieee754_atanh __P((double));
155 extern double __ieee754_asin __P((double));
156 extern double __ieee754_atan2 __P((double,double));
157 extern double __ieee754_exp __P((double));
158 extern double __ieee754_cosh __P((double));
159 extern double __ieee754_fmod __P((double,double));
160 extern double __ieee754_pow __P((double,double));
161 extern double __ieee754_lgamma_r __P((double,int *));
162 extern double __ieee754_gamma_r __P((double,int *));
163 extern double __ieee754_tgamma __P((double));
164 extern double __ieee754_log10 __P((double));
165 extern double __ieee754_sinh __P((double));
166 extern double __ieee754_hypot __P((double,double));
167 extern double __ieee754_j0 __P((double));
168 extern double __ieee754_j1 __P((double));
169 extern double __ieee754_y0 __P((double));
170 extern double __ieee754_y1 __P((double));
171 extern double __ieee754_jn __P((int,double));
172 extern double __ieee754_yn __P((int,double));
173 extern double __ieee754_remainder __P((double,double));
174 extern __int32_t __ieee754_rem_pio2 __P((double,double*));
175 #ifdef _SCALB_INT
176 extern double __ieee754_scalb __P((double,int));
177 #else
178 extern double __ieee754_scalb __P((double,double));
179 #endif
181 /* fdlibm kernel function */
182 extern double __kernel_standard __P((double,double,int));
183 extern double __kernel_sin __P((double,double,int));
184 extern double __kernel_cos __P((double,double));
185 extern double __kernel_tan __P((double,double,int));
186 extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const __int32_t*));
188 /* Undocumented float functions. */
189 #ifdef _SCALB_INT
190 extern float scalbf __P((float, int));
191 #else
192 extern float scalbf __P((float, float));
193 #endif
194 extern float significandf __P((float));
196 /* ieee style elementary float functions */
197 extern float __ieee754_sqrtf __P((float));
198 extern float __ieee754_acosf __P((float));
199 extern float __ieee754_acoshf __P((float));
200 extern float __ieee754_logf __P((float));
201 extern float __ieee754_atanhf __P((float));
202 extern float __ieee754_asinf __P((float));
203 extern float __ieee754_atan2f __P((float,float));
204 extern float __ieee754_expf __P((float));
205 extern float __ieee754_coshf __P((float));
206 extern float __ieee754_fmodf __P((float,float));
207 extern float __ieee754_powf __P((float,float));
208 extern float __ieee754_lgammaf_r __P((float,int *));
209 extern float __ieee754_gammaf_r __P((float,int *));
210 extern float __ieee754_tgammaf __P((float));
211 extern float __ieee754_log10f __P((float));
212 extern float __ieee754_sinhf __P((float));
213 extern float __ieee754_hypotf __P((float,float));
214 extern float __ieee754_j0f __P((float));
215 extern float __ieee754_j1f __P((float));
216 extern float __ieee754_y0f __P((float));
217 extern float __ieee754_y1f __P((float));
218 extern float __ieee754_jnf __P((int,float));
219 extern float __ieee754_ynf __P((int,float));
220 extern float __ieee754_remainderf __P((float,float));
221 extern __int32_t __ieee754_rem_pio2f __P((float,float*));
222 #ifdef _SCALB_INT
223 extern float __ieee754_scalbf __P((float,int));
224 #else
225 extern float __ieee754_scalbf __P((float,float));
226 #endif
228 #if !__OBSOLETE_MATH
229 /* The new math code does not provide separate wrapper function
230 for error handling, so the extern symbol is called directly.
231 This is valid as long as there are no namespace issues (the
232 extern symbol is reserved whenever the caller is reserved)
233 and there are no observable error handling side effects. */
234 # define __ieee754_exp(x) exp(x)
235 # define __ieee754_log(x) log(x)
236 # define __ieee754_pow(x,y) pow(x,y)
237 # define __ieee754_expf(x) expf(x)
238 # define __ieee754_logf(x) logf(x)
239 # define __ieee754_powf(x,y) powf(x,y)
240 #endif
242 /* float versions of fdlibm kernel functions */
243 extern float __kernel_sinf __P((float,float,int));
244 extern float __kernel_cosf __P((float,float));
245 extern float __kernel_tanf __P((float,float,int));
246 extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const __int32_t*));
248 /* The original code used statements like
249 n0 = ((*(int*)&one)>>29)^1; * index of high word *
250 ix0 = *(n0+(int*)&x); * high word of x *
251 ix1 = *((1-n0)+(int*)&x); * low word of x *
252 to dig two 32 bit words out of the 64 bit IEEE floating point
253 value. That is non-ANSI, and, moreover, the gcc instruction
254 scheduler gets it wrong. We instead use the following macros.
