2 /* @(#)s_log1p.c 5.1 93/09/24 */
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
11 * ====================================================
16 <<log1p>>, <<log1pf>>---log of <<1 + <[x]>>>
25 double log1p(double <[x]>);
26 float log1pf(float <[x]>);
33 the natural logarithm of <<1+<[x]>>>. You can use <<log1p>> rather
34 than `<<log(1+<[x]>)>>' for greater precision when <[x]> is very
37 <<log1pf>> calculates the same thing, but accepts and returns
38 <<float>> values rather than <<double>>.
41 <<log1p>> returns a <<double>>, the natural log of <<1+<[x]>>>.
42 <<log1pf>> returns a <<float>>, the natural log of <<1+<[x]>>>.
45 Neither <<log1p>> nor <<log1pf>> is required by ANSI C or by the System V
46 Interface Definition (Issue 2).
50 /* double log1p(double x)
53 * 1. Argument Reduction: find k and f such that
55 * where sqrt(2)/2 < 1+f < sqrt(2) .
57 * Note. If k=0, then f=x is exact. However, if k!=0, then f
58 * may not be representable exactly. In that case, a correction
59 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
60 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
61 * and add back the correction term c/u.
62 * (Note: when x > 2**53, one can simply return log(x))
64 * 2. Approximation of log1p(f).
65 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
66 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
68 * We use a special Remez algorithm on [0,0.1716] to generate
69 * a polynomial of degree 14 to approximate R The maximum error
70 * of this polynomial approximation is bounded by 2**-58.45. In
73 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
74 * (the values of Lp1 to Lp7 are listed in the program)
77 * | Lp1*s +...+Lp7*s - R(z) | <= 2
79 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
80 * In order to guarantee error in log below 1ulp, we compute log
82 * log1p(f) = f - (hfsq - s*(hfsq+R)).
84 * 3. Finally, log1p(x) = k*ln2 + log1p(f).
85 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
86 * Here ln2 is split into two floating point number:
88 * where n*ln2_hi is always exact for |n| < 2000.
91 * log1p(x) is NaN with signal if x < -1 (including -INF) ;
92 * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
93 * log1p(NaN) is that NaN with no signal.
96 * according to an error analysis, the error is always less than
97 * 1 ulp (unit in the last place).
100 * The hexadecimal values are the intended ones for the following
101 * constants. The decimal values may be used, provided that the
102 * compiler will convert from decimal to binary accurately enough
103 * to produce the hexadecimal values shown.
105 * Note: Assuming log() return accurate answer, the following
106 * algorithm can be used to compute log1p(x) to within a few ULP:
109 * if(u==1.0) return x ; else
110 * return log(u)*(x/(u-1.0));
112 * See HP-15C Advanced Functions Handbook, p.193.
116 #include "math_config.h"
118 #ifndef _DOUBLE_IS_32BITS
125 ln2_hi
= 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
126 ln2_lo
= 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
127 two54
= 1.80143985094819840000e+16, /* 43500000 00000000 */
128 Lp1
= 6.666666666666735130e-01, /* 3FE55555 55555593 */
129 Lp2
= 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
130 Lp3
= 2.857142874366239149e-01, /* 3FD24924 94229359 */
131 Lp4
= 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
132 Lp5
= 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
133 Lp6
= 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
134 Lp7
= 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
137 static const double zero
= 0.0;
139 static double zero
= 0.0;
143 double log1p(double x
)
149 double hfsq
,f
,c
,s
,z
,R
,u
;
150 __int32_t k
,hx
,hu
,ax
;
156 if (hx
< 0x3FDA827A) { /* x < 0.41422 */
157 if(ax
>=0x3ff00000) { /* x <= -1.0 */
159 return __math_divzero (1); /* log1p(-1)=-inf */
161 return __math_invalid (x
); /* log1p(x<-1)=NaN */
163 if(ax
<0x3e200000) { /* |x| < 2**-29 */
164 if(two54
+x
>zero
/* raise inexact */
165 &&ax
<0x3c900000) /* |x| < 2**-54 */
170 if(hx
>0||hx
<=((__int32_t
)0xbfd2bec3)) {
171 k
=0;f
=x
;hu
=1;} /* -0.2929<x<0.41422 */
173 if (hx
>= 0x7ff00000) return x
+x
;
179 c
= (k
>0)? 1.0-(u
-x
):x
-(u
-1.0);/* correction term */
189 SET_HIGH_WORD(u
,hu
|0x3ff00000); /* normalize u */
192 SET_HIGH_WORD(u
,hu
|0x3fe00000); /* normalize u/2 */
193 hu
= (0x00100000-hu
)>>2;
198 if(hu
==0) { /* |f| < 2**-20 */
199 if(f
==zero
) { if(k
==0) return zero
;
200 else {c
+= k
*ln2_lo
; return k
*ln2_hi
+c
;}}
201 R
= hfsq
*(1.0-0.66666666666666666*f
);
202 if(k
==0) return f
-R
; else
203 return k
*ln2_hi
-((R
-(k
*ln2_lo
+c
))-f
);
207 R
= z
*(Lp1
+z
*(Lp2
+z
*(Lp3
+z
*(Lp4
+z
*(Lp5
+z
*(Lp6
+z
*Lp7
))))));
208 if(k
==0) return f
-(hfsq
-s
*(hfsq
+R
)); else
209 return k
*ln2_hi
-((hfsq
-(s
*(hfsq
+R
)+(k
*ln2_lo
+c
)))-f
);
212 #endif /* _DOUBLE_IS_32BITS */