255 Unlike the original code, we determine the endianness at compile
256 time, not at run time; I don't see much benefit to selecting
257 endianness at run time. */
259 #ifndef __IEEE_BIG_ENDIAN
260 #ifndef __IEEE_LITTLE_ENDIAN
261 #error Must define endianness
262 #endif
263 #endif
265 /* A union which permits us to convert between a double and two 32 bit
266 ints. */
268 #ifdef __IEEE_BIG_ENDIAN
270 typedef union
272 double value;
273 struct
275 __uint32_t msw;
276 __uint32_t lsw;
277 } parts;
278 } ieee_double_shape_type;
280 #endif
282 #ifdef __IEEE_LITTLE_ENDIAN
284 typedef union
286 double value;
287 struct
289 __uint32_t lsw;
290 __uint32_t msw;
291 } parts;
292 } ieee_double_shape_type;
294 #endif
296 /* Get two 32 bit ints from a double. */
298 #define EXTRACT_WORDS(ix0,ix1,d) \
299 do { \
300 ieee_double_shape_type ew_u; \
301 ew_u.value = (d); \
302 (ix0) = ew_u.parts.msw; \
303 (ix1) = ew_u.parts.lsw; \
304 } while (0)
306 /* Get the more significant 32 bit int from a double. */
308 #define GET_HIGH_WORD(i,d) \
309 do { \
310 ieee_double_shape_type gh_u; \
311 gh_u.value = (d); \
312 (i) = gh_u.parts.msw; \
313 } while (0)
315 /* Get the less significant 32 bit int from a double. */
317 #define GET_LOW_WORD(i,d) \
318 do { \
319 ieee_double_shape_type gl_u; \
320 gl_u.value = (d); \
321 (i) = gl_u.parts.lsw; \
322 } while (0)
324 /* Set a double from two 32 bit ints. */
326 #define INSERT_WORDS(d,ix0,ix1) \
327 do { \
328 ieee_double_shape_type iw_u; \
329 iw_u.parts.msw = (ix0); \
330 iw_u.parts.lsw = (ix1); \
331 (d) = iw_u.value; \
332 } while (0)
334 /* Set the more significant 32 bits of a double from an int. */
336 #define SET_HIGH_WORD(d,v) \
337 do { \
338 ieee_double_shape_type sh_u; \
339 sh_u.value = (d); \
340 sh_u.parts.msw = (v); \
341 (d) = sh_u.value; \
342 } while (0)
344 /* Set the less significant 32 bits of a double from an int. */
346 #define SET_LOW_WORD(d,v) \
347 do { \
348 ieee_double_shape_type sl_u; \
349 sl_u.value = (d); \
350 sl_u.parts.lsw = (v); \
351 (d) = sl_u.value; \
352 } while (0)
354 /* A union which permits us to convert between a float and a 32 bit
355 int. */
357 typedef union
359 float value;
360 __uint32_t word;
361 } ieee_float_shape_type;
363 /* Get a 32 bit int from a float. */
365 #define GET_FLOAT_WORD(i,d) \
366 do { \
367 ieee_float_shape_type gf_u; \
368 gf_u.value = (d); \
369 (i) = gf_u.word; \
370 } while (0)
372 /* Set a float from a 32 bit int. */
374 #define SET_FLOAT_WORD(d,i) \
375 do { \
376 ieee_float_shape_type sf_u; \
377 sf_u.word = (i); \
378 (d) = sf_u.value; \
379 } while (0)
381 /* Macros to avoid undefined behaviour that can arise if the amount
382 of a shift is exactly equal to the size of the shifted operand. */
384 #define SAFE_LEFT_SHIFT(op,amt) \
385 (((amt) < 8 * sizeof(op)) ? ((op) << (amt)) : 0)
387 #define SAFE_RIGHT_SHIFT(op,amt) \
388 (((amt) < 8 * sizeof(op)) ? ((op) >> (amt)) : 0)
390 #ifdef _COMPLEX_H
393 * Quoting from ISO/IEC 9899:TC2:
395 * 6.2.5.13 Types
396 * Each complex type has the same representation and alignment requirements as
397 * an array type containing exactly two elements of the corresponding real type;
398 * the first element is equal to the real part, and the second element to the
399 * imaginary part, of the complex number.
401 typedef union {
402 float complex z;
403 float parts[2];
404 } float_complex;
406 typedef union {
407 double complex z;
408 double parts[2];
409 } double_complex;
411 typedef union {
412 long double complex z;
413 long double parts[2];
414 } long_double_complex;
416 #define REAL_PART(z) ((z).parts[0])
417 #define IMAG_PART(z) ((z).parts[1])
419 #endif /* _COMPLEX_H